|IEEE WoRLD CONGRESS ON

COMPUTATIONAL INTELLIGENCE
EEE WCCI 2016 24-29 JULY 2016, VANCOUVER, CANADA

Computational Intelligence
Approaches for Big Data

Francisco Herrera Isaac Triguero
Soft Computing and School of Computer Science
Information Intelligent Systems (SCI2S) University of Nottingham
University of Granada, Spain United Kingdom
Email: herrera@decsai.ugr.es Email: Isaac.Triguero@nottingham.ac.uk
http://sci2s.ugr.es

r The Uni:rersitgof
&' | Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

BlG |
DATA Outline

A gentle introduction to Big Data

Big data tecnologies

Big Data analytics

Fuzzy-based models for Big Data Learning
Evolutionary models for Big Data Preprocessing
A case of study: the ECBDL'14 competition

Final Comments

BIG

DATA

BlG |
DATA Outline

A gentle introduction to Big Data

Big data tecnologies

Big Data analytics

Fuzzy-based models for Big Data Learning
Evolutionary models for Big Data Preprocessing
A case of study: the ECBDL'14 competition

Final Comments

BIG

DATA

Big Data

Our world revolves around the data

Science

m Data bases from astronomy, genomics, environmental data,
transportation data,

Humanities and Social Sciences /&
m Scanned books, historical documents, social interactions data,:

Business & Commerce A
m Corporate sales, stock market transactions, census, airline trafﬂc

Entertainment
m Internet images, Hollywood movies, MP3 files, ...

Medicine I
= MRI & CT scans, patient records, ... N

Industry, Energy, ...
m Sensors, ...

Big Data

(1]
...r

8
El now m
® tools store

mobile £ databases compressmn -

Twrttm
t,gm Wﬂdatabase

orage

processmg

information

analysis§

exarrple -5

|EKE (il
ANM.Y"[:S i %s[‘ﬁi 01 'nan'"' o
CPuLyY 'L'l.m'w;é_.,, Ep-’,-".'i | "':EL"['[%ﬁﬂﬂw :=.. |-'=-
HU’JHE[HS%E S S|Z[Flwmu_u ot
- PIRALEL 3E =
RN

Ben Chams - Fotolia

Big Data

Big Data 3 V's

Doug Laney, Gartner 2001

What is Big Data? 3 Vs of Big Data
volume

& —
= —
- =
=3
T e —
= — ==
= s re—4
= e ==
= =
- S
s = - —
— —,
’ = — —
S — p— — -
—
e ——— — —
== — = e,
— ———
= — —
e =
= ——
’ o s —
— — = o
= — =
- -
et
— : =
- = — —————
— — S — —
— e = I — ———— "
~Y \' = — -
—— — — —
/ \\ — == — — —

Astronomy

Phata ol the Hulbbbie Spacd Telewops

Ej. Genomics

LT

+ 25,000 genes in human genome .
= Astronomical sky surveys

= 120 Gigabytesiweek

« 3 billion bases

+ 3 Gigabytes of genetic data
= 6.5 Terabytes/year

Transactions

= 47 5 billion transactions in 2005
worldwide

= 115 Terabytes of data transmitted
to VisaNet data processing center
i 2004

Gartner, Doug Laney, 2001

What is Big Data? 3 Vs of Big Data
velocity

g —

Gartner, Doug Laney, 2001

What is Big Data? 3 Vs of Big Data
variety

Gartner, Doug Laney, 2001

What is Big Data? 3 Vs of Big Data

Data at Rest

Terabytes to
exabytes of existing
data to process

Some Make it 4V's

Data in Motion

Streaming data,
milliseconds to
seconds to respond

Data in Many
Forms

Structured,
unstructured, text,
multimedia

Veracity”

Data in Doubt

Uncertainty due to
data inconsistency
& incompleteness,
ambiguities, latency,
deception, model
approximations

What is Big Data?

40 ZETTABYTES It's estimated that
[43 TRILLION BIGABYTES] (S0 2005 2.5 QUINTILLION BYTES
of data will be created by Q [2.3 TRILLION GIBABYTES |

2020, an increase of 300 202" O of data are created each day

times from 2005

=® G BILLION
PEOPLE

have cell
phanes

Most companies in the
U.S. have at least
100 TERABYTES

[100,000 GIGABYTES |
of data stored

WORLD POPULATION: 7 BILLION

Modern cars have close to

100 SENSORS

o= @ (@ that monitor items such as
(\ . . fuel level and tire pressure

The New York Stock Exchange
captures

1TB OF TRADE
INFORMATION

during each trading session

Velocity

ANALYSIS OF
STREAMING DATA

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

YYyYyYyyYyyYyyYyvyyyy
R TTTITITTL]

data in healthcare was
estimated to be

150 EXABYTES

[161 BILLION GIGABYTES |

The
FOURV’s

30 BILLION
PIECES DF CONTENT

are shared on Facebook
every month

LEADERS

don't trust the information
they use to make decisions

By 2015

4.4 MILLION IT JOBS

in one survey were unsure of
how much of their data was
inaccurate

As of 2011, the global size of

By 2014, it's anticipated
there will be

420 MILLION
WEARABLE, WIRELESS
HEALTH MONITORS

4 BILLION+
HOURS OF VIDED

are watched on
YouTube each month

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

Poor data quality costs the US
economy around

$3.1 TRILLION A

Veracity

UNCERTAINTY
OF DATA

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, I1BM, MEPTEC, QAS

What is Big Data? One more V?

Value: data in use

m Most important
motivation for big data

m Big data may result in:
m Better statistics/models
s Novel insights

s New opportunities for
research and industry

What is Big Data?

No single standard definitior?_.

® |

[

Big data is a collection of data sets so
large and complex that it becomes
difficult to process using on-hand
database management tools or
traditional data processing applications.

“Big Data"” is data whose scale, N
diversity, and complexity require
new architectures, techniques,
algorithms, and analytics to
manage it and extract value and
hidden knowledge from it... TRltn e

Activity: IOPS

What is Big Data? (in short)

;;]1 L. Big data refers to any problem
q - Tomervow - - o

characteristic that represents a challenge
to process it with traditional applications

(Big) Data Science

-- T ||

| | o= I %ﬂ@[@@
Data Science combines the d @a“

traditional scientific method 5

]
with the ability to munch, Sciéncs
explore, learn and gain deep
insight for (Big) Data

It is not just about finding
patterns in data ... it is
mainly about explaining

those patterns oo

Data Science Process

SR — 2
e B ==

mEEEs
Manufacturing ~ ¥Wholesale, Healthcareand — Energy Finance and Government Education and _Primary
retail, transport welfare insurance schools industries

> 70% timel!

