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Our world revolves around the data

� Science
� Data bases from astronomy, genomics, environmental data, 

transportation data, …

� Humanities and Social Sciences
� Scanned books, historical documents, social interactions data, …

� Business & Commerce
� Corporate sales, stock market transactions, census, airline traffic, …

� Entertainment
� Internet images, Hollywood movies, MP3 files, …

� Medicine
� MRI & CT scans, patient records, …

� Industry, Energy, …
� Sensors, …

Big Data
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Big Data 3 V’s

Big 
Data
Big 

Data

VolumeVolume

VelocityVelocityVarietyVariety

Doug Laney, Gartner 2001  

Big Data



What is Big Data? 3 Vs of Big Data

Astronomy

Transactions

Ej. Genomics

volume

Gartner, Doug Laney, 2001



What is Big Data? 3 Vs of Big Data
velocity

Gartner, Doug Laney, 2001



What is Big Data? 3 Vs of Big Data
variety

Gartner, Doug Laney, 2001



What is Big Data? 3 Vs of Big Data

Some Make it 4V’s



What is Big Data? 



� Most important 
motivation for big data

� Big data may result in:

� Better statistics/models

� Novel insights

� New opportunities for
research and industry

Value: data in use

What is Big Data? One more V?



No single standard definition

Big data is a collection of data sets so 

large and complex that it becomes 

difficult to process using on-hand 

database management tools or 

traditional data processing applications.

What is Big Data?

“Big Data” is data whose scale, 

diversity, and complexity require 

new architectures, techniques, 

algorithms, and analytics to 

manage it and extract value and 

hidden knowledge from it…



What is Big Data? (in short)

Big data refers to any problem
characteristic that represents a challenge
to process it with traditional applications



Data Science combines the
traditional scientific method
with the ability to munch, 
explore, learn and gain deep
insight for (Big) Data 

It is not just about finding
patterns in data … it is
mainly about explaining
those patterns

(Big) Data Science



Data Science Process
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> 70% time!



Data Science Process

Systematic methodologies dealing with data efficiently,
called data science, should be done.
https://aadamov.wordpress.com/2012/03/



Big data has many faces



� Problem statement: scalability to big data sets.

� Example: 

� Explore 100 TB by 1 node @ 50 MB/sec = 23 days

� Exploration with a cluster of 1000 nodes = 33 minutes

� Solution� Divide-And-Conquer

How to deal with big data?

A single machine cannot
efficiently manage high
volumes of data.
Vertical scalability �

Horizontal scalability



Traditional HPC way of doing things

worker
nodes

(lots of them)

…

central
storage

Communication network (Infiniband)

Network for I/O

OS OS OS OS OS

iiiiii

Limited I/O

c cc cc

input data 
(relatively 
small)

Lots of 
computations

Lots of 
communication

Source: Jan Fostier. Introduction to MapReduce and its Application to Post-Sequencing Analysis



Data-intensive jobs

Low compute 
intensity…

Fast communication network (Infiniband)

Network for I/O

OS OS OS OS OS

a

Limited
communication

central
storage

input data (lots of it)

b c d e

f g h i j

a b c d e

f g h i j

Lots of I/O

doesn’t
scale



Data-intensive jobs

Low compute 
intensity

…

Communication network

Limited
communication

input data 
(lots of it)

e j

b c

g j

a c

h i

b e

g i

d f

f h

a d

Solution: store data on local disks of the nodes that perform 
computations on that data (“data locality”)



� Scalability to large data volumes:
� Scan 100 TB on 1 node @ 50 MB/sec = 23 days

� Scan on 1000-node cluster = 33 minutes

� Divide-And-Conquer (i.e., data partitioning)

MapReduce
� Overview:

� Data-parallel programming model 

� An associated parallel and distributed implementation for 
commodity clusters

� Pioneered by Google

� Processes 20 PB of data per day

� Popularized by open-source Hadoop project

� Used by Yahoo!, Facebook, Amazon, and the list is growing …

MapReduce



MapReduce

� MapReduce is a popular 
approach to deal with Big 
Data

� Based on a key-value pair 
data structure

� Two key operations:

1. Map function: Process 
independent data blocks 
and outputs summary 
information

2. Reduce function: Further 
process previous 
independent results

J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clusters,
Communications of the ACM 51 (1) (2008) 107-113.

input inputinputinput

mapmap map map

Shuffling: group values by keys

reduce reduce reduce

output output output

map (k, v) → list (k’, v’)

reduce (k’, list(v’)) → v’’

(k , v)(k , v)(k , v) (k , v)

(k’, v’)(k’, v’)(k’, v’)(k’, v’)

k’, list(v’)k’, list(v’)k’, list(v’)

v’’v’’v’’



MapReduce

Blocks/
fragments

Intermediary
Files

Output 
Files

The key of a MapReduce data partitioning
approach is usually on the reduce phase

MapReduce workflow



MapReduce: 
The WordCount Example



map(key, value):

// key: document ID; value: text of document

FOR (each word w in value)

emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers 

result = 0;
FOR (each count v on value-list)

result += v;
emit(key, result);

Pseudo-code:

MapReduce: 
The WordCount Example



� Runs on large commodity clusters:
� 10s to 10,000s of machines

� Processes many terabytes of data

� Easy to use since run-time complexity 
hidden from the users

� Cost-efficiency:
� Commodity nodes (cheap, but unreliable)

� Commodity network

� Automatic fault-tolerance (fewer administrators)

� Easy to use (fewer programmers)

Experience

MapReduce



� Advantage: MapReduce’s data-parallel 
programming model hides complexity of 
distribution and fault tolerance

� Key philosophy:

� Make it scale, so you can throw hardware 
at problems

� Make it cheap, saving hardware, 
programmer and administration costs (but 
requiring fault tolerance)

� MapReduce is not suitable for all problems, 
but when it works, it may save you a lot of 
time

MapReduce
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Big data technologies



MapReduce. Hadoop

Hadoop is an open 
source 

implementation of 
MapReduce

computational 
paradigm

http://hadoop.apache.org/

Created by Doug Cutting
(chairman of board of 
directors of the Apache 
Software Foundation, 2010)



July 2008 - Hadoop Wins Terabyte Sort Benchmark
One of Yahoo's Hadoop clusters sorted 1 terabyte of data 
in 209 seconds, which beat the previous record of 297 
seconds in the annual general purpose (Daytona) 
terabyte short bechmark. This is the first time that either 
a Java or an open source program has won. 

http://developer.yahoo.com/blogs/hadoop/hadoop-
sorts-petabyte-16-25-hours-terabyte-62-422.html

Hadoop birth



Hadoop

http://hadoop.apache.org/

� Hadoop is:

� An open-source framework written in Java

� Distributed storage of very large data sets (Big Data)

� Distributed processing of very large data sets

� This framework consists of a number of modules

� Hadoop Common

� Hadoop Distributed File System (HDFS)

� Hadoop YARN – resource manager

� Hadoop MapReduce – programming model



Hadoop Ecosystem

Hadoop Evolution

A. Fernandez, S. Río, V. López, A. Bawakid, M.J. del Jesus, J.M. Benítez, F. Herrera, Big Data with Cloud

Computing: An Insight on the Computing Environment, MapReduce and Programming Frameworks.

WIREs Data Mining and Knowledge Discovery 4:5 (2014) 380-409

MapReduce Limitations. Graph algorithms (Page 
Rank, Google), iterative algorithms. 



http://hadoop.apache.org/

The project

Recently: Apache Spark

Hadoop Ecosystem

GIRAPH (APACHE Project)
(http://giraph.apache.org/)
Iterative Graphs

Spark (UC Berkeley)
(100 times more efficient than
Hadoop, including iterative
algorithms, according to creators)



The Hadoop File System

� Hadoop Distributed File System (HDFS) is an scalable
and flexible distributed file system, written in Java for
Hadoop.

� Shared-nothing cluster of thousand nodes, built from 
inexpensive hardware => node failure is the norm!

� Very large files, of typically several GB, containing many 
objects.

� Mostly read and append (random updates are rare)

� Large reads of bulk data (e.g. 1 MB) and small random 
reads (e.g. 1KB)

� Append operations are also large and there may be many 
concurrent clients that append the same file.

� High throughput (for bulk data) more important than low 
latency.



