
Search Based Software Engineering: 

Foundations, Challenges and Recent Advances

Marouane Kessentini

marouane@umich.edu 

SBSE Research Lab, CIS Department, 

College of Engineering and Computer Science, 

University of Michigan, Dearborn, USA

IEEE WCCI 2016 | 2016 IEEE World Congress on Computational 

Intelligence.



Acknowledgments

• Many thanks to Prof. Mark Harman (Founder of 
Search-Based Software Engineering) for the 
help to prepare part of this tutorial from the 
following source:

– Mark Harman, UCL, UK
Search Based Software Engineering: 
Automating Software Engineering, FSE2011, 
Technical Briefings.



Outline

• Philosophical Basis: Science and 
Engineering

• What is SBSE? 

• Recent Advances
– Bi-Level SBSE for Design Defects Detection

– Interactive Multi-Objective SBSE for Refactoring

– Many-Objective SBSE for Software 
Remodularization

• Challenges and Future Research 
Directions



Outline

• Philosophical Basis: Science and 
Engineering

• What is SBSE? 

• Recent Advances
– Bi-Level SBSE for Design Defects Detection

– Interactive Multi-Objective SBSE for Refactoring

– Many-Objective SBSE for Software 
Remodularization

• Challenges and Future Research 
Directions



Outline

• Philosophical Basis: Science and 
Engineering

• What is SBSE? 

• Recent Advances
– Bi-Level SBSE for Design Defects Detection

– Interactive Multi-Objective SBSE for Refactoring

– Many-Objective SBSE for Software 
Remodularization

• Challenges and Future Research 
Directions



Scientists’ and Engineers’ 

Viewpoints

Scientist:

What is true

Correctness

Model the world to understand

Engineer:

What is possible

Within tolerance

Model the world to manipulate



Scientists’ and Engineers’ 

Viewpoints

Computer scientist:

What is true about computation 

Proof correctness
Make it perfect

Software engineer:

What is possible with software

Test for imperfection
find where to improve



Combining Science and 

Engineering

prove correctness
make it perfect

where possible ...

... and where impossible ...

test for imperfection
find where to improve



Engineering Words

tolerance
With acceptable bounds

Improve performance
optimise

Reduce cost
Optimize

Within constraints

Optimization: so good they named it twice!

First in English ... 
Then in American



What is SBSE?

• In SBSE we apply search techniques to 
search large search spaces, guided by a 
fitness function that captures properties 
of the acceptable software artefacts we 
seek.

like google search?

like code search?

like breadth first search?

Exhaustive RandomSweet Spot



What is SBSE?

• In SBSE we apply search techniques to 
search large search spaces, guided by a 
fitness function that captures properties 
of the acceptable software artefacts we 
seek.

Tabu Search

Genetic Programming

Simulated Annealing

Ant Colonies
Hill Climbing

Particle Swarm Optimization

Harmony Search



What is SBSE?

Search-Based 
Optimization

S
B
S
E



Checking vs Generating

• Search Based Software Engineering

– Write a method to determine which is the 

better of two solutions

• Conventional Software Engineering

– Write a method to construct a perfect 

solution



Checking vs Generating

• Search Based Software Engineering

– Write a fitness function to guide 
automated search

• Conventional Software Engineering

– Write a method to construct a perfect 

solution



…but…

why is Software Engineering 
different?



In situ fitness test

Physical 
Engineering

Virtual
Engineering

Cost: 20,000$ Cost: 0 $



Spot the Difference

Traditional 
Engineering Artifact

Optimization goals Fitness computed
on a representation

Maximize compression

Minimize fuel consumption

Traditional 
Engineering Artifact

Optimization goals Fitness computed
on a representation

Maximize cohesion

Minimize coupling



…but…

why is SBSE growing very fast?



Software Engineers …

let’s listen to software engineers ...

... what sort of things do they say?