&

- »

<tJ

o * Clean o ©* Explore data »n © Clustering
C e Sample L e Represent =2 e Classification
" 0 data S i

o ® Aggregate 0 _ > e Regression
8 ° Imperfect 8 e | ink data g e Network

O data: missing, O e learn from < analysis

QS hoise, ... | o data c © Visual

L e Reduce dim. © e Deliver e analytics
O e . © insight O e Association
(V) D °

-

0

O

A
*anR Em
MILLION MEGABYTES HOURS PETABYTES MILLION BILLION EXABYTES ITEMS

1 % e o o o

Systematic methodologies dealing with data efficiently,

called data science, should be done.
https://aadamov.wordpress.com/2012/03/

Big data has many faces

[Data Acquisition]

Storage
[Security and Privacy] rag J

' [infrastructure

Big data

Computation
infrastructure

MY

[Visualization]1

Databases/
querying

[AnalvtiCS/ Mining] [

How to deal with big data?

= Problem statement: scalability to big data sets.
s Example:

m Explore 100 TB by 1 node @ 50 MB/sec = 23 days

m Exploration with a cluster of 1000 nodes = 33 minutes
= Solution= Divide-And-Conquer

A single machine cannot
efficiently manage high
volumes of data.
Vertical scalability =2
Horizontal scalability

Traditional HPC way of doing things

Communication network (Infiniband)

Lots of

communication

worker

nodes
(lots of them)

Lots of
computations

— |

Network for I/0 Limited I/0

.
g input data
central (relatively
storage small)

Source: Jan Fostier. Introduction to MapReduce and its Application to Post-Sequencing Analysis

Data-intensive jobs

Fast communication network (Infiniband)
L|m|ted

communlcatlon

Low compute
intensity

doesn’t
scale

Network for I/0 Lots of I/O

central

chale] | storage
hiili

input data (lots of it)

Data-intensive jobs

Communication network

Limited
communication
Low compute
intensity

input data
(lots of it)

Solution: store data on local disks of the nodes that perform
computations on that data (“data locality”)

MapReduce

m Scalability to large data volumes:
m Scan 100 TB on 1 node @ 50 MB/sec = 23 days
m Scan on 1000-node cluster = 33 minutes

= Divide-And-Conquer (i.e., data partitioning)

MapReduce

= Overview:
m Data-parallel programming model
m An associated parallel and distributed implementation for
commodity clusters
= Pioneered by Google
m Processes 20 PB of data per day
= Popularized by open-source Hadoop project
s Used by Yahoo!, Facebook, Amazon, and the list is growing ...

MapReduce %

m MapReduce is a popular | input | input | input | input |
approach to deal with Big (k,v)/ (k,v)/ (k,v)\ (k,v)\
Data map map map map

m Based on a key-value pair (e, v) (¢, v (¢, v) €. v)
data structure | Shuffling: group values by keys |

m [Two key operations: K, Iist(v’)l K, Iist(v’)J/ K’, Iist(v’)l
1. Map function: Process
independent data blocks

reduce reduce reduce

and outputs summary v’ v’ v’

information | output | output | output |
2. Reduce function: Further map (k, v) — list (K, V')

process previous reduce (k’, list(v’)) — v”

independent results

EJ. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clusters, |
-LCommunications of the ACM 51 (1) (2008) 107-113. :

———— e

MapReduce

MapReduce workflow
Mgp Shyﬁle Regiu ce

File system

Yy Yy yvyyvyYyy

Blocks/ Intermediary Output
fragments Files Files

The key of a MapReduce data partitioning
approach is usually on the reduce phase

MapReduce:
The WordCount Example

Sort and
Shuffle
Map Key Value Reduce Key

Each line passed to Splitting Value Pairs

inividual mapper
Input Files Lok Applel
Apple,1 » 2opled
spplel Applel
Apple Orange Mango »{ Orangel Applel
hango, 1 Final Output
Apple Orange Mango
Orange Grapes Plum —. Grapes, 1 o Grapes1
Crange Grapes Plum »| Grapesl
Plum,1 Apple,d
Grapes,1
hlango, 1
2 o] Mangzo,2 | hango, 2
Applel hdango, 1 Orange,?
Apple Plum Mango * Plum,l Flum,3
Apple Plum Manga hManga, 1 5 :
Apple apple Plum range » Orangez
Crange, 1
Applel
Apple &pple Plum » Applel
Flum, 1 Plum,1 I
Plum,1 » Flum,3
Plum,1

MapReduce:
The WordCount Example

Pseudo-code:

map(key, value):
// key: document ID; value: text of document
FOR (each word w in value)
emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers
result = 0;
FOR (each count v on value-list)
result +=v;
emit(key, result);

MapReduce %

Experience

= Runs on large commodity clusters:
= 10s to 10,000s of machines

m Processes many terabytes of data

m Easy to use since run-time complexity
hidden from the users

m Cost-efficiency:
= Commodity nodes (cheap, but unreliable)
x Commodity network
= Automatic fault-tolerance (fewer administrators)
s Easy to use (fewer programmers)

MapReduce %

= Advantage: MapReduce’s data-parallel

programming model hides complexity of
distribution and fault tolerance

m Key philosophy:

m Make it scale, so you can throw hardware
at problems

s Make it cheap, saving hardware,

programmer and administration costs (but
requiring fault tolerance)

= MapReduce is not suitable for all problems,

but when it works, it may save you a lot of
time

BlG |
DATA Outline

A gentle introduction to Big Data

Big data tecnologies

Big Data analytics

Fuzzy-based models for Big Data Learning
Evolutionary models for Big Data Preprocessing
A case of study: the ECBDL'14 competition

Final Comments

BIG

DATA

Big data technologies

The World
of Big Data : | .
Tools : DAG Model MapReduce Model BSP/Collective Model

-r---=-

For
Iterations/
Learning

GraphlLab
.
:

DryadLINQ Pig/PiglLatin

- b

For
Streaming

Hadoop is an open
source
implementation of
MapReduce

Created by Doug Cutting

C0m pUtatiOI‘la I (chairman of board of

directors of the Apache

pa = d ig m Software Foundation, 2010)

n
n
n
n
n
n
n
n
n
n
n
[]
n
- [|
. :
. . e
*
* o 9
* «*
.. . DY 3
III
A

http://hadoop.apache.org/

Hadoop birth

July 2008 - Hadoop Wins Terabyte Sort Benchmark

One of Yahoo's Hadoop clusters sorted 1 terabyte of data
in 209 seconds, which beat the previous record of 297
seconds in the annual general purpose (Daytona)
terabyte short bechmark. This is the first time that either
a Java or an open source program has won.