� Master: NameNode, JobTracker 

� Slave: {DataNode, TaskTraker}, ..., {DataNode, 
TaskTraker}

Namenode JobTracker
Secondary
Namenode

Single Box Single Box Single Box

Optional to have in Two Box In Separate Box

M
a
s
te

r

TaskTraker

Datanode 1

… … …

TaskTraker

Datanode 2

… … …

Datanode 3

… … …

Datanode N

… … …

……

S
la

v
e

Hadoop: A master/slave
architecture

TaskTraker TaskTraker



Hadoop can be run with 3 different
configurations:

1. Local / Standalone. It is run in a single JVM (Java Virtual 

Machine). Very useful for debugging!

2. Pseudo-distributed (Cluster simulator) 

3. Distributed (Cluster)

Hadoop



Map()

WordCount using Hadoop
MapReduce

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(Object key, Text value, Context context

) throws IOException, InterruptedException {

StringTokenizer itr = new          

StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

Member variables



Reduce()

WordCount using Hadoop
MapReduce

public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,

Context context

) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}



The Main Function for the WordCount program

WordCount using Hadoop
MapReduce

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

String[] otherArgs = new GenericOptionsParser(conf, 

args).getRemainingArgs();

if (otherArgs.length < 2) {

System.err.println("Usage: wordcount <in> [<in>...] <out>");

System.exit(2);

}

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

for (int i = 0; i < otherArgs.length - 1; ++i) {

FileInputFormat.addInputPath(job, new Path(otherArgs[i]));

}

FileOutputFormat.setOutputPath(job,

new Path(otherArgs[otherArgs.length - 1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}



� Advantages compared to classical distributed models:       
Simplicity and fault tolerant mechanism!

Appropriate for data-intensive processes!

� Main keys:

� Scalable: no matter about underlying hardware

� Cheaper: Hardware, programming and administration 
savings!

� WARNING: MapReduce could not solve any kind of 
problems, BUT when it works, it may save a lot time!

MapReduce: summary



MapReduce limitations

‘‘If all you have is a hammer, then everything looks like a nail.’’

There are some recent extension to the MapReduce paradigm in 
order to ease the iterative computations!



Why a New Programming 
Model?

� MapReduce simplified big data processing, but 
users quickly found two problems:

� Programmability: tangle of map/red functions

� Speed: MapReduce inefficient for apps that 
share data across multiple steps

• Iterative algorithms, interactive queries



Data Sharing in MapReduce

iter. 1 iter. 2 .  .  .

Input

HDFS

read

HDFS

write

HDFS

read

HDFS

write

Input

query 1

query 2

query 3

result 1

result 2

result 3

.  .  .

HDFS

read

Slow due to replication, serialization, 
and disk IO



Paradigms that do not fit with
Hadoop MapReduce

� Directed Acyclic Graph (DAG) model:
� The DAG defines the dataflow of the application, and the 

vertices of the graph defines the operations that are to be 
performed on the data.

� The "computational vertices" are written using sequential 
constructs, devoid of any concurrency or mutual exclusion 
semantics.

� Graph model:
� More complex graph models that better represent the 

dataflow of the application.

� Cyclic models -> Iterativity.

� Iterative MapReduce model:
� An extented programming model that supports iterative 

MapReduce computations efficiently.



New platforms to overcome Hadoop’s limitations

GIRAPH (APACHE Project)
(http://giraph.apache.org/)
Procesamiento iterativo de grafos

GPS - A Graph Processing System, 
(Stanford) 
http://infolab.stanford.edu/gps/
para Amazon's EC2 

Distributed GraphLab
(Carnegie Mellon Univ.) 

https://github.com/graphlab-code/graphlab
Amazon's EC2

HaLoop
(University of Washington)    

http://clue.cs.washington.edu/node/14    
http://code.google.com/p/haloop/
Amazon’s EC2

Twister (Indiana University)
http://www.iterativemapreduce.org/
Clusters propios

PrIter (University of 
Massachusetts Amherst, 
Northeastern University-China)

http://code.google.com/p/priter/
Cluster propios y Amazon EC2 cloud

GPU based platforms
Mars
Grex

Spark (UC Berkeley)
(100 times more efficient than

Hadoop, including iterative algorithms, according to
creators)  
http://spark.incubator.apache.org/research.html

Hadoop
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MapReduce

Enrique Alfonseca
Google Research Zurich

More than 10000 applications in Google



What is Spark?

Efficient

� General execution 
graphs

� In-memory storage

Usable

� Rich APIs in Java, 
Scala, Python

� Interactive shell

Fast and Expressive Cluster Computing 

Engine Compatible with Apache Hadoop



Spark birth

http://databricks.com/blog/2014/10/10/spark-petabyte-sort.html

Using Spark on 206 
EC2 nodes, we 
completed the 
benchmark in 23 
minutes. This means 
that Spark sorted the 
same data 3X faster 
using 10X fewer 
machines. All the 
sorting took place on 
disk (HDFS), without 
using Spark’s in-
memory cache.

October 10, 2014



Spark birth

http://sortbenchmark.org/



Apache Spark



InMemory
HDFS Hadoop + SPARK

Ecosystem
Apache Spark

Future version of 
Mahout for Spark

Apache Spark: InMemory



Spark Goal

� Provide distributed memory abstractions for clusters to 
support apps with working sets

� Retain the attractive properties of MapReduce:

� Fault tolerance (for crashes & stragglers)

� Data locality

� Scalability

Solution: augment data flow model with 
“resilient distributed datasets” (RDDs)



RDDs in Detail

� An RDD is a fault-tolerant collection of elements 
that can be operated on in parallel.

� There are two ways to create RDDs: 

� Parallelizing an existing collection in your driver 
program 

� Referencing a dataset in an external storage 
system, such as a shared filesystem, HDFS, 
Hbase.

� Can be cached for future reuse



Creating a RDD: Parallelize() 
or External Datasets

// Parallelizing collections:

val data = Array(1, 2, 3, 4, 5)

val distData = sc.parallelize(data)

// Parallelizing external datasets

val distFile = sc.textFile("data.txt")

� Spark supports text files, SequenceFiles, and any other
Hadoop InputFormat



Operations with RDDs

� Transformations (e.g. map, filter, groupBy, join)
� Lazy operations to build RDDs from other RDDs

� Actions (e.g. count, collect, save)
� Return a result or write it to storage

Transformations

(define a new RDD)

map

filter

sample

union

groupByKey

reduceByKey

join

cache

…

Parallel operations

(return a result to driver)

reduce

collect

count

save

lookupKey

…



Transformations:  
map(lambda x: x+2)

Source: Dirk Van den Poel. Spark: The new kid on the block



Transformations :  
filter(only yellow)



Transformations :  distinct()



Transformations :  
keyBy(lambda x: x[0])



Transformations:  
mapValues(lambda x: x(1))



Transformations: 
groupByKey()



Transformations:  
reduceByKey(add)



Actions: count()



Actions: reduce(add)



Actions: countByKey()



Apache Spark – other
collections

Zaharia-2012- Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I. 

Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. 

In: 9th USENIX Conference on Networked Systems Design and Implementation, San Jose, CA, 2012, 1–14.



Standalone Programs

•Python, Scala, & Java

Interactive Shells

•Python & Scala

Performance

•Java & Scala are faster 

due to static typing

•;but Python is often fine

Python
lines = sc.textFile(...)
lines.filter(lambda s: “ERROR” in s).count()

Scala
val lines = sc.textFile(...)
lines.filter(x => 
x.contains(“ERROR”)).count()

Java
JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() 
{

Boolean call(String s) {
return s.contains(“error”);

}
}).count();

Language Support



Learning Spark: 
Interactive mode

� Easiest way: the shell (spark-shell or pyspark)

� Special Scala / Python interpreters for cluster use

• It runs as an application on an existing Spark Cluster…

spark-shell --master=masterNODE #  cluster

• OR Can run locally

MASTER=local    ./spark-shell   # local, 1 thread

MASTER=local[2] ./spark-shell   # local, 2 threads



import sys
from pyspark import SparkContext

if __name__ == "__main__":
sc = SparkContext( “local”, “WordCount”, sys.argv[0], 

None)
lines = sc.textFile(sys.argv[1])

counts = lines.flatMap(lambda s: s.split(“ ”)) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda x, y: x + y)

counts.saveAsTextFile(sys.argv[2])

Learning Spark: 
Standalone mode



SparkContext (1)

� Main entry point to Spark functionality

� Created for you in spark-shell as variable sc

� The first thing a Spark program must do is to
create a SparkContext object, which tells Spark
how to access a cluster. To create a SparkContext
you first need to build a SparkConf object that
contains information about your application.



SparkContext (2)

� Only one SparkContext may be active per JVM.
You must stop() the active SparkContext before
creating a new one.
val conf = new 

SparkConf().setAppName(appName).setMaster(master)

� The appName parameter is a name for your
application to show on the cluster.