Software Engineers Say…

We need to satisfy business and technical 
concerns

We need to reduce risk while maintaining 
completion time

We need increased cohesion and decreased 
coupling

We need fewer tests that find more nasty bugs

We need to optimize for all metrics M1,..., Mn

Requirements:

Management:

Design:

Testing:

Refactoring:

All have been addressed in the SBSE literature



Software Engineers Say…

Capture 
requirements

Generate 
tests

Model 
Transformation

Refactoring

M
in

im
iz

e
M

a
x
im

iz
e

• Cost
• Development time

• Satisfaction
• Fairness



Software Engineers Say…

Capture 
requirements

Generate 
tests

Model 
Transformation

Refactoring

M
in

im
iz

e
M

a
x
im

iz
e

• Number of test
• Execution time

• Code coverage
• Fault coverage



Software Engineers Say…

Capture 
requirements

Generate 
tests

Model 
Transformation

Refactoring

M
in

im
iz

e
M

a
x
im

iz
e

• Rules correctness

• Rules complexity
• Models quality



Software Engineers Say…

Capture 
requirements

Generate 
tests

Model 
Transformation

Refactoring

M
in

im
iz

e
M

a
x
im

iz
e

• Number 
of refactorings

• Quality 
factors
• Semantics 
preservation



The Advantages of SBSE

Scalable

Generic

Robust

Realistic



SBSE is so generic…

Solution representation

Fitness 

Function

Change 
operator

Software 
Engineering 
Problem

encoding

Function defined to 
evaluate solutions

Search Problem

Software Engineering

Search Based
Software Engineering

Optimization 
Techniques



SBSE is so generic…



Requirements and regression 

testing: Really different?

really different ?

Alone



Requirements and regression 

testing: Really different?

really different ?

All one



Our Recent Advances in 

SBSE

SE

SB

Bi-Level 
Optimization

Design Defects 
Detection

Re-modularization

Dynamic
Interactive 
Multi-Objective
Optimization

Many-Objective
Optimization

(TOSEM, 2015)

(ASE, 2015)

(TOSEM, 2015)

Design Defects
Correction 
(Refactoring)



Our Recent Advances in 

SBSE

SE

SB

Bi-Level 
Optimization

Design Defects 
Detection

Re-modularization

Interactive 
Multi-Objective
Optimization

Many-Objective
Optimization

(TOSEM, 2015)

Design Defects
Correction 
(Refactoring)



Software Refactoring

• Software changes frequently
• Add new functionalities

• Correcting bugs

• Adaptation to environment changes

• Software engineers spend 60% of their time in 
understanding the code 

• Easiness to accommodate changes 
depends on the software quality 

• Refactoring 



Software Refactoring

• Refactoring
– The process of improving a code after it has been 

written by changing its internal structure without 
changing the external behavior (Fowler et al., ‘99)

– Examples: Move method, extract class, move 
attribute, ...

• Two main refactoring steps
1.detection of code fragments to improve (e.g., design 

defects)  

2.identification of refactoring solutions



Step 1: Design defects 

detection

• Design defect introduced during the initial 
design or during evolution

– Anomalies, anti-patterns, bad smells…

– Design situations that adversely affect the development of a 
software (not bugs)

– Examples: Blob, spaghetti code, functional decomposition, ...



The Blob Example

• Definition

– Procedural-style design leads to one object 

with numerous responsibilities and most 

other objects only holding data or executing 

simple processes.

• Symptoms

– A Blob is a controller class, abnormally 

large, with almost no parents and no 

children. It mainly uses data classes, i.e.

very small classes with almost no parents 

and no children  (Brown et al. ’98).



Step 2: Refactoring

Blob

Refactoring

Move method

Extract class

Move field

Add association

…



Existing Work

• Design defects detection
– Manual (Brown et al. ‘98, Fowler and Beck ‘99)

– Metrics-based (Marinescu et al. ’04, Salehie et al. ’06, Maiga et al.‘12)

– Visual (Dhambri et al. ’08, Langelier et al. ’05)

– Symptoms-based (Moha et al. ’08, Murno et al. ‘08)

Definition  symptoms  detection algorithm



Existing Work

• Detection issues

– No consensual definition of symptoms

– The same symptom could be associated to many defect types

– Difficulty to automate symptom’s evaluation

– Require an expert to manually write and validate detection rules



Limitations ...

• Detection rules heavily depend on the 
base of examples (coverage, quality, 
etc.)