2008, 3.48 minutes

Hadoop
910 nodes x (4 dual-core processors, 4 disks, 8 GE memory)
Owen OMalley, Yahoo

2007, 4.95 min

TokuSampleSort Daytona
tx2500 disk cluster 2013, 1.42 TB/min
400 nodes x (2 processors, 6-disk RAID, 8 GE memory) Hadnop
Bradley C. Kuszmaul , MIT 102.5 TB in 4,328 seconds
Gray 2100 nodes x

(2 2.3Ghz hexcore Xeon E5-2630, 64 GB memory, 12x3TE disks)
Thomas Graves
Yahoo! Inc.

http://developer.yahoo.com/blogs/hadoop/hadoop-
sorts-petabyte-16-25-hours-terabyte-62-422.html

Hadoop

= a[a]a&g]

- Hadoop is:
= An open-source framework written in Java
m Distributed storage of very large data sets (Big Data)
m Distributed processing of very large data sets

m This framework consists of a number of modules
m Hadoop Common
m Hadoop Distributed File System (HDFS)
m Hadoop YARN - resource manager
m Hadoop MapReduce - programming model

http://hadoop.apache.org/

Hadoop Evolution

MapReduce Limitations. Graph algorithms (Page
Rank, Google), iterative algorithms.

Hadoop V1 Hadoop V2
MapReduce Other Frameworks
MapReduce _ Dataprocessing Data processing (MP1)
Rﬁsmmmmwanm :
SHA EOCE ~ YARN
‘Resource management

1
| Computlng An InS|ght on the Computlng Enwronment MapReduce and Programmlng Frameworks. |
| WIREs Data Mining and Knowledge Discovery 4:5 (2014) 380-409]

Hadoop Ecosystem

The project

The project includes these modules:

* Hadoop Common: The common utilities that support the other Hadoop modules.

* Hadoop Distributed File System (HDFS™): A distributed file system that provides high-throughput access to application data.

* Hadoop YARN: A framework for job scheduling and cluster resource management. R

. (S’ LR L

* Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.";._ X '._:

. . amg 0

COther Hadoop-related projects at Apache include: ',-2'33 E‘,E{S
0208950, 9508

ad Ly (]

s Avro™: A data serialization system. L4 IS
A P A = H E

* Cassandra™: A scalable multi-master database with no single points of failure. GIRAPH

¢ Chukwa™: A data collection system for managing large distributed systems.
* HBase™: A scalable, distributed database that supports structured data s GIRAPH (APACHE Project)
¢ Hive™: A data warehouse infrastructure that provides data summarization (http://qiraph.apache.orq/)

* Mahout™: A Scalable machine learning and data mining library. Iterative Graphs
« Pig™: A high-level data-flow language and execution framework for parallel

» ZooKeeper™: A high-performance coordination service for distributed applicauons.

_ Spark (UC Berkeley)
Recently: Apache Spark (100 times more efficient than

SpQ’K Hadoop, including iterative

http://hadoop.apache.org/ algorithms, according to creators)

The Hadoop File System

Hadoop Distributed File System (HDFS) is an scalable
and flexible distributed file system, written in Java for
Hadoop.

Shared-nothing cluster of thousand nodes, built from
inexpensive hardware => node failure is the norm!

Very large files, of typically several GB, containing many
objects.

Mostly read and append (random updates are rare)

m Large reads of bulk data (e.g. 1 MB) and small random
reads (e.g. 1KB)

m Append operations are also large and there may be many
concurrent clients that append the same file.

High throughput (for bulk data) more important than low
latency.

Hadoop: A master/slave
architecture '”

m Master: NameNode, JobTracker
m Slave: {DataNode, TaskTraker}, ..., {DataNode,

TaskTraker}
=
3
L Namenode JobTracker Secondary
i Namenode
=
Optional to have in Two Box In Separate Box

Slave

Datanode 1 Datanode 2 Datanode 3 BELELLL Datanode N

Hadoop

Hadoop can be run with 3 different
configurations:

1. Local / Standalone. It is run in a single JVM (Java Virtual
Machine). Very useful for debugging!

2. Pseudo-distributed (Cluster simulator)

3. Distributed (Cluster)

WordCount using Hadoop
MapReduce

Map()

public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
Member variables
private final static IntWritable one = new IntWritable(1l)
private Text word = new Text();

public void map (Object key, Text wvalue, Context context
) throws IOException, InterruptedException ({
StringTokenizer itr = new
StringTokenizer (value.toString()) ;s
while (itr.hasMoreTokens()) {
word.set (itr.nextToken()) ;
context.write (word, one);

WordCount using Hadoop
MapReduce

Reduce()

public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce (Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException ({

int sum = 0;

for (IntWritable val : wvalues) {
sum += val.get()

}

result.set (sum) ;

context.write (key, result);

WordCount using Hadoop
MapReduce

The Main Function for the WordCount program

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration() ;
String[] otherArgs = new GenericOptionsParser (conf,
args) .getRemainingArgs () ;
if (otherArgs.length < 2) {
System.err.println ("Usage: wordcount <in> [<in>...] <out>");
System.exit (2) ;
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass (WordCount.class) ;
job. setMapperClass (TokenizerMapper.class) ;
job.setCombinerClass (IntSumReducer.class) ;
job. setReducerClass (IntSumReducer.class) ;
job. setOutputKeyClass (Text.class) ;
job.setOutputValueClass (IntWritable.class) ;
for (int 1 = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path (otherArgs[i]))
}
FileOutputFormat.setOutputPath (job,
new Path (otherArgs[otherArgs.length - 1]));
System.exit (job.waitForCompletion(true) ? 0 : 1);

MapReduce: summary g
MapReduce

m Advantages compared to classical distributed models:
Simplicity and fault tolerant mechanism!

Appropriate for data-intensive processes!

= Main keys:
m Scalable: no matter about underlying hardware

m Cheaper: Hardware, programming and administration
savings!