� master is a Spark, Mesos or YARN cluster URL, or
a special “local” string to run in local mode.



The WordCount example with
Spark



RDD Fault Tolerance

RDDs track the transformations used to build them 
(their lineage) to recompute lost data

E.g:
messages = textFile(...).filter(lambda s: s.contains(“ERROR”))

.map(lambda s: s.split(‘\t’)[2])

HadoopRDD
path = 

hdfs://…

FilteredRDD
func = 

contains(...)

MappedRDD
func = split(…)



Spark in Java and Scala

Java API:

JavaRDD<String> lines = 

spark.textFile(…);

errors = lines.filter(

new Function<String, Boolean>() {

public Boolean call(String s) {

return s.contains(“ERROR”);

}

});

errors.count()

Scala API:

val lines = spark.textFile(…)

errors = lines.filter(s => 

s.contains(“ERROR”))

// can also write 

filter(_.contains(“ERROR”))

errors.count



Which Language Should I Use?

� Standalone programs can be written in any, but 
console is only Python & Scala

� Python developers: can stay with Python for both

� Java developers: consider using Scala for console 
(to learn the API)

� Performance: Java / Scala will be faster (statically 
typed), but Python can do well for numerical work 
with NumPy



Advantages:

� Spark RDDs � efficient data sharing

� In-memory caching accelerates performance

- Up to 20x faster than Hadoop

� Easy to use high-level programming interface

- Express complex algorithms ~100 lines.

Spark and RDDs: Summary



https://flink.apache.org/

Flink



https://flink.apache.org/

Flink



Big Data: Technology 
and Chronology

2001-2010

2010-2015

Big 
Data

2001

3V’s Gartner

Doug Laney

2004 

MapReduce

Google 

Jeffrey Dean

2008

Hadoop

Yahoo!

Doug Cutting

2010  Spark

U Berckeley

Apache Spark
Feb. 2014

Matei Zaharia

2009-2013 Flink

TU Berlin

Flink Apache (Dec. 
2014) Volker

Markl

2010-2015:

Big Data 
Analytics:  
Mahout, 
MLLib, …

Hadoop
Ecosystem

Applications
New  

Technology
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Clustering

Recommendation 

Systems

Classification

Association

Potential scenarios: 

Real Time Analytics/

Big Data Streams

Social Media Mining
Social Big Data

Big Data Analytics



Machine learning for Big Data

� Data mining techniques have demonstrated to be very
useful tools to extract new valuable knowledge from data.

� The knowledge extraction process from big data has become
a very difficult task for most of the classical and advanced
data mining tools.

� The main challenges are to deal with:

� The increasing scale of data

• at the level of instances

• at the level of features

� The complexity of the problem.

� And many other points



Problems: No ideal Distributed
System

� Two distributed 
challenges for ML:
� Networks are slow

� “Identical” machines 
rarely perform equally



Why do we need new Big ML 
systems?



Why do we need new Big ML 
systems?

Alone, neither side has full 

picture;

New opportunities exist in the

middle



The Science of ML for Big Data

� Apart from Hadoop and Spark, there are other frameworks
and programming paradigms such as:

� Giraph

� GraphLab

� Petuum

� Each one has distinct technical innovations

� Key insight: ML algorithms have special properties

� Error-tolerance, dependency structures, uneven
convergence

� How to utilize for faster data/model-parallelism?



Big Data Analytics: 
A 3 generational view



Machine learning interfaces for 
Hadoop

� Based on pure 
MapReduce:

� Mahout 0.9

� Beyond MapReduce:

� Mahout (>0.9)

� MLlib

� GraphLab

� …



� What is Mahout?
� The starting place (2009) for MapReduce-based ML 

algorithms.

� Goal: delivering scalable machine learning algorithm 
implementations

� Why Mahout?
� Many open ML libraries either:

• Lack Community, Documentation and Examples.

• Lack Scalability

� Who use Mahout?
� Adobe

� AOL

� Twitter

Mahout 0.9
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History

Mahout
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History

Mahout
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History

Mahout
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Algorithms

Mahout A good library to use pure
MapReduce applications under

Hadoop



97

Algorithms

Mahout A good library to use pure
MapReduce applications under

Hadoop



Mahout

What kind of algorithms can be found in Mahout?

Hadoop

Decision trees (C4.5, Cart)(MReC4.5)
K-Means (is a good implementation?)

SVM

Apriori

kNN

Naïve Bayes

EM (Expectation Maximization)

PageRank

Adaboost

Not
available!

MapReduce limitations

Iterative algorithms!



Version 0.11.2

� Apache Mahout introduces a new math environment

called Samsara, including new implementations built for

speed on Mahout-Samsara [Spark]

� They run on Spark 1.3+ and some on H2O, which means as

much as a 10x speed increase.

� You’ll find robust matrix decomposition algorithms as well as

a Naive Bayes classifier and collaborative filtering.

� The new spark-item similarity enables the next generation

of co-occurrence recommenders that can use entire user

click streams and context in making recommendations.

Mahout



Latest release version 0.11.2 has Mahout Samsara Environment
Distributed Algebraic optimizer
R-Like DSL Scala API
Linear algebra operations
Ops are extensions to Scala
IScala REPL based interactive shell
Integrates with compatible libraries like MLLib
Run on distributed Spark and H2O
fastutil to speed up sparse matrix and vector computations
Flink in progress

Mahout Samsara based Algorithms
Stochastic Singular Value Decomposition (ssvd, dssvd)
Stochastic Principal Component Analysis (spca, dspca)
Distributed Cholesky QR (thinQR)
Distributed regularized Alternating Least Squares (dals)
Collaborative Filtering: Item and Row Similarity
Naive Bayes Classification
Distributed and in-core

http://mahout.apache.org/

Mahout
Version 0.11.2



Spark Libraries

https://spark.apache.org/



MLlib

https://spark.apache.org/mllib/

https://spark.apache.org/docs/latest/mllib-guide.html

Spark Libraries



Mllib: Spark Machine learning
library

� MLlib (2010): is a Spark implementation of 
some common machine learning functionality, 
as well associated tests and data generators.

� Includes:
� Binary classification (SVMs and

� Logistic Regression)

� Random Forest

� Regression (Lasso, Ridge, etc.)

� Clustering (K-Means)

� Collaborative Filtering

� Gradient Descent Optimization

� Primitive

https://spark.apache.org/docs/latest/mllib-guide.html



http://spark.apache.org/mllib/

MLlib
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K-Means



https://spark.apache.org/docs/latest/mllib-guide.html

MLlib

http://spark-packages.org/



https://spark.apache.org/docs/latest/mllib-guide.html

MLlib



https://spark.apache.org/docs/latest/mllib-guide.html

MLlib



https://spark.apache.org/docs/latest/mllib-guide.html

MLlib



http://spark.apache.org/docs/latest/ml-guide.html

Spark.ml



https://ci.apache.org/projects/flink/flink-docs-
master/apis/batch/libs/ml/

FlinkML



https://ci.apache.org/projects/flink/flink-docs-
master/apis/batch/libs/ml/

FlinkML



H20 library

� It contains Deep Learning algorithms
� World record to solve the MNIST problema 

without preprocessing

http://0xdata.com/blog/2015/02/deep-learning-performance/

http://0xdata.com/

Support for R, Python, Hadoop
y Spark

Way of working: It creates a 
new JVM that optimizes the
paralellism of the algorithms



H20 Library

http://h2o-release.s3.amazonaws.com/h2o/rel-turan/4/docs-
website/h2o-r/h2o_package.pdf

http://www.h2o.ai/resources/

Machine Learning with Sparkling Water: 
H2O + Spark

Sparkling Water allows users to combine the 
fast, scalable machine learning algorithms of 
H2O with the capabilities of Spark. With 
Sparkling Water, users can drive computation 
from Scala/R/Python and utilize the H2O Flow 
UI, providing an ideal machine learning platform 
for application developers.



Case of Study:
Random Forests
� Random Forest is a very well-

known machine learning 
technique for classification
or regression.
� Ensemble learning

� Tree-based models

� Random selection of features

� Most promising 
characteristics:
� Great generalization capabilities

� Detect variable importance

� Relatively efficient on large data 
bases.