• To generate good detection rules, we 
need to have examples from similar 
contexts



Problem

• Large exhaustive list of quality metrics

• Large number of possible threshold
values

Search problem to explore this huge space



Bi-Level Code-Smells 

Detection



Bi-Level Optimization



Solution Representation

Genetic Programming for 

detection rules generation

Genetic Algorithm for 

detectors generation

Code-smells 

examples
Quality metrics

Well designed

code examples

Artificial code-

smells examples

Quality metrics

• Tree :

– Leaf node (Terminal) :
metrics and their thresholds

– Internal node (Functions) : 
logic operators (AND;OR)

• Vector :

– A set of detectors 

– A detector is composed of 7 
metrics



Fitness Functions

Genetic Programming for 

detection rules generation

Genetic Algorithm for 

detectors generation

Code-smells 

examples
Quality metrics Well designed

code examples

Artificial code-

smells examples

Quality metrics

• Evaluating the artificial code-smells
examples :

o Maximize the dissimilarity score 
between generated code-smells and 
reference code

o Maximize the number of generated 
code-smell examples un-covered by 
the upper level solutions

• Evaluating detection-rules solutions : 

o Maximize the coverage of the base 
of code-smell examples 

o Maximize the number of covered 
“artificial” code-smells generated by 
the lower level solutions

Detection rules



Validation:

Research Questions

• RQ1: How does BLOP perform to detect different 
types of code-smells (Precision and Recall)? 

• RQ2: How do BLOP perform compared to existing 
search-based code-smells detection algorithms? 

• RQ3: How does BLOP perform compared to the 
existing code-smells detection approaches not 
based on the use of metaheuristic search? 

• RQ4: How does our bi-level formulation scale?



Validation: 

Studied Systems



System PR-

BLOP 

PR-GP PR-Co-

Evol 

PR-RS RE-

BLOP 

RE-GP RE-Co-

Evol 

RE-RS 

JFreeChart  
89% 

(77/86) 

78% 

(71/92) 

84% 

(74/89) 

26% 

(34/129) 

93% 

(77/82) 

86% 

(71/82) 

90% 

(74/82) 

41% 

(34/82) 

GanttProject 
88% 

(62/71) 

80% 

(57/73) 

82% 

(58/71) 

28% 

(29/106) 

89% 

(62/67) 

83% 

(57/67) 

85% 

(58/67) 

43% 

(29/67) 

ApacheAnt v1.5.2 
90% 

(152/169) 

84% 

(146/174) 

86% 

(148/171) 

26% 

(51/189) 

93% 

(152/163) 

89% 

(146/163) 

90% 

(148/163) 

31% 

(51/163) 

ApacheAnt v 1.7.0 
91% 

(149/164) 

82% 

(142/173) 

85% 

(144/169) 

28% 

(54/184) 

94% 

(149/159) 

90% 

(142/159) 

91% 

(144/159) 

33% 

(54/159) 

Nutch 
89% 

(67/76) 

73% 

(64/88) 

76% 

(65/86) 

34% 

(37/131) 

92% 

(67/72) 

89% 

(64/72) 

90% 

(65/72) 

51% 

(37/72) 

Log4J 
89% 

(59/67) 

71% 

(52/74) 

77% 

(54/71) 

32% 

(34/127) 

91% 

(59/64) 

81% 

(52/64) 

85% 

(54/64) 

53% 

(34/64) 

Lucene 
91% 

(35/39) 

70% 

(31/42) 

79% 

(33/42) 

12% 

(11/88) 

95% 

(35/37) 

84% 

(31/37) 

89% 

(33/37) 

29% 

(11/37) 

Xerces-J 
91% 

(101/111) 

75% 

(94/126) 

80% 

(96/119) 

17% 

(31/179) 

95% 

(101/106) 

88% 

(94/106) 

91% 

(96/106) 

29% 

(31/106) 

Rhino 
90% 

(75/84) 

74% 

(69/93) 

79% 

(71/89) 

14% 

(23/167) 

95% 

(75/78) 

87% 

(69/78) 

91% 

(71/78) 

29% 

(23/78) 

 