= WARNING: MapReduce could not solve any kind of
problems, BUT when it works, it may save a lot time!

MapReduce limitations

“If all you have is a hammer, then everything looks like a nail.”

FORIGINAL ARTICLE

MAPREDUCE
IS GOOD
ENOUGH"

‘ If All You Have i5s a Hammer,

Jimmy Lin
The iSchool, University of Maryland
College Park, Maryland

There are some recent extension to the MapReduce paradigm in
order to ease the iterative computations!

Why a New Programming
Model?

m MapReduce simplified big data processing, but
users quickly found two problems:

= Programmability: tangle of map/red functions

m Speed: MapReduce inefficient for apps that
share data across multiple steps

o [terative algorithms, interactive queries

Data Sharing in MapReduce

HDFS HDFS HDFS HDFS
read write read write

B - ome

Input

HDES AN — result 1
read ’

/ query 2 mmmd result 2
. N — G A l— result3

Input

Slow due to r.e.plication, serialization,
and disk IO

Paradigms that do not fit with
Hadoop MapReduce

m Directed Acyclic Graph (DAG) model:

m The DAG defines the dataflow of the application, and the
vertices of the graph defines the operations that are to be
performed on the data.

s The "computational vertices" are written using sequential

constructs, devoid of any concurrency or mutual exclusion
semantics.

= Graph model:

m More complex graph models that better represent the
dataflow of the application.

m Cyclic models -> Iterativity.
m Iterative MapReduce model:

s An extented programming model that supports iterative
MapReduce computations efficiently.

Hadoop

New platforms to overcome Hadoop’s limitations

GIRAPH (APACHE Project) y _?
(http://giraph.apache.org/) 72‘//56'6/' 3

Iterative MapReduce
Procesamiento iterativo de grafos

Twister (Indiana University)

http://www.iterativemapreduce.orqg/
Clusters propios

GPS - A Graph Processing System,
(Stanford)
http://infolab.stanford.edu/gps/
para Amazon's EC2

PrIter (University of
Massachusetts Amherst,
Northeastern University-China)
http://code.google.com riter

-~ Distributed GraphLab Cluster propios y Amazon EC2 cloud

nLab (Carnegie Mellon Univ.) e
https ithub.com/graphlab-code/graphlab § lﬁ_ 24 HaLoop
: (University of Washington)

Amazon's EC2
http://clue.cs.washington.edu/node/ 14

http://code.google.com/p/haloop/
J\z Amazon’s EC2
Sporl(Spark (UC Berkeley)
Lightning-Fast Cluster Computing (100 times more efficient than GPU based plathI‘mS

Hadoop, including iterative algorithms, according to Mars
creators) Grex
http://spark.incubator.apache.org/research.html

MapReduce

More than 10000 applications in Google

MapReduce inside Google Google

L

Googlers' hammer for 80% of our data crunching

e Large-scale web search indexing

e Clustering problems for Google News

e Produce reports for popular queries, e.qg. Google Trend

¢ Processing of satellite imagery data

¢ Language model processing for statistical machine

translation
e Large-scale machine learning problems
e Justa plain tool to reliably spawn large number of tasks

o e.q. parallel data backup and restore
The other 20%? i@

5|
o

eSS'L Enrique Alfonseca

grawada.spain Google Research Zurich 49

What is Spark?

Fast and Expressive Cluster Computing
Engine Compatible with Apache Hadoop

2 .5x IeSS Code
Usabl

Efficient e
m General execution m Rich APIs in Java,
graphs Scala, Python

m In-memory storage m Interactive shell

Spark birth

Spor‘l’(\z

Lightning-Fast Cluster Computing

Daytona

2013, 1.42 TB/min

102.5 TB in 4,328 seconds

Hadoop

Gray 2100 nodes x
(2 2.3Ghz hexcore Xeon E5-2630, 64 GB memory, 12x3TE disks)
Thomas Graves
Yahoo! Inc.
Hadoop Spark
ar
World P
100TB*
Record
Data Size 1025TB 100 TB
Elapsed _ _
_ 72 mins 23 mins
Time
1.42 4.27
Hate o o
TB/min TE/min

October 10, 2014

Using Spark on 206
EC2 nodes, we
completed the
benchmark in 23
minutes. This means
that Spark sorted the
same data 3X faster
using 10X fewer
machines. All the
sorting took place on
disk (HDFS), without
using Spark’s in-
memory cache.

http://databricks.com/blog/2014/10/10/spark-petabyte-sort.htmli

Lightning-Fast Cluster Computing

Daytona

2013, 1.42 TB/min

Hadoop
102.5 TB in 4,328 seconds
2100 nodes x
(2 2.3Ghz hexcore Xeon E5-2630, 64 GB memory, 12x3TE disks)
Thomas Graves
Yahoo! Inc.

Daytona

2-way tie:
2014, 4.35 TB/min
TritonSort
100 TB in 1,378 seconds
186 Amazon EC2 i2.8xlarge nodes x
[32 vCores - 2.50Ghz Intel Xeon E3-2670 v2, 244GB memory,
8x800 GB 55D)
Michael Conley, Amin Vahdat,
George Porter
University of California, San Diego

2014, 4.27 TB/min

Apache Spark
100 TB in 1,406 seconds
207 Amazon EC2 i2.8xlarge nodes x
[31 vCores - 2.5Ghz Intel Xeon E5-2670 v2, 244GE memory,
8x800 GB 55D)
Reynold Xin, Parviz Deyhim, Xiangrui Meng,
Ali Ghodsi, Matei Zaharia
Databricks

http://sortbenchmark.org/

Apache Spark spark’

Lightning-Fast Cluster Computing

Hadoop V1 Hadoop V2

Apache Hadoop Ecosystem

Ambari
Provisioning, Managing and Monitoring Hadoop Clusters

m
{5 Iﬁ
- w I U
oy £l E 13
O g A1 s
atl 2 3 1] > nm
g2 | gl 3zl £zl ElEX
L T »3| 83| 8% £2| 2
=] = o =]
2 &8 S: = 2 - 5
8 |-
N YARN Map Reducev2 || § £
g g. £ (]9 Distributed Processing Framewaork ':E)
=
ol bE
z £
ES| g3 ||HDFs HDFS, HBase
T S m S Hadoop Distributed File System S

Apache Spark: InMemory Spaik’

Lightning-Fast Cluster Computing

Hadoop V1 Hadoop V2

......