Random Forest under
MapReduce

1) Building phase



Random Forest under
MapReduce

2) Testing phase



Case of Study: Random Forest
for KddCup’99

Class Instance
Number

normal 972.781

DOS 3.883.370

PRB 41.102

R2L 1.126

U2R 52

Big Data Analytics



Class Instance
Number

normal 972.781

DOS 3.883.370

PRB 41.102

R2L 1.126

U2R 52

Case of Study: Random Forest
for KddCup’99

Cluster ATLAS: 16 nodes
-Microprocessors: 2 x Intel E5-2620 
(6 cores/12 threads, 2 GHz)
- RAM 64 GB DDR3 ECC 1600MHz
- Mahout version 0.8

Big Data Analytics
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� Mahout: The K-Means algorithm

� Input

� Dataset (set of points in 2D) –Large

� Initial centroids (K points) –Small

� Map Side

� Each map reads the K-centroids + one block from dataset

� Assign each point to the closest centroid

� Output <centroid, point>

Case of Study:
K-means

vs
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Mahout: K-means clustering

� Reduce Side

� Gets all points for a given centroid

� Re-compute a new centroid for this cluster

� Output: <new centroid>

� Iteration Control

� Compare the old and new set of K-centroids If similar or 
max iterations reached then Stop Else Start another Map-
Reduce Iteration

� THIS IS AN ITERATIVE MAP-REDUCE ALGORITHM

Case of Study:
K-means

vs



� Map phase: assign cluster IDs

� Reduce phase: reset centroids

(x1, y1) , centroid1, centroid2, …

(x2, y2) , centroid1, centroid2, …

(x3, y3) , centroid1, centroid2, …

(x4, y4) , centroid1, centroid2, …

<cluster_n, (x1, y1)>

<cluster_m, (x2, y2)>

<cluster_i, (x3, y3)>

<cluster_k, (x4, y4)>

<cluster_n, (x1, y1)>

<cluster_m, (x2, y2)>

<cluster_i, (x3, y3)>

<cluster_k, (x4, y4)>

<cluster_n, centroid_n>

<cluster_m, centroid_m>

<cluster_i, centroid_i>

<cluster_k, centroid_k>

Case of Study:
K-means

vs
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Mahout: K-means clustering

Case of Study:
K-means

vs
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K-Means: An example of limitation of MapReduce

� What’s wrong with these iterative approaches?

� Iterative algorithms in MapReduce chain multiple jobs 
together.

� The standard MapReduce is not ready to do this.

� Hadoop offers some snippets (Counters) to determine the 
stopping criteria.

� Main issues:

� MapReduce jobs have high startup costs.

� Repetitive Shuffle.

� Results are serialized to HDFS.

Case of Study:
K-means

vs



K-Means Clustering using Spark

Focus: Implementation 
and Performance

K-means
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Mahout: K-means clustering

K-means
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MLlib: K-means clustering

K-means



K-Means Algorithm

Feature 1
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• Initialize K cluster 
centers
• Repeat until 
convergence:

Assign each data point 
to the cluster with the 
closest center.
Assign each cluster 
center to be the mean 
of its cluster’s data 
points.
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K-Means Source

Feature 1

F
e
a
tu

re
 2

centers = data.takeSample(

false, K, seed)

closest = data.map(p =>

(closestPoint(p,centers),p))

pointsGroup =  

closest.groupByKey()

newCenters

=pointsGroup.mapValues(

ps => average(ps))

while (d > ɛ)

{

}

d = distance(centers, newCenters)

centers = newCenters.map(_)
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Lines of code for K-Means

Spark  ~ 90 lines –

Hadoop ~  4 files,  > 

300 lines 



Performance

K-Means and Logistic Regression 
Performance



9 cases of study
10 chapters giving a 
quick glance on Machine 
Learning with Spark

Big Data Analytics: 2 books
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� A gentle introduction to Big Data

� Big data tecnologies

� Big Data analytics

� Fuzzy-based models for Big Data Learning

� Evolutionary models for Big Data Preprocessing

� A case of study: the ECBDL’14 competition

� Final Comments



Uncertainty and Big Data

� Uncertainty is inherent to Big 
Data due to
� Heterogeneous sources

� Variety in data

� Incomplete data

� Veracity in question

� Fuzzy Rule Based Classification
Systems can manage
� Uncertainty

� Vagueness

� Lack of data/Data fragmentation

Big Data Classification 
with Fuzzy Models



Appearance of small disjuncts with the 
MapReduce data fragmentation 

Rare cases or Small disjuncts are 

those disjuncts in the learned classifier

that cover few training examples.

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49

Learner

Dataset Knowledge Model

Minimize learning error 

+

maximize generalization

G.M. Weiss. Mining with Rarity: A Unifying Framework. SIGKDD Explorations 6:1 (2004) 7-19



Data fragmentation - Lack of data

The lack of data in the 
training data may also 
cause the introduction of 
small disjuncts.

It becomes very hard 
for the learning 
algorithm to obtain a 
model that is able to 
perform a good 
generalization when 
there is not enough data 
that represents the 
boundaries of the 
problem. 

And, what it is also 
most significant, when 
the concentration of 
minority examples is so 
low that they can be 
simply treated as noise.

Appearance of small disjuncts with the 
MapReduce data fragmentation 



Lack of data

Appearance of small disjuncts with the 
MapReduce data fragmentation

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49

Left-C4.5, right-Backpropagation (Pima and Wisconsin Breast 

Cancer): These results show that the performance of classifiers,  

though hindered by class imbalances, is repaired as the training 

set size increases.  This suggests that small disjuncts play a 

role in the performance loss of class imbalanced domains. 



Lack of data. Fuzzy models performance 

Appearance of small disjuncts with the 
MapReduce data fragmentation

Robustness to 
the lack of data?



Chi-FRBCS-BigData: A Case of Study

� MapReduce design based on the FRBCS algorithm (Chi et 
al).

� Uses two different MapReduce processes

� Phase 1: Building the Fuzzy Rule Base

� Phase 2: Estimating the class of samples belonging to big
data sample sets

� Two versions which differ in the Reduce function of the
building of the FRB have been produced

� Chi-FRBCS-BigData-Max

� Chi-FRBCS-BigData-Average

S. Río, V. López, J.M. Benítez, F. Herrera. A MapReduce Approach to Address Big Data 
Classification Problems Based on the Fusion of Linguistic Fuzzy Rules. International Journal of 
Computational Intelligence Systems 8:3 (2015) 422-437. doi: 10.1080/18756891.2015.1017377

Big Data: Selected Computational 
Intelligence approaches

We choose a simple Learning Methods to analyze the potential of 
FRBCSs for Big Data Classification 



Chi-FRBCS 

� Produces rules like “Rule Rj: IF x1 IS A1
j AND … 

AND xn IS An
j THEN Class = Cj with RWj”

� Builds the fuzzy partition using equally 
distributed triangular membership functions

� Builds the RB creating a fuzzy rule associated to 
each example

� Rules with the same antecedent may be created:
� Same consequent → Delete duplicated rules 

� Different consequent → Preserve highest weight rule

Z. Chi, H. Yan and T. Pham, Fuzzy algorithms with applications to image processing
and pattern recognition, World Scientific, 1996.

Big Data: Selected Computational 
Intelligence approaches



Building the RB with Chi-FRBCS-BigData: A 
Map Reduce approach

Train set map1

Train set mapn

;

Train set map2

RB1

RB2

RBn

;

Mappers RB generation

Original train set

RBR

Final RB generation

RBR

DB

Final KB

INITIAL MAP REDUCE FINAL

The key of a MapReduce data partitioning approach is
usually on the reduce phase

Two alternative reducers (Max vs average weights)

Big Data: Selected Computational 
Intelligence approaches



Big Data: Selected Computational 
Intelligence approaches

REDUCE

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.9254

R2: IF A1 = L2 AND A2 = L2 THEN C2; RW2 = 0.9142

R3: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842

R4: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534

R5: IF A1 = L3 AND A2 = L2 THEN C2; RW3 = 0.4715

R6: IF A1 = L2 AND A2 = L3 THEN C2; RW3 = 0.7784

;

RBR

Final RB generation

;

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.8743

R2: IF A1 = L2 AND A2 = L2 THEN C2; RW2 = 0.9142

;

RB1

R1: IF A1 = L1 AND A2 = L1 THEN C2; RW3 = 0.9254

R2: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842

;

RB2

R1: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534

R2: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.7142

;

RB3

R1: IF A1 = L1 AND A2 = L1 THEN C2; RW1 = 0.2143

R2: IF A1 = L3 AND A2 = L2 THEN C2; RW3 = 0.4715

;

RB4

R1: IF A1 = L2 AND A2 = L3 THEN C2; RW3 = 0.7784

R2: IF A1 = L1 AND A2 = L1 THEN C1; RW2 = 0.8215

;