Results



Results

Box plots on three different systems of: (a) precision values, and (b) recall values



Number of Defect Examples



CPU Time



Comparison with non-search 

based approach



Industrial Case Study:

Ford Motor Company

• 8 software engineers from Ford evaluated 
the detected defects on the JDI System

Systems Release #Classes #Smells KLOC 

JDI-Ford v5.8 638 88 247 

 



Quality Gain



Code Smells Relevance



Usefulness of Code Smells



Our Recent Advances in 

SBSE

SE

SB

Bi-Level 
Optimization

Design Defects 
Detection

Re-modularization

Dynamic 
Interactive 
Multi-Objective
Optimization

Many-Objective
Optimization

(ASE, 2015)

Design Defects
Correction 
(Refactoring)



• Metric-based approaches 
– Search-based techniques 

• Find the best sequence of refactorings (Harman et 
al. ’07, O’Keeffe et al. ’08)

– Analytic approaches
• Study of relations between some quality 

metrics and refactoring changes (Sahraoui et al. ’00, Du 

Bois et al. ’04, Moha et al. ’08)

• Graph-based approaches 
– Graph transformation

• Software is represented as a graph

• Refactorings activities as graph production 
rules (Kataoka et al, ’01, Heckel et al. ‘95)

Existing Work



Refactoring Challenges

Software 

Refactoring

Manual Refactoring

Fully-Automated 

Refactoring

Manual refactoring is

• error-prone,

• time consuming,

• not scalable

• not useful for radical

refactoring (extensive application

of refactorings to correct unhealthy

code.)

Fully-automated refactoring

• lacks flexibility (developers have

to accept the entire refactoring

solution),

• fails to consider developer

perspective and feed-back,

• proposes a long static list of

refactorings to be applied

but developers do not have

enough time to apply all of

them



DINAR: Dynamic Interactive 

Multi-objective refactoring



The Three Components of 

DINAR

1. Upfront generation of refactoring solutions using 

NSGA-II



• NSGA-II: Non-dominated Sorting  Genetic  Algorithm (K. Deb et al., ’02)

Parent 

Population

Offspring 

Population

Non-dominated 

sorting

F1

F2

F3

F4
Intra-front sorting

Population in 

next 

generation

Objective 2

Objective 1

Front F1

Front F2

Front F3

NSGA-II Overview



• Individual = Refactoring solution

• Sequence of  refactoring operations

RO1 moveMethod 

RO2 pullUpAttribute 

RO3 extractClass 

RO4 inlineClass 

RO5 extractSuperClass 

RO6 inlineMethod 

RO7 extractClass

RO8 moveMethod 

Representation of Individuals



• Specify the controlling parameters

– Random selection for the initial populationRefactorings Controlling parameters

move method (sourceClass, targetClass, method)

move field (sourceClass, targetClass, field)

pull up field (sourceClass, targetClass, field)

pull up method (sourceClass, targetClass, method)

push down field (sourceClass, targetClass, field)

push down method (sourceClass, targetClass, method)

inline class (sourceClass, targetClass)

extract class (sourceClass, newClass)