_ Dataprocessing | | Dataprocessing (MPI)

Resource management

|

Ecosystem Future version of
InMemory
HDFS Hadoop + SPARK Apache Spark Mahout for Spark

[#5)
(=)

~ 120 7110

0

o 90 - ks
£ ¥ Hadoop learning)
2 80 .

£ Spark

c

=]

T

Apache Spark

0.9

(=]

Spark Goal

m Provide distributed memory abstractions for clusters to
support apps with working sets

m Retain the attractive properties of MapReduce:
m Fault tolerance (for crashes & stragglers)
s Data locality
m Scalability

Solution: augment data flow model with
“resilient distributed datasets” (RDDs)

RDDs in Detail

m An RDD is a fault-tolerant collection of elements
that can be operated on in parallel.

m There are two ways to create RDDs:

m Parallelizing an existing collection in your driver
program

m Referencing a dataset in an external storage
system, such as a shared filesystem, HDFS,
Hbase.

m Can be cached for future reuse

Creating a RDD: Parallelize()
or External Datasets

.parallellize()

// Parallelizing collections:
val data = Array(l, 2, 3, 4, 5) 11 1 |
val distData = sc.parallelize (data) 1§;EE]

// Parallelizing external datasets C 1|
val distFille = sc.textFile("data.txt")

m Spark supports text files, SequenceFiles, and any other
Hadoop InputFormat

Operations with RDDs

m Transformations (e.g. map, filter, groupBy, join)
m Lazy operations to build RDDs from other RDDs

m Actions (e.g. count, collect, save)
m Return a result or write it to storage

Transformations Parallel operations
(define a new RDD) (return a result to driver)

map reduce
filter collect
sample count
union save
groupByKey lookupKey
reduceByKey

join

cache

Transformations:
map(lambda x: x+2)

23

17

Source: Dirk Van den Poel. Spark: The new kid on the block

Transformations :
filter(only yellow)

Transformations : distinct()

=

Transformations :
keyBy(lambda x: x[0])

Transformations:
mapValues(lambda x: x(1))

(T, (T, 19)

(A, (A, 2))
(E, (E, 5))

Transformations:
groupByKey/()

|

(G,10 11 4)
(T,18 19 14)

Transformations:
reduceByKey(add)

Actions: count()

18
23
17

19
11

> 4

& oo o I N ~J
\/
I

1

12

Actions: reduce(add)

18
23
17

» 65

19
11

» 37 211

> 109

a

14

Actions: countByKey/()

Apache Spark - other
collections

DataFrames

A DataFrame is a distributed collection of data organized into named columns. It is conceptually equivalent to a table in a
relational database or a data frame in R/Python, but with richer optimizations under the hood. DataFrames can be
constructed from a wide array of sources such as: structured data files, tables in Hive, external databases, or existing RDDs.

The DataFrame API is available in Scala, Java, Python, and R,

Datasets

A Dataset is a new experimental interface added in Spark 1.6 that tries to provide the benefits of RDDs (strong typing, ability
to use powerful lambda functions) with the benefits of Spark SQL's optimized execution engine. A Dataset can be
constructed from JYM objects and then manipulated using functional transformations (map, flatMap, filter, etc.).

The unified Dataset APl can be used both in Scala and Java. Python does not yet have support for the Dataset API, but due
to its dynamic nature many of the benefits are already available (i.e. you can access the field of a row by name naturally
row. columnName). Full python support will be added in a future release.

Zaharia-2012- Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I.
Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing.
In: 9th USENIX Conference on Networked Systems Design and Implementation, San Jose, CA, 2012, 1-14.

Language Support

Standalone Programs

Python *Python, Scala, & Java

lines = sc.textFile(...)
Tines.filter(lambda s: “ERROR” 1in s).count()

Interactive Shells
‘Python & Scala

Scala |
Ylerines o sc-textrileC...) Performance
X.contains(“ERROR")) .count() eJava & Scala are faster
due to static typing
....but Python is often fine
Java

JavaRDD<String> lines = sc.textFile(...);
Tines.filter(new Function<String, Boolean>()

Boolean call(string s) {
return s.contains(“error”);

}
}) .count();

Learning Spark:
Interactive mode

m Easiest way: the shell (spark-shell or pyspark)
m Special Scala / Python interpreters for cluster use

It runs as an application on an existing Spark Cluster...
spark-shell --master=masterNODE # cluster

OR Can run locally
MASTER=1ocal ./spark-shell # local, 1 thread
MASTER=1ocal[2] ./spark-shell # local, 2 threads

Learning Spark:
Standalone mode

import sys
from pyspark import SparkContext

if __name__ == "__main__":

sc = SparkContext(“local”, “wordCount”, sys.argv[0],
None)

Tines = sc.textFile(sys.argv[1l])

counts = lines.flatMap(lambda s: s.split(* 7)) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda x, y: X + y)

counts.saveAsTextFile(sys.argv[2])

SparkContext (1)

m Main entry point to Spark functionality
m Created for you in spark-shell as variable sc

m The first thing a Spark program must do is to
create a SparkContext object, which tells Spark
how to access a cluster. To create a SparkContext
you first need to build a SparkConf object that
contains information about your application.

SparkContext (2)

m Only one SparkContext may be active per JVM.

You must stop() the active SparkContext before
creating a new one.

val conf = new

SparkConf () .setAppName (appName) .setMaster (master)

m The appName parameter is a name for your
application to show on the cluster.

m master is a Spark, Mesos or YARN cluster URL, or
a special “local” string to run in local mode.

The WordCount example with
Spark

lines = sc.textFile (“hamlet.txt”)
counts = lines.flatMap(lambda line: line.split (“ "))
.map (lambda word => (word, 1))
. reducebByKey (lambda x, y: x + V)

“to” (to, 1)
i r (be, 2)
“to be or"— b€’ — (be, 1)
“or” (or, 1) (not, 1)
“not” (not, 1)
“not to be=— “to” ____, (to, 1) &};' %;

“be” (be, 1)

RDD Fault Tolerance

RDDs track the transformations used to build them
(their lineage) to recompute lost data

-g- messages = textFile(...).filter(lambda s: s.contains(“ERROR”))
.map(lambda s: s.split(“\t’)[2])

HadoopRDD FilteredRDD
path = «— func =
hdfs://... contains(...)

MappedRDD
func = split(...)