RBn

RB1, R1, C1, RW = 0.8743

RB2, R1, C2, RW = 0.9254

RB3, R2, C1, RW = 0.7142

RB4, R1, C2, RW = 0.2143

RB5, R2, C1, RW = 0.8215

Building the FRB with
Chi-FRBCS-BigData-Max



Big Data: Selected Computational 
Intelligence approaches

REDUCE
R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.8033

R2: IF A1 = L2 AND A2 = L2 THEN C2; RW2 = 0.9142

R3: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842

R4: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534

R5: IF A1 = L3 AND A2 = L2 THEN C2; RW3 = 0.4715

R6: IF A1 = L2 AND A2 = L3 THEN C2; RW3 = 0.7784

;

RBR

Final RB generation

;
RB1, R1, C1, RW = 0.8743

RB2, R1, C2, RW = 0.9254

RB3, R2, C1, RW = 0.7142

RB4, R1, C2, RW = 0.2143

RB5, R2, C1, RW = 0.8215

RC1, C1, RWave = 0.8033

RC2, C2, RWave = 0.5699

R1: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.8743

R2: IF A1 = L2 AND A2 = L2 THEN C2; RW2 = 0.9142

;

RB1

R1: IF A1 = L1 AND A2 = L1 THEN C2; RW3 = 0.9254

R2: IF A1 = L1 AND A2 = L2 THEN C2; RW2 = 0.8842

;

RB2

R1: IF A1 = L2 AND A2 = L1 THEN C2; RW3 = 0.6534

R2: IF A1 = L1 AND A2 = L1 THEN C1; RW1 = 0.7142

;

RB3

R1: IF A1 = L1 AND A2 = L1 THEN C2; RW1 = 0.2143

R2: IF A1 = L3 AND A2 = L2 THEN C2; RW3 = 0.4715

;

RB4

R1: IF A1 = L2 AND A2 = L3 THEN C2; RW3 = 0.7784

R2: IF A1 = L1 AND A2 = L1 THEN C1; RW2 = 0.8215

;

RBn

Building the FRB with
Chi-FRBCS-BigData-Ave



Estimating the class of a Big dataset with Chi-
FRBCS-BigData

Classification set map1

Classification set mapn

;

Classification set map2

Sample11: Actual class C1; Predicted class C1 

Sample12: Actual class C2; Predicted class C2 

Sample13: Actual class C1; Predicted class C2 

...

Predictions set1

Sample21: Actual class C1; Predicted class C1 

Sample22: Actual class C2; Predicted class C2 

Sample23: Actual class C2; Predicted class C2 

...

Predictions set2

Samplen1: Actual class C2; Predicted class C1 

Samplen2: Actual class C2; Predicted class C2 

Samplen3: Actual class C1; Predicted class C2 

...

Predictions setn

;

Mappers classification sets prediction

Original classification set
Final predictions file

INITIAL MAP FINAL

Sample11: Actual class C1; Predicted class C1 

Sample12: Actual class C2; Predicted class C2 

Sample13: Actual class C1; Predicted class C2 

...

Sample21: Actual class C1; Predicted class C1 

Sample22: Actual class C2; Predicted class C2 

Sample23: Actual class C2; Predicted class C2 

...

Samplen1: Actual class C2; Predicted class C1 

Samplen2: Actual class C2; Predicted class C2 

Samplen3: Actual class C1; Predicted class C2 

...

Big Data: Selected Computational 
Intelligence approaches



Experimental 
Framework

Experimental Analysis: Chi-FRBCS-BigData

� 6 Datasets with two classes problem
� Stratified 10 fold cross-validation

� Parameters:
� Conjunction Operator: Product T-norm
� Rule Weight: Penalized Certainty Factor
� Fuzzy Reasoning Method: Winning Rule
� Number of fuzzy labels per variable: 3 labels
� Number of mappers: 16, 32, 64

Big Data: Selected Computational 
Intelligence approaches



Big Data: Selected Computational 
Intelligence approaches

Analysis of the Performance, Precision

Good precision!



Analysis of the Performance, Number of rules 

Big Data: Selected Computational 
Intelligence approaches

Class Instance
Number

normal 972.781

DOS 3.883.370

Robustness to the lack of data 
increasing the final number of rules



Big Data: Selected Computational 
Intelligence approaches

Analysis of the Performance, Number of rules

Robustness to the lack of data for the data 
fragmentation,  increasing the final number of rules

This may cause a improvement in the performance



� Performance improves
slightly with less maps
(alleviate the small sample size
problem)

� Chi-BigData-Ave obtains slightly
better classification results

Big Data: Selected Computational 
Intelligence approaches

Analysis of the Performance, Precision



Analysis of the Performance, Runtime
(Chi-BigData-Ave)

Big Data: Selected Computational 
Intelligence approaches

Maps
number

Seconds

8 116.218,26

16 29.820,01

32 7.708,96

64 2.096,34

132 1.579,77

RLCP

KddCUP’99

Class Instance
Number

normal 972.781

DOS 3.883.370



� Chi-FRBCS-BigDataCS: algorithm for imbalanced
bigdata

Big Data: Selected Computational 
Intelligence approaches

V. López, S. Río, J.M. Benítez, F. Herrera. Cost-Sensitive Linguistic Fuzzy Rule Based
Classification Systems under the MapReduce Framework for Imbalanced Big Data. Fuzzy Sets
and Systems 258 (2015) 5-38.

FRBCS for Big Data: Model for Imbalanced classes



Code for our approaches: 

https://github.com/saradelrio

Fuzzy Rule Based System for classification

Fuzzy Rule Based System with cost sensitive
for imbalanced data sets

Big Data Classification 
with Fuzzy Models



� Linguistic fuzzy models for Big Data under the
MapReduce framework:

� Manages big datasets

� Without damaging the classification accuracy

� Fast response times (increasing with the number of Maps)

� Some challenges: 

� Reduce phase for approximate fuzzy models

� Deep analysis “ensembles vs fusion of rules”

� Deep analysis on the small disjuncts preprocessing for fuzzy 
models

� New fuzzy models based on accurate algorithms

� A promising line of work for the design of high 
performance Fuzzy Models for Big Data

Big Data Classification 
with Fuzzy Models
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Data Preprocessing: Tasks to discover quality data prior to 

use knowledge extraction algorithms. 

data

Target

data
Processed

data

Patterns

Knowledge

Selection

Preprocessing

Data Mining

Interpretation

Evaluation

Data Preprocessing for Big Data



D. Pyle, 1999, pp. 90:

“The fundamental purpose of data 

preparation is to manipulate and transform 

raw data so that the information content 

enfolded in the data set can be exposed, or 

made more easily accesible.”

Dorian Pyle

Data Preparation for Data 

Mining Morgan Kaufmann 

Publishers, 1999

Data Preprocessing



S. García, J. Luengo, F. Herrera, 2015, Preface vii:

“Data preprocessing is an often neglected 

but major step in the data mining process.”

S. García, J. Luengo, F. Herrera

Data Preprocessing in Data Mining

Springer, January 2015

Website: 
http://sci2s.ugr.es/books/data-preprocessing

Data Preprocessing



S. García, J. Luengo, F. Herrera, 2015, Preface viii:

There are many advantages that data preprocessing provides:

I. To adapt and particularize the data for each data mining 

algorithm.

II. To increase the effectiveness and accuracy in predictive tasks.

III. To reduce the amount of data required for a suitable learning 

task, also decreasing its time-complexity.

IV. To make possible the impossible with raw data, allowing data 

mining algorithms to be applied over high volumes of data.

V. To support to the understanding of the data.

VI. Useful for various tasks, such as classification, regression and 

unsupervised learning…

Data Preprocessing



Data preprocessing spends 
a very important part of the 
total time in a data mining 
process. 

Data Preprocessing
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Feature Selection

The problem of Feature Subset Selection (FSS) 

consists of finding a subset of the 

attributes/features/variables of the data set that 

optimizes the probability of success in the 

subsequent data mining taks.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

E 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0

F 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0

Var. 5
Var. 1. Var. 13

Feature Selection



Feature Selection

The problem of Feature Subset Selection (FSS) consists of 
finding a subset of the attributes/features/variables of the
data set that optimizes the probability of success in the
subsequent data mining taks.

Why is feature selection necessary?

� More attributes do not mean more success in the data 
mining process.

� Working with less attributes reduces the complexity of the
problem and the running time.

� With less attributes, the generalization capability increases.

� The values for certain attributes may be difficult and costly
to obtain.