Representation of Individuals



• Population: set of refactoring solutions

RO1 moveMethod 

RO2 pullUpAttribute 

RO3 extractClass 

RO4 inlineClass 

RO5 extractSuperClass 

RO6 inlineMethod 

RO7 extractClass

RO8 pullUpAttribute 

RO9 extractClass 

RO10 moveMethod 

RO1 moveMethod 

RO2 pullUpAttribute 

RO3 extractClass 

RO4 inlineClass 

RO5 extractSuperClass 

RO6 inlineMethod 

RO7 extractClass

RO8 moveMethod 

RO1 moveMethod 

RO2 pullUpAttribute 

RO3 extractClass 

RO4 inlineClass 

RO5 extractSuperClass 

RO6 inlineMethod 

RO7 extractClass

RO8 moveMethod 

RO1 moveMethod 

RO2 pullUpAttribute 

RO3 extractClass 

RO4 inlineClass 

RO5 extractSuperClass 

RO6 inlineMethod 

RO1 moveMethod 

RO2 pullUpAttribute 

RO3 extractClass 

RO4 inlineClass 

RO5 extractSuperClass 

RO6 inlineMethod 

RO7 inlineClass 

RO8
inlineMethod 

RO9 extractSuperClass 

RO1 moveMethod 

RO2 pullUpAttribute 

RO3 extractClass 

RO4 inlineClass 

RO5 extractSuperClass 

RO6 inlineMethod 

RO7 extractClass

RO1 moveMethod 

RO2 pullUpAttribute 

RO3 extractClass 

RO4 inlineClass 

RO5 extractSuperClass 

RO6 inlineMethod 

RO7 extractClass

RO8 moveMethod 

RO1 moveMethod 

RO2 pullUpAttribute 

RO3 extractClass 

RO4 inlineClass 

RO5 extractSuperClass 

RO6 inlineMethod 

RO7 extractClass

RO8 moveMethod 

Population of Solutions



The Three Components of 

DINAR

2.a  Ranking of refectoring solutions
• Counts the number of occurrence of the

refactoring operation Ri,j among all the Pareto front
solutions.

• Search for common principles among the 
refactoring solutions.

refdrecommende

RSim

occurencenumber

occurencenumber
RRank

i

k

jk

ji
_#

d_ref)recommende,(

_max_

_
)( 1

,

,




• The ranking of refactorings is updated automatically after

every feed-back from the developer.



The Three Components of 

DINAR

2.b Interactive recommendation of refactorings

The list of ranked Refactorings recommended 
by DINAR



The Three Components of 

DINAR

2.b Interactive recommendation of refactorings

The user can modify the suggested refactoring



The Three Components of 

DINAR

3. Dynamic update of recommended refactorings

– The input of this component is the new system after

major changes are performed by developers on the

original one and the latest set of good refactoring

solutions.

– The output is a new updated set of non-dominated

refactoring solutions that are adapted to the new system

using an indicator-based local search



Results: Manual Correctness

Median manual correctness (MC) value over 31 runs on all the five systems 
using the different refactoring techniques with a 99% confidence level (α < 

1%).



Results: Refactoring 

Recommendation

Median value of refactorings (PRT) and code elements selected from the 
top5 on all the five systems.



Results: Refactoring 

Recommendation

Average time T (minutes) required by developers to finalize a refactoring 
session.



Results: Feed-back from 

Developers

– The participants agreed that

• the interactive dynamic refactoring recommendations are a desirable 

feature in IDEs

• the interactive manner of recommending refactorings by DINAR is a 

useful and flexible way to refactor systems comparing to fully-automated 

or manual refactorings

– The participants found DINAR helpful

• for both floss refactoring and root canal refactoring

• to modify the source code (to add new functionality) while doing 

refactoring 

• to take the advantages of using multi-objective optimization for software 

refactoring without the explicit exploration of the set of non-dominated

solutions



Our Recent Advances in 

SBSE

SE

SB

Bi-Level 
Optimization

Design Defects 
Detection

Re-modularization

Dynamic
Interactive 
Multi-Objective
Optimization

Many-Objective
Optimization

(TOSEM, 2015)

Design Defects
Correction 
(Refactoring)



AttributeMap
AttrImpl
AttrNSImpl
....
CoreDOMImplementationImpl
DeepNodeListImpl
DeferredAttrImpl
….
DocumentFragmentImpl
DocumentImpl
….
ElementNSImpl
EntityImpl
EntityReferenceImpl
NamedNodeMapImpl
NodeImpl
NodeIteratorImpl
NotationImpl
ParentNode
ProcessingInstructionImpl
RangeImpl
TextImpl
TreeWalkerImpl

….

org.apache.xerces.dom

DTDGrammar

org.apache.xerces.validators.dtd

XGrammarWriter
XGrammarWriter.OutputFormat

org.apache.xerces.domx

EventImpl
MutationEventImpl

org.apache.xerces.dom.events

?

?

?