Spark in Java and Scala

Java API:

JavaRDD<String> lines =
spark.textFile(..);

errors = lines.filter(
new Function<String, Boolean>() {
public Boolean call(String s) {
return s.contains(“ERROR”);

}
1)

errors.count()

Scala API:

val lines = spark.textFile(..)

errors = lines.filter(s =>
s.contains(“ERROR”))

// can also write
filter(_.contains(“ERROR™))

errors.count

Which Language Should I Use?

m Standalone programs can be written in any, but
console is only Python & Scala

s Python developers: can stay with Python for both

m Java developers: consider using Scala for console
(to learn the API)

m Performance: Java / Scala will be faster (statically
typed), but Python can do well for numerical work
with NumPy

Spark and RDDs: Summary

Advantages:

= Spark RDDs - efficient data sharing

= In-memory caching accelerates performance
- Up to 20x faster than Hadoop

= Easy to use high-level programming interface
- Express complex algorithms ~100 lines.

Flink

https://flink.apache.org/

Flink

éFI' " Overview Features Downloads FAQ 4 Quickstart ~ # Documentation ~
in

Apache Flink is an open source platform for distributed stream and batch data processing.

Flink’s core is a streaming dataflow engine that provides data distribution,
communication, and fault tolerance for distributed computations over data streams.

Flink includes several APIs for creating applications that use the Flink engine:

1. DataSiream AP for unbounded streams embedded in Java and Scala, and
2. DaiaSet API for static data embedded in Java, Scala, and Python,
3. Table API with a SQL-like expression language embedded in Java and Scala.

Flink also bundies libraries for domain-specific use cases:

1. CEP, a complex event processing library,
2. Machine Learning fibrary, and
3. Gelly, a graph processing APl and library.

You can integrate Flink easily with other well-known open source systems both for data
input and output as well as deployment.

A Streaming First

High throughput and low latency stream processing with
exactly-once guarantees.

Throughput
150 APACHE
o ®Flink = Storm STORM
S
% = 100
85
a=
c€ 5 I
: I
@
L
0 — =5 B
40 80 120
CPU Cores

4 Batch on Streaming

Batch processing applications run efficiently as special
cases of stream processing applications.

APIs, Libraries, and Ecosystem

DataSet, DataStream, and more. Integrated with the
Apache Big Data stack.

Flink

https://flink.apache.org/

Flink

g £ £

i i E#

5| 3 2 £ 3
g “ | 23 2L Lt o8
T | &§ B2 ES TE B2
E | Ua | S & T2 VO Fe
o |
P DataStream API DataSet API
& Stream Processing Batch Processing
g Runtime
Q Distributed Streaming Dataflow
) Local Cluster Cloud
g Single JVM Standalone, YARN GCE, EC2

2001-2010 Big Data: Technology °
20102015 and Chronology "™
Go gle lr ﬁ@
’ MapReduce Q J.J "adnn
3V’s Gartner E“s“swg

TU Berlin

| Flink Apache (Dec.
{ 2014) Volker

2010 Spark

U Berckele
K v

Apache Spark
Feb. 2014

Matei Zaharia

Spa

Lightning-Fast Cluster Computing

Doug Laney

2004
MapReduce
Google

Jeffrey Dean

Yahoo!

Doug Cutting

2010-2015:

Big Data
Analytics:
Mahout,
MLLib, ...

Hadoop
Ecosystem

Applications
New
Technology

BlG |
DATA Outline

A gentle introduction to Big Data

Big data tecnologies

Big Data analytics

Fuzzy-based models for Big Data Learning
Evolutionary models for Big Data Preprocessing
A case of study: the ECBDL'14 competition

Final Comments

BIG

DATA

Big Data Analytics

Potential scenarios:

Real Time Analytics/
Big Data Streams

O 0
oﬂb e/

BIG

(3+) DATA (®)
90 00°

Social Media Mining

Recommendation Social Big Data

Systems

Machine learning for Big Data

m Data mining techniques have demonstrated to be very
useful tools to extract new valuable knowledge from data.

m The knowledge extraction process from big data has become
a very difficult task for most of the classical and advanced

data mining tools.
= The main challenges are to deal with:
m The increasing scale of data
e at the level of instances
e at the level of features
= The complexity of the problem.
= And many other points

Problems: No ideal Distributed
System

m Two distributed
challenges for ML.:
m Networks are slow

m "Identical” machines
rarely perform equally

Unequal % T&n\"/F ﬁ}j_ Compute vs Network
performance il > @ -’}_{f\fp il — LDA 32 machines (256 cores)
70004 Compute time
6000 Network waiting time
Low bandwidth, k= ;::::::
High delay & 30001
2000
10004
0

Why do we need new Big ML
systems?

Systems view
. o Want more iters executed per second
. e ... butassume ML algo is a black box
e ...orassume ML algo “still works” under
for (t =1%o T) ¢ different execution models
doThings()
parallelUpdate(x,0) e Tl . .
dootherThings() = H:H:H ————
} - | - — i s e
Slow-but-correct Fast-but-unstable
Bulk Sync. Parallel Asynchronous Parallel
4 . . a
o Oversimplify systems issues "o Oversimplify ML issues h
¢ e.g. machines perform consistently ¢ e.g. assume ML algo “works” without proof
e e.g.can sync parameters any time e e.g. ML algo “easy to rewrite” in chosen
¢ J abstraction: MapR, vertex program, etc.

AN J

Why do we need new Big ML
systems?

Systems view
o Want more iters executed per second
. . lack box
Alone, neither side has full o s
for (t =1t "
GoThings() picture...
paralle New opportunities exist in the —=
doOtherThi rp—y
} middle =
nstable
DU Y. G neynuonwdS Parallel
(’ . .)
o Oversimplify systems issues "o Oversimplify ML issues A
e e.g. machines perform consistently ¢ e.g. assume ML algo “works” without proof
e €.g.can sync parameters any time e e.g. ML algo “easy to rewrite” in chosen
. / abstraction: MapR, vertex program, etc.

A& J/

The Science of ML for Big Data

m Apart from Hadoop and Spark, there are other frameworks
and programming paradigms such as:

m Giraph
m GraphlLab
m Petuum

m Each one has distinct technical innovations

m Key insight: ML algorithms have special properties

m Error-tolerance, dependency structures, uneven
convergence

m How to utilize for faster data/model-parallelism?