Feature Selection

The outcome of FS would be:

� Less data � algorithms could learn quicker

� Higher accuracy � the algorithm generalizes better

� Simpler results � easier to understand them

FS has as extension the extraction and construction

of attributes.



Big Data Preprocessing: MR-EFS

Evolutionary Feature Selection for Big Data Classification: A 

MapReduce Approach

D. Peralta, S. del Río, S. Ramírez-Gallego, I. Triguero, J.M. Benítez, F. Herrera. 
Evolutionary Feature Selection for Big Data Classification: A MapReduce 
Approach. Mathematical Problems in Engineering, Vol. 2015, Article ID 246139, 11 

pages, 2015, doi: 10.1155/2015/246139

D. Peralta



Evolutionary Feature Selection (EFS)

� Each individual represents a set of selected features (binary 
vector).

� The individuals are crossed and mutated to generate new 
candidate sets of features.

� Fitness function:

� Classification performance in the training dataset using only 
the features in the corresponding set.

Big Data Preprocessing: MR-EFS



L. J. Eshelman, The CHC adaptative search algorithm: How to have safe search  

when engaging in nontraditional genetic recombination, in: G. J. E. Rawlins (Ed.), 

Foundations of Genetic Algorithms, 1991, pp. 265--283.

Evolutionary Algorithm: CHC

Big Data Preprocessing: MR-EFS



Parallelizing FS with MapReduce

Map phase

�Each map task uses a subset of the training data.

�It applies an EFS algorithm (CHC) over the subset.

�A k-NN classifier is used for the evaluation of the population.

�Output (best individual):

� Binary vector, indicating which features are selected.

Reduce phase

�One reducer.

�It sums the binary vectors obtained from all the map tasks.

�The output is a vector of integers.

� Each element is a weight for the corresponding feature.

Big Data Preprocessing: MR-EFS



MapReduce EFS process

Big Data Preprocessing: MR-EFS

The vector of 

weights is 

binarized with a 

threshold



Dataset reduction

Big Data Preprocessing: MR-EFS

The maps 

remove the 

discarded 

features

No reduce 

phase



Experimental Study: EFS scalability in MapReduce
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MR−EFS (full dataset)

� CHC is quadratic w.r.t. the number of instances

� Splitting the dataset yields nearly quadratic 
acceleration

Big Data Preprocessing: MR-EFS



Experimental Study: Classification

� Two datasets

� epsilon

� ECBDL14, after applying 
Random Oversampling

� The reduction rate is 
controlled with the weight 
threshold

� Three classifiers in Spark

� SVM

� Logistic Regression

� Naïve Bayes

� Performance measures

�

� Training runtime

Big Data Preprocessing: MR-EFS



Experimental Study: results
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Big Data Preprocessing: MR-EFS



Experimental Study: Feature selection scalability

Big Data Preprocessing: MR-EFS



� The splitting of CHC provides several advantages:

� It enables tackling Big Data problems

� The speedup of the map phase is nearly quadratic

� The feature weight vector is more flexible than a binary vector

� The data reduction process in MapReduce provides a scalable 
and flexible way to apply the feature selection

� Both the accuracy and the runtime of the classification were 
improved after the preprocessing.

EFS for Big Data: Final Comments

Big Data Preprocessing: MR-EFS

https://github.com/triguero/MR-EFS
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� Instance Reduction methods aim to 
reduce the number of training samples 
to find better and smoother decision 
boundaries between classes, by 
selecting relevant training samples or 
artificially generating new ones. 

� Advantages:

Instance Reduction

� Reduce Storage Requirements
� Remove noisy samples
� Speed up learning process



Prototype Generation: properties

� The NN classifier is one of the most used algorithms in machine 
learning.

� Prototype Generation (PG) processes learn new representative 
examples if needed.  It results in more accurate results.

� Advantages:

� PG reduces the computational costs and high storage 
requirements of NN.

� Evolutionary PG algorithms highlighted as the best 
performing approaches.

� Main issues:

� Dealing with big data becomes impractical in terms of 
Runtime and Memory consumption. Especially for 
Evolutionary PG models.

Big Data Preprocessing: MRPR



Evolutionary Prototype Generation

More information about Prototype Reduction can be found in 
the SCI2S thematic website:  http://sci2s.ugr.es/pr

I. Triguero, S. García, F. Herrera, IPADE: Iterative Prototype Adjustment for Nearest 

Neighbor Classification. IEEE Transactions on Neural Networks 21 (12) (2010) 1984-1990

� Evolutionary PG algorithms are typically based on adjustment of 
the positioning of the prototypes.

� Each individual encodes a single prototype or a complete 
generated set with real codification.

� The fitness function is computed as the classification performance 
in the training set using the Generated Set.

� Currently, best performing approaches use differential evolution.

I. Triguero

Big Data Preprocessing: MRPR



Big Data Preprocessing:MRPR

MRPR: A Combined MapReduce-Windowing Two-Level Parallel 

Scheme for Evolutionary Prototype Generation

I. Triguero, D. Peralta, J. Bacardit, S.García, F. Herrera. A Combined MapReduce-
Windowing Two-Level Parallel Scheme for Evolutionary Prototype Generation. 
Evolutionary Computation (CEC), 2014 IEEE Congress on, 3036-3043

I. Triguero



Parallelizing PG with MapReduce

Map phase:
� Each map constitutes a subset of the original training data.

� It applies a Prototype Generation step.

� For evalution, it uses Windowing: Incremental Learning with 
Alternating Strata (ILAS) 

� As output, it returns a Generated Set of prototypes.

Reduce phase:
� We established a single reducer.

� It consists of an iterative aggregation of all the resulting
generated sets.

� As output, it returns the final Generated Set.

Big Data Preprocessing: MRPR



The key of a MapReduce data partitioning approach is usually
on the reduce phase.

Two alternative reducers:

� Join: Concatenates all the resulting generated sets.

� This process does not guarantee that the final generated set 
does not contain irrelevant or even harmful instances

� Fusion: This variant eliminates redundant prototypes by fusion of 
prototypes. Centroid-based PG methods: ICPL2 (Lam et al).

W. Lam et al, Discovering useful concept prototypes for classification based on filtering and abstraction. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 8, pp. 1075-1090, 2002

Parallelizing PG with MapReduce

Big Data Preprocessing: MRPR



Windowing: Incremental Learning with Alternating Strata (ILAS) 

J. Bacardit et al,  Speeding-up pittsburgh learning classifier systems: Modeling time and accuracy In 

Parallel Problem Solving from Nature - PPSN VIII, ser. LNCS, vol. 3242, 2004, pp. 1021–1031

� Training set is divided into strata, each iteration just uses one 
of the stratum.

Training set

0 Ex/n 2·Ex/n Ex3·Ex/n

Iterations

0 Iter

Main properties:
�Avoids a (potentially biased) static prototype selection
�This mechanism also introduces some generalization pressure

Big Data Preprocessing: MRPR



The MRW-EPG scheme Windowing: Incremental 

Learning with Alternating Strata 

(ILAS) 

Big Data Preprocessing: MRPR



Experimental Study

� PokerHand data set. 1 million of instances, 3x5 fcv.

� Performance measures: Accuracy, reduction rate, runtime, 
test classification time and speed up.

� PG technique tested: IPADECS.

I. Triguero

Big Data Preprocessing: MRPR



Results

PokerHand: Accuracy Test vs. Runtime results obtained by MRW-EPG

I. Triguero

Big Data Preprocessing: MRPR



Results

I. Triguero

Big Data Preprocessing: MRPR



Results: Speed-up

I. Triguero

Big Data Preprocessing: MRPR



� There is a good synergy between the windowing and 
MapReduce approaches. They complement themselves in 
the proposed two-level scheme.

� Without windowing, evolutionary prototype generation could 
not be applied to data sets larger than approximately ten 
thousands instances

� The application of this model has resulted in a very big 
reduction of storage requirements and classification time for 
the NN rule.

EPG for Big Data: Final Comments

I. Triguero

Big Data Preprocessing: MRPR



Fig. 6 Average runtime obtained by MRPR. (a) 

PokerHand
Complete study: I. Triguero, D. Peralta, J. Bacardit, S. García, F. Herrera. MRPR: A 

MapReduce solution for prototype reduction in big data classification. 
Neurocomputing 150 (2015) 331–345.

EPG for Big Data: Final Comments

Big Data Preprocessing: MRPR



� Complete study: I. Triguero, D. Peralta, J. Bacardit, S. García, F. Herrera. 
MRPR: A MapReduce solution for prototype reduction in big data 
classification. Neurocomputing 150 (2015) 331–345.