Motivating Example

https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/AttributeMap.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/AttrImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/AttrNSImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/CoreDOMImplementationImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DeepNodeListImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DeferredAttrImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentFragmentImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/ElementNSImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/EntityImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/EntityReferenceImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NamedNodeMapImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeIteratorImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NotationImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/ParentNode.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/ProcessingInstructionImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/RangeImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/TextImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/TreeWalkerImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/validators/dtd/DTDGrammar.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/domx/XGrammarWriter.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/domx/XGrammarWriter.OutputFormat.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/events/EventImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/events/MutationEventImpl.html


AttributeMap
AttrImpl
AttrNSImpl
....
CoreDOMImplementationImpl
DeepNodeListImpl
DeferredAttrImpl
….
DocumentFragmentImpl
DocumentImpl
….
ElementNSImpl
EntityImpl
EntityReferenceImpl
NamedNodeMapImpl
NodeImpl
NodeIteratorImpl
NotationImpl
ParentNode
ProcessingInstructionImpl
RangeImpl
TextImpl
TreeWalkerImpl

….

org.apache.xerces.dom

XGrammarWriter
XGrammarWriter.OutputFormat

org.apache.xerces.domx

EventImpl
MutationEventImpl

org.apache.xerces.dom.events

?

?

Xerces v 2.5.1 : 

Move class (MutationEventImpl, org.apache.xerces.dom, 

org.apache.xerces.dom.events)  

Motivating Example

https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/AttributeMap.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/AttrImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/AttrNSImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/CoreDOMImplementationImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DeepNodeListImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DeferredAttrImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentFragmentImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/ElementNSImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/EntityImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/EntityReferenceImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NamedNodeMapImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeIteratorImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NotationImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/ParentNode.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/ProcessingInstructionImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/RangeImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/TextImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/TreeWalkerImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/domx/XGrammarWriter.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/domx/XGrammarWriter.OutputFormat.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/events/EventImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/events/MutationEventImpl.html


AttributeMap
AttrImpl
AttrNSImpl
....
CoreDOMImplementationImpl
DeepNodeListImpl
DeferredAttrImpl
….
DocumentFragmentImpl
DocumentImpl
….
ElementNSImpl
EntityImpl
EntityReferenceImpl
NamedNodeMapImpl
NodeImpl
NodeIteratorImpl
NotationImpl
ParentNode
ProcessingInstructionImpl
RangeImpl
TextImpl
TreeWalkerImpl

….

org.apache.xerces.dom

EventImpl
MutationEventImpl

org.apache.xerces.dom.events

Xerces v 2.5.1 : 

Move class (MutationEventImpl, org.apache.xerces.dom, org.apache.xerces.dom.events)  

Motivating Example

https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/AttributeMap.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/AttrImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/AttrNSImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/CoreDOMImplementationImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DeepNodeListImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DeferredAttrImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentFragmentImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/ElementNSImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/EntityImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/EntityReferenceImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NamedNodeMapImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeIteratorImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NotationImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/ParentNode.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/ProcessingInstructionImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/RangeImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/TextImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/TreeWalkerImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/events/EventImpl.html
https://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/events/MutationEventImpl.html


 Software remodularization consists of 
automatically reorganizing software 
packages to improve the overall 
program structure

P1

P2

C1

C2

C3

C4

C5

Cohesion: number of intra-edges

Coupling: number of inter-edges

Remodularization



• Bavota et al : Software Re-Modularization based 
on Structural and Semantic Metrics, 2010

– Proposed an automated mono-objective where semantic and structural 
metric  are combined in one objective value. 

• Bavota et al: Putting the Developer in-the-Loop: 
An Interactive GA for Software 
Remodularization,2012.

– Propose an extension of its work with a Mono and Multi- Objective using 
an Interactive GA where the developer give their feedback to proposed 
remodularization solution.

Related Work



• Harman et al: Software Module 
Clustering as a Multi-Objective Search 
Problem,2011.

– Use genetic algorithm with three objectives: Coupling, Cohesion and 
Complexity.

• Abdeen et al: Towards automatically 
improving package structure while 
respecting original design decisions, 
2013.

– Proposed a re-modularization task as a multi-objective optimization 
problem to improve existing packages structure while minimizing the 
modification amount on the original design. 