Big Data Analytics:

A 3 generational view

Generation

E]E

Scalability

Algorithms

Available

Algorithms
Not Available

Fault-
Tolerance

1st Generation

SAS, R, Weka,
SPSS, KEEL

2nd Generation

Mahout, Pentaho, Cascading

3rd Generation

Spark, Haloop, GraphLab, Pregel,
Giraph, ML over Storm

Vertical

Horizontal (over Hadoop)

Horizontal (Beyond Hadoop)

Huge collection
of algorithms

Small subset: sequential
logistic regression, linear
SVMs, Stochastic Gradient
Descendent, k-means

clustering, Random forest, etc.

Much wider: CGD, ALS,
collaborative filtering, kernel SVM,
matrix factorization, Gibbs
sampling, etc.

Practically
nothing

Vast no.: Kernel SVMs,
Multivariate Logistic
Regression, Conjugate

Gradient Descendent, ALS, etc.

Multivariate logistic regression in
general form, k-means clustering,
etc. — Work in progress to expand
the set of available algorithms

Single point of
failure

Most tools are FT, as they are
built on top of Hadoop

FT: HaLoop, Spark
Not FT: Pregel, GraphlLab, Giraph

Machine learning interfaces for
Hadoop

m Based on pure
MapReduce:

= Mahout 0.9
m Beyond MapReduce:
= Mahout (>0.9)
m MLIib
s GraphLab

. GraphLab o

Carnegie Mellon & _

Mahout 0.9

= What is Mahout?

m The starting place (2009) for MapReduce-based ML
algorithms.

m Goal: delivering scalable machine learning algorithm
implementations

= Why Mahout?

= Many open ML
e Lack Comml
e Lack Scalabi

= Who use Mal
s Adobe
= AOL
m [witter

Mahout

History

25 July 2013 - Apache Mahout 0.8 released

Visit our release notes page for details.

16 June 2012 - Apache Mahout 0.7 released

Visit our release notes page for details.

6 Feb 2012 - Apache Mahout 0.6 released

Visit our release notes page for details.

9 Oct 2011 - Mahout in Action released

The book Mahout in Action is available in print. Sean Owen, Robin Anil, Ted Dunning and Ellen Friedman thank the community
(especially those who were reviewers) for input during the process and hope it is enjoyable.

Find it at your favorite bookstore, or order print and eBook copies from Manning — use discount code "mahout37” for 37% off.

93

Mahout

History

1 February 2014 - Apache Mahout 0.9 released

Apache Mahout has reached version 0.9. All developers are encouraged to begin using version 0.9. Highlights include:

New and improved Mahout website based on Apache CMS - MAHOUT-1245

Early implementation of a Mulii Layer Perceptron (MLP) classifier - MAHOUT-1265

Scala DSL Bindings for Mahout Math Linear Algebra. See this blogpost and MAHOUT-1297

Recommenders as Search. See [hitps://github.com/pferrel/solr-recommender] and MAHOUT-1285

Support for easy functional Matrix views and derivatives - MAHOUT-1300

JSON output format for ClusterDumper - MAHOUT-1343

Enabled randomised testing for all Mahout modules using Carrot RandomizedRunner - MAHOUT-1345

Online Algorithm for computing accurate Quantiles using 1-dimensional Clustering - See this pdf and MAHOUT-1361
Upgrade to Lucene 4.6.1 - MAHOUT-1364

Changes in 0.9 are detailed in the release notes.

The following algorithms that were marked deprecated in 0.8 have been removed in 0.9:

Switched LDA implementation from Gibbs Sampling to Collapsed Variational Bayes
Meanshift - removed due to lack of actual usage and support

MinHash - removed due to lack of actual usage and support

Winnow - removed due to lack of actual usage and support

Perceptron - removed due to lack of actual usage and support

Slope One - removed due to lack of actual usage

Distributed Pseudo recommender - removed due to lack of actual usage
TreeClusteringRecommender - removed due to lack of actual usage

94

Mahout

History

12 March 2016 - Apache Mahout 0.11.2 releasedf| o E

23 February 2016 - New Apache Mahout Book - "Apache Mahout: Beyond MapReduce" by
D.Lyubimov and A.Palumbo released. See Mahout "Samsara" Book Is Out

Mahout News

25 April 2014 - Goodbye MapReduce

The Mahout community decided to move its codebase onto modern data processing systems that offer a richer programming model
and more efficient execution than Hadoop MapReduce. Mahout will therefore reject new MapReduce algorithm

implementations from now on. We will however keep our widely used MapReduce algorithms in the codebase and maintain
them.

We are building our future implementations on top of a DSL for linear algebraic operations which has been developed over the last
months. Programs written in this DSL are automatically optimized and executed in parallel on Apache Spark.

Furthermore, there is an experimental contribution undergoing which aims to integrate the h20 platform into Mahout.

95

Mahout A good library to use pure
MapReduce applications under
Algorithms Hadoop

Single MapReduce Spark H20 Flink
Machine

Mahout Math-Scala Core Library and Scala DSL

Mahout Distributed BLAS. Distributed Row Matrix APl with X X in

R and Matlab like operators. Distributed ALS, SPCA, development

SSVD, thin-QR. Similarity Analysis.

Mahout Interactive Shell

Interactive REPL shell for Spark optimized Mahout DSL X

Collaberative Filtering

User-Based Collaborative Filtering % %

[tem-Based Collaborative Filtering X X X

Matrix Factorization with ALS X X

Matrix Factorization with ALS on Implicit Feedback X X

Weighted Matrix Factorization, SVD++ X

Classification

Logistic Regression - trained via SGD X

MNaive Bayes / Complementary Naive Bayes % b

Random Forest X ><

Hidden Markov Models X

Multilayer Perceptron X 96

Mahout

Algorithms

A good library to use pure
MapReduce applications under

Single
Machine

Mahout Math-5cala Core Library and Scala DSL

Mahout Distributed BLAS. Distributed Row Matrix AP with
R and Matiab like operators. Distributed ALS, SPCA,

S5VD, thin-QR. Simiarity Analysis.

Clustering
Canopy Clustering
k-Means Clustering
Fuzzy k-Means
Streaming k-Means

Spectral Clustering

deprecated

X

X

Dimensionality Reduction note. most scala-based
dimensionalty reduction algorithms are avaiable through
the Mahout Math-Scala Core Library for all engines

Singular Value Decompaosition

Lanczos Algarithm
Stochastic SVD
PCA (via Stochastic SVD)

QR Decomposition

X

deprecaied

X

X

Hadoop

MapReduce Spark

deprecated
X

£

X X
deprecated
X X

X X

H2O

Flink

in
davelopment

97

What kind of algorithms can be found in Mahout?