EPG for Big Data: Final Comments

Big Data Preprocessing: MRPR

https://github.com/triguero/MRPR
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Class imbalance problem



Class imbalance problem

� Two main approaches to tackle this
problem:

� Data sampling

� Undersampling

� Oversampling

� Hybrid approaches

� Algorithmic modifications
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V. López et al, An insight into classification with imbalanced data: Empirical results and current trends on
using data intrinsic characteristics, Information Sciences 250 (2013) 113–141



Evolutionary Undersampling

� Evolutionary undersampling (EUS) aims to select the best
subset of instances from the original training set.

� EUS not only intends to balance the training set, but also
to increase the overall performance on both classes of the
problem.

� To do so, a genetic algorithm is used to search for an
optimal subset of instances.

� This resulting set can be used by any standard
classification model.

S. Garcia and F. Herrera, “Evolutionary under-sampling for classification with imbalanced
data sets: Proposals and taxonomy”, Evolutionary Computation, 17 (3) (2009). 275–306



Evolutionary Undersampling in the
big data context

� The application of EUS in big data problems is interesting
because it does not generate more data, as opposed to
oversampling methods.

� However, the increasing number of instances would lead
to obtain an excessive chromosome size that can limit
their application.

� The required runtime increases not only with the number
of examples but also with the imbalance ratio (IR).



Imbalanced Big Data

Evolutionary Undersampling for Imbalanced Big Data

I Triguero, M Galar, S Vluymans, C Cornelis, H Bustince, F Herrera, I. Saeys. 
Evolutionary undersampling for imbalanced big data classification. 
IEEE Congress onEvolutionary Computation (CEC), 2015, 715-722.



Evolutionary Undersampling

� Evolutionary undersampling (EUS) aims to select the best
subset of instances from the original training set.

� EUS not only intends to balance the training set, but also
to increase the overall performance on both classes of the
problem.

� To do so, a genetic algorithm is used to search for an
optimal subset of instances.

� This resulting set can be used by any standard
classification model.

S. Garcia and F. Herrera, “Evolutionary under-sampling for classification with imbalanced
data sets: Proposals and taxonomy”, Evolutionary Computation, 17 (3) (2009). 275–306



Evolutionary Undersampling in the
big data context

� The application of EUS in big data problems is
interesting because it does not generate more
data, as opposed to oversampling methods.

� However, the increasing number of instances
would lead to obtain an excessive chromosome
size that can limit their application.

� The required runtime increases not only with the
number of examples but also with the imbalance
ratio (IR).



L. J. Eshelman, The CHC adaptive search algorithm: How to have safe search when
engaging in nontraditional genetic recombination, in Foundations of Genetic
Algorithms, G. J. E. Rawlins, Ed. San Francisco, CA: Morgan Kaufmann, 265-283, 1991.

Evolutionary undersampling

� Representation of the solution

� Performance: g-mean, 1NN hold-one-out

� Fitness Function

� We use the CHC algorithm and GM as performance
measure.



Windowing: Incremental Learning 
with Alternating Strata (ILAS) 

J. Bacardit et al,  Speeding-up pittsburgh learning classifier systems: Modeling time and accuracy In 
Parallel Problem Solving from Nature - PPSN VIII, ser. LNCS, vol. 3242, 2004, pp. 1021–1031

� Training set is divided into strata, each iteration just 
uses one of the stratum.

Training set

0 Ex/n 2·Ex/n Ex3·Ex/n

Iterations

0 Iter

Main properties:

�Avoids a (potentially biased) static prototype selection
�This mechanism also introduces some generalization pressure



EUS-BD: A two-level
parallelization model for EUS

� A two-level parallelization scheme:

� The MapReduce phase will allow us to divide
the computational effort over different
machines.

Goal: Memory limitations and runtime.

� The windowing scheme will be applied to
reduce the computational time required by
EUS.

Goal: Runtime.



Parallelizing EUS with MapReduce

Map phase:

� Each map constitutes a subset of the original
training data.

� Then, it applies a EUS step (with/without
windowing).

� It builds a model with the corresponding base
classifier (Decision tree).

� As output, it returns the built model (a tree).
Reduce phase:

� We established a single reducer.

� It consists of an iterative aggregation of all the
resulting models.

� As output, it returns a set of trees.



Parallelizing EUS with windowing: Motivation

� The MapReduce algorithm allows us to use EUS with big
data problems. However, the runtime required for each
mapper can still be too long and highly depending on the
ratio of imbalance.

� For this reason, we design a second level parallelization
based on a windowing scheme.



Windowing for Class Imbalance

� Disjoint windows with equal class distribution may lead to
information loss of the positive class.

� The minority class set will be always used to evaluate a
chromosome.

� The majority class set is divided into several disjoint
strata. The size of each subset will correspond to the
number of minority class instances.

� It means: Fixed number of strata.



Parallelizing EUS-BD with windowing: Properties

Properties:

� Within this scheme, the algorithm disposes of the whole
information although it is accessed in successive iterations.

� This model itself aims to improve the runtime requirements
of EUS. But it does not deal with the memory consumption
problem.

� This is why we use this strategy as a second level
parallelization scheme after a previous distribution of the
processing in a cluster of computing elements.



The EUS-BD scheme: learning phase



The EUS-BD scheme: testing phase

Estimating the class for a Big Dataset

Original 

train/test 

dataset

Initial

Mappers train/test 

set

Map Final

Predicted
class
Predicted class
Predicted class
Predicted class
…

Predicted class
Predicted class
Predicted class
Predicted class
…

Predicted class
Predicted class
Predicted class
Predicted class
…

Predicted class
Predicted class
Predicted class
Predicted class
Predicted class
Predicted class
Predicted class
Predicted class
…
Predicted class
Predicted class
Predicted class
Predicted class



Experimental Framework

� Different versions of the Kdd Cup 1999 data set with more 
than 4 million of instances, 3x5 fcv.

� Performance measures: AUC, g-mean, building time, and 
classification time.

� Different number of mappers: 128,256 and 512.



Results obtained without using the windowing 

mechanism



Results obtained using the windowing 

mechanism



Results: Building time comparison

Building time against the number of 

mappers, without using the windowing 

scheme.

Building time against the number

of mappers, using the windowing 

scheme.



Final comments

� Good synergy between the windowing and MapReduce
approaches.

� It enables EUS to be applied on data sets of almost arbitrary
size.

� See my new paper #16712:

I.Triguero et. al. Evolutionary Undersampling for Extremely 

Imbalanced Big Data Classification under Apache Spark.

SS CDCI08, Monday at 17:30, Room: 202.
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Objective:  Contact map prediction

Details:

� 32 million instances

� 631 attributes (539 real & 92 nominal values)

� 2 classes

� 98% of negative examples

� About 56.7GB of disk space

Evaluation:
True positive rate · True negative rate 

TPR · TNR

J. Bacardit et al, Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple

predicted structural features, Bioinformatics 28 (19) (2012) 2441-2448

http://cruncher.ncl.ac.uk/bdcomp/index.pl?action=data

ECBDL’14 Big Data Competition 2014: Self-deployment track 

ECBDL’14 Big Data Competition 
Vancouver, 2014



Evolutionary Computation for 
Big Data and Big Learning 

Workshop

ECBDL’14 Big Data Competition 2014: Self-deployment track 

The challenge:

� Very large size of the training set

� Does not fit all together in memory.

� Even large for the test set (5.1GB, 2.9 million instances)

� Relatively high dimensional data.

� Low ratio (<2%) of true contacts. Imbalance rate: > 49

� Imbalanced problem!

� Imbalanced Big Data Classification
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A MapReduce Approach

Low ratio of true contacts (<2%). Imbalance rate: > 49.   Imbalanced 

problem!

Over-Sampling

Random

Focused

Under-Sampling

Random

Focused

Cost Modifying (cost-sensitive)

Boosting/Bagging approaches (with
preprocessing)

32 million instances, 98% of negative examples

Previous study on extremely imbalanced big data: 

S. Río, V. López, J.M. Benítez, F. Herrera, On the use of 

MapReduce for Imbalanced Big Data using Random Forest. 

Information Sciences 285 (2014) 112-137.  

Imbalanced Big Data Classification



ECBDL’14 Big Data Competition 2014

Our approach:

1. Balance the original training data 

� Random Oversampling

� (As first idea)

2. Learning a model.

� Random Forest

ECBDL’14 Big Data Competition



We initially focused on

� Oversampling rate: 100%

RandomForest:
� Number of used features:  10 (log n +1);  Number of trees: 100

� Number of maps:   {64, 190, 1024, 2048}

Very low TPR (relevant!)