Related Work



• Focus only on improving structural measures 
(cohesion, coupling, etc.)

• Violate the domain semantics

• Do not consider the number of code-changes 
(deviation from initial design) and 
development/maintenance history.

• Limited to only 2 types of changes 

• Move class

• Split package

Limitations



• Software remodularization as a many-objective 
search problem

4 Structural measures (number of packages, number of 
classes per package, cohesion and coupling)

Semantic coherence (cosine similarity and Call graphs)

Number of operations per solution

Consistency with the history of changes

• New operation types

Move method

Extract class

Merge packages

Move class

Extract package

Proposal



Approach Overview



The algorithm becomes unable to distinguish between solutions 

 Random search behavior

 Require an additional selection process for convergence.

Multi-Objective issues



Generate initial 
Population N

Generate 
Offsprings Q

Niching

Non-Dominated 
Sorting N+Q

Apply Mutation 
and Crossover 

NO

Yes

Solution

If M = N  

Selecting M  

Check stooping 
criteria

Yes

NO

(K. Deb et al., ’13)

Multi-Objective issues



• Each solution is represented as a vector of 
multiple refactorings

• Each refactoring is generated randomly.  

1 Create Package(p)

2 Merge Package(p1,p2)

3 Split Package(p3, p4)

4 Move Class(C1, P1)

5 Merge Package(p5,p6)

Move Class(AttrNSImpl, org.apache.xerces.dom, org.apache.xerces.validators.dtd)

Extract Class(XGrammarWriter, XGrammarInput, parseInt())

Move Method(normalize(), XGrammarWriter, DTDGrammar)

Extract Package(org.apache.xerces.dom, org.apache.xerces.dtl, CharacterDataImpl, ChildNode)

Example of a remodularization solution

List of possible operations

Solution Representation



• Structural Metrics: 
1. number of classes per package

2. number of packages in the system

3. Coupling 

4. Cohesion 

Fitness Functions



• Semantic Metrics:
5. Vocabulary-based similarity:

6. Dependency-based similarity: 

]1,0[
||2||*||1||

2.1
)2,1cos()2,1(  




cc

cc
ccccSim

]1,0[
|)callOut(c2  )callOut(c1|

|)callOut(c2  )callOut(c1|
 c2) Out(c1,sharedCall 






]1,0[
|callIn(c2)  callIn(c1)|

|callIn(c2)  callIn(c1)|
 c2) In(c1,sharedCall 






Fitness Functions



• Other Metrics:
7. Number of code changes : Sum of Operations

8. Similarity with history of code changes

Fitness Functions



• 4 medium and large scale open systems and 1 
industrial system provided by Ford Motor Company.

• Each experiment is repeated 32 times.

Systems Release # classes KLOC

Xerces-J v2.7.0 991 240

JHotDraw v6.1 585 21

JFreeChart v1.0.9 521 170

GanttProject v1.10.2 245 41

JDI-Ford v5.8 638 247

Experiments



• Manual Precision: 

Results



• Automatic Validation

]1,0[
|operations expected| 

 |operations expected|  |operations suggested|
RE 


recall

]1,0[
|operations suggested| 

 |operations expected|  |operations suggested|
PR 


precesion

Results



Results



• How can our approach be useful for software 
engineers in real-world setting?

Results



Challenges and Open 

Research Directions

• Why do we currently need to design special 
algorithms for each software engineering 
problem instance?

– This is unrealistic: Science is about generality. Several software 
engineering activities have a lot of common patterns and 
similarities

• Why do we currently address silos of software 
engineering activity?

– This is unrealistic: engineering decision making needs to take 
account of requirements, designs, test cases and 
implementation details simultaneously.



Challenges and Open 

Research Directions
• Automation level: How best do we draw the dividing 

line between adaptive automation for small changes 
and human intervention to invoke more fundamental 
adaption and to provide oversight and decision 
making? 

• Surrogate metrics: Any approach that seeks dynamic 
adaptivity must necessarily compute many fitness 
evaluations between adaptations surrogate fitness 
computation will need to be fast.

• Dynamic Adaptativity



Thank You

Questions?

Take a Problem and “SBSE” it !