Decision trees (C4.5, Cart)(MReC4.5)

Thop Tn K-Means (is a good implementation?)

Algorithms SVM

inData Apriori

Mmmg I kNN

e Naive Bayes

EM (Expectation MaX|m|zat|on)
PageRank

Adaboost

MapReduce limitations
Iterative algorithms!

Not
available!

Mahout

Version 0.11.2

m Apache Mahout introduces a new math environment
called Samsara, including new implementations built for
speed on Mahout-Samsara [Spark]

m They run on Spark 1.3+ and some on H20O, which means as
much as a 10x speed increase.

m You'll find robust matrix decomposition algorithms as well as
a Naive Bayes classifier and collaborative filtering.

m The new spark-item similarity enables the next generation
of co-occurrence recommenders that can use entire user
click streams and context in making recommendations.

Mahout

Version 0.11.2

Latest release version 0.11.2 has Mahout Samsara Environment
Distributed Algebraic optimizer

R-Like DSL Scala API

Linear algebra operations

Ops are extensions to Scala

IScala REPL based interactive shell

Integrates with compatible libraries like MLLib

Run on distributed Spark and H20

fastutil to speed up sparse matrix and vector computations

Flink in progress

Mahout Samsara based Algorithms

Stochastic Singular Value Decomposition (ssvd, dssvd)

Stochastic Principal Component Analysis (spca, dspca)

Distributed Cholesky QR (thinQR)

Distributed regularized Alternating Least Squares (dals)
Collaborative Filtering: Item and Row Similarity

Naive Bayes Classification

Distributed and in-core

http://mahout.apache.org/

Spark Libraries SpQI’K

https://spark.apache.org/

Sp Qr K... Lightning-fast cluster computing

Download Libraries ~ Documentation ~ Examples Community -~ FAQ

« APIs: RDD, DataFrame and SQL
= Backend Execution: DataFrame and SGL
« [niegrations. Data Sources, Hive, Hadoop, Mesos and Cluster Management
= R Language
= Machine Learning and Advanced Analylics
= Spark Streaming
= [Deprecations, Removals, Configs, and Behavior Changes
o Spark Core
o Spark SQL & DataFrames
o Spark Streaming
o MLIb
= Known Issues
o SQL/DataFrame
o Streaming
« Credits

Spark Libraries

.Spor‘I’(\z

MLIib

https://spark.apache.org/docs/latest/mlilib-guide.html

Kafka

Flume s K
HDFS/s3 peQr m
Kinesis Sl'feamlng

Dashboards
Twitter
input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine [

MLIib types, algorithms and utilities

This lists functionality included in spark .ml1lib, the main MLIb AP

Data types
- ® Basic statistics
M LI I b © summary statistics
© correlations
© stratified sampling
© hypothesis tesling

© random data generation
® Clasgsification and regression
l : (=] r els (SWMs, logistic regression, linear ragrassion)

of trees (Random Farests and Gradient-Boosted Trees)

Spa

Lightning-Fast Cluster Computing © ens

© isotanic regr

slon

® Collaborative filtering

© alernating leas! squares (ALS)

https://spark.apache.org/mllib/

GraphX

® Clustering
© k-maans
© Gaussian mixture
© power ileration clustering (PIC)
O latent Dirichlet allocation (LD&)
© gtreaming k-means
® Dimensionality reduction
© singular value decompuosition {SVD)
© principal component analysis (PCA)
® Feature extraction and transiormation
L "r-_--.'_|u9rl| patlern mining
O FP-growth
® Dptimization (developer)
© stochastic gradient descent
Q limited-memary BF GS (L-BF GS)
* PMML modal expart

MIlib: Spark Machine learning
library

= MLIib (2010): is a Spark implementation of
some common machine learning functionality,
as well associated tests and data generators.

m Includes: P
mizer
m Binary classification (SVMs and p z€
= Logistic Regression) ER o4 MLI

m Random Forest e
= Regression (Lasso, Ridge, etc.)

m Clustering (K-Means)

m Collaborative Filtering

m Gradient Descent Optimization

m Primitive

https://spark.apache.org/docs/latest/mllib-guide.html

MLIib

http://spark.apache.org/mllib/

MLlIib is Apache Spark's scalable machine learning library.

Ease of Use

Usable in Java, Scala and Python.

MLIib fits into Spark's APIs and interoperates with NumPy in Python (starting
in Spark 0.9). You can use any Hadoop data source (e.g. HDFS, HBase, or
local files), making it easy to plug into Hadoop workflows.

Performance

High-quality algorithms, 100x faster than
MapReduce.

Spark excels at iterative computation, enabling MLIib to run fast. At the same
time, we care about algorithmic performance: MLIIb contains high-quality

algorithms that leverage iteration, and can yield better results than the one-
pass approximations sometimes used on MapReduce.

Easy to Deploy

Runs on existing Hadoop clusters and data.

If you have a Hadoop 2 cluster, you can run Spark and MLIib without any pre-

installation. Otherwise, Spark is easy to run standalone or on EC2 or Mesos.
You can read from HDFS, HBase, or any Hadoop data source.

points = spark.textF
-map{f

model = KMeans.trair

120

w0
=]

[#]
=]

Running time (s)
(3]
(=]

=]

Calling MLIib

110

0.£

Logistic regression in

300
3250
Q
£200
5150

S
£100

J

274

|

.Spor‘I’(\z

MLIib

K-Means

m Hadoop
® HadoopBinMem
m Spark

197

25 50 100
Number of machines

[Zaharia et. al, NSDI’'12]

MLIib .S‘pcwriz

MLIib
https://spark.apache.org/docs/latest/mlilib-guide.html

Machine Learning Library (MLIib) Guide

MLIb is Spark's scalable machine learning library consisting of common learning algorithms and ufilities, including classification, regression,
clustering, collaborative filtering, dimensionality reduction, as well as underlying optimization primitives, as outlined below:

+ Data types
» Basic statistics
o summary statistics
o correlations
o stratified sampling
o hypothesis testing
o random data generation
Classification and regression
o linear models (SVMs, logistic regression, linear regression)
o naive Bayes
o decision frees
o ensembles of trees (Random Forests and Gradient-Boosted Trees)
o isotonic regression
Collaborative