Nº mappers TPR_tst TNR_tst

TNR*TPR

Test

64 0,601723 0,806269 0,485151

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition

Oversampling rate: {100%}

RandomForest

Algorithms TPR TNR

TNR*TPR 

Test

ROS+RF (RS: 100%) 0.6351 0.7733 0.491186

How to increase the TPR rate?  



ECBDL’14 Big Data Competition

Algorithms TPR TNR

TNR*TPR 

Test

ROS+RF (RS: 100%) 0.6351 0.7733 0.491186

What can we do?

How to increase the TPR rate?  



ECBDL’14 Big Data Competition 2014

Our approach:

1. Balance the original training data 

� Random Oversampling increasing the ROS percentage

� (As first idea, it was extended)

2. Learning a model.

� Random Forest

ECBDL’14 Big Data Competition



How to increase the TPR rate?  

Idea: To increase the ROS percentaje

� Oversampling rate: {100, 105, 110, 115, 130}

RandomForest:

� Number of used features:10;  Number of trees: 100 

The higher ROS percentage, the higher TPR and the lower TNR

Algorithms TPR TNR

TNR*TPR 

Test

ROS+RF (RS: 100%) 0.6351 0.7733 0.491186

ROS+RF (RS: 105%) 0.6568 0.7555 0.496286

ROS+RF (RS: 110%) 0.6759 0.7337 0.495941

ROS+RF (RS: 115%) 0.7041 0.7103 0.500175

ROS+RF (RS: 130%) 0.7472 0.6609 0.493913

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition

What can we do?



Third component: MapReduce Approach for Feature Weighting

for getting a major performance over classes

ECBDL’14 Big Data Competition

How to increase the performance?



ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition 2014

Our approach:

1. Balance the original training data 

� Random Oversampling increasing the ROS percentage

� (As first idea, it was extended)

2. Learning a model.

� Random Forest

3. Detect relevant features. 

1. Evolutionary Feature Weighting

Classifying test set.

ECBDL’14 Big Data Competition



Evolutionary Feature Weighting. 

It allows us to construct several subset of features (changing 

the threshold).

64 mappers

Algorithms
TNR*TPR 

Training TPR TNR

TNR*TPR 

Test

ROS+RF (130% - Feature Weighting 63) 0.726350 0.66949 0.775652 0.519292

ROS+RF (115% - Feature Weighting 63) 0.736596 0.652692 0.790822 0.516163

ROS+RF (100% - Feature Weighting 63) 0.752824 0.626190 0.811176 0.507950

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition

ROS (130) + Evolutionary Feature Weighting



190 mappers

Algorithms
TNR*TPR

Training TPR TNR

TNR*TPR 

Test

ROS+ RF (130%+ FW 63+6f+100t) 0.604687 0.698152 0.742462 0.518351

ROS+ RF (130%+ FW 63+6f+200t) 0.632078 0.700064 0.745225 0.521705

ROS+ RF (140%+ FW 63+15f+200t) 0.627409 0.719678 0.728912 0.524582

ROS+ RF (140%+ FW 90+15f+200t) 0.635855 0.722639 0.726397 0.524923

ROS+ RF (140%+ FW 90+25f+200t) 0.629273 0.721652 0.729740 0.526618

We decided to investigate:

a) On the Random Forest: the influence of the Random Forest’s parameters 

(internal features and number of trees) 

b) Higher number of features (90) and ROS with 140%

Correct decisions with FW 90 and RF with 25f and 200 trees.

Good trade off between  TPR and TNR

ECBDL’14 Big Data Competition



64 mappers

Algorithms

TNR*TPR

Training TPR TNR

TNR*TPR

Test

ROS+ RF (130%+ FW 90+25f+200t) 0.736987 0.671279 0.783911 0.526223

ROS+ RF (140%+ FW 90+25f+200t) 0.717048 0.695109 0.763951 0.531029

190 mappers

Algorithms
TNR*TPR

Training TPR TNR

TNR*TPR 

Test

ROS+ RF (140%+ FW 90+25f+200t) 0.629273 0.721652 0.729740 0.526618

64 mappers and we got 0.53

ROS 130 – 65   (140 – 68) replications of the minority instances

The less number of maps, the less TPR and the high TNR

ECBDL’14 Big Data Competition

4 days to finish the competion: 

Can we take decisions for improving the model?



64 mappers

Algorithms

TNR*TPR

Training TPR TNR

TNR*TPR

Test

ROS+ RF (130%+ FW 90+25f+200t) 0.736987 0.671279 0.783911 0.526223

ROS+ RF (140%+ FW 90+25f+200t) 0.717048 0.695109 0.763951 0.531029

ROS+ RF (150%+ FW 90+25f+200t) 0.706934 0.705882 0.753625 0.531971

ROS+ RF (160%+ FW 90+25f+200t) 0,698769 0.718692 0.741976 0.533252

ROS+ RF (170%+ FW 90+25f+200t) 0.682910 0.730432 0.730183 0.533349

ROS+ RF (180%+ FW 90+25f+200t) 0,678986 0.737381 0.722583 0.532819

Last decision: We investigated to increase ROS until 180% with 

64 mappers

To increase ROS and reduce the mappers number lead us to get a trade-

off with good results

ROS 170 – 85 replications of the minority instances

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition

ROS 170 – 85 replications of the minority instances

Experiments with 64 maps



Results of the competition: Contact map prediction

Team Name TPR TNR Acc
TPR · 
TNR

Efdamis 0.730432 0.730183 0.730188 0.533349

ICOS 0.703210 0.730155 0.729703 0.513452

UNSW 0.699159 0.727631 0.727153 0.508730

HyperEns 0.640027 0.763378 0.761308 0.488583

PUC-Rio_ICA 0.657092 0.714599 0.713634 0.469558

Test2 0.632009 0.735545 0.733808 0.464871

EmeraldLogic 0.686926 0.669737 0.670025 0.460059

LidiaGroup 0.653042 0.695753 0.695036 0.454356

http://cruncher.ncl.ac.uk/bdcomp/index.pl?action=ranking

Evolutionary Computation for Big Data and 
Big Learning Workshop

EFDAMIS team ranked first in the ECBDL’14 big data competition

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition
Final comments

Team Name Learning strategy

Computational

Infrastructure

Efdamis

Oversampling+EFW+Random
Forest MapReduce

ICOS 

Oversampling+Ensemble of 
Rule sets Batch HPC

UNSW 

Ensemble of Deep Learning 
classifiers Parallel HPC

HyperEns SVM Parallel HPC

PUC-Rio_ICA Linear GP GPUs

EmeraldLogic ~Linear GP GPUs

LidiaGroup 1-layer NN Spark



At the beginning ROS+RF (RS: 100%) 

Nº mappers TPR_tst TNR_tst

TNR*TPR

Test

64 0,601723 0,806269 0,485151

At the end
64 mappers

Algorithms

TNR*TPR

Training TPR TNR

TNR*TPR

Test

ROS+ RF (160%+ FW 90+25f+200t) 0,698769 0.718692 0.741976 0.533252

ROS+ RF (170%+ FW 90+25f+200t) 0.682910 0.730432 0.730183 0.533349

ROS+ RF (180%+ FW 90+25f+200t) 0,678986 0.737381 0.722583 0.532819

ECBDL’14 Big Data Competition

Quality models based on quality data!



ECBDL’14 Big Data Competition
Our algorithm: ROSEFW-RF

I. Triguero, S. del Río, V. López, J. Bacardit, J.M. Benítez, F. Herrera. 
ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An 
extremely imbalanced big data bioinformatics problem. Knowledge-Based Systems, 
Volume 87, October 2015, Pages 69–79 

https://github.com/triguero/ROSEFW-RF

MapReduce 

Process

Iterative

MapReduce 

Process
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Final Comments

Big Data: A small subset of algorithms

Big Data Preprocessing: 

A few methods for preprocessing in 

Big Data analytics.

Data Mining, Machine learning and data preprocessing: 

Huge collection of algorithms

Big Data Analytics



Where we are going: 3 Big Data stages

http://www.kdnuggets.com/2013/12/3-stages-big-data.html
By Gregory Piatetsky, Dec 8, 2013.

Final Comments

Big Data 3.0: Intelligent

Google Now, Watson (IBM) ...

Big Data 3.0 would be a 
combination of data, with huge 
knowledge bases and a very 
large collection of 
algorithms, 
perhaps reaching 
the level of true 
Artificial Intelligence 
(Singularity?). 



Final Comments
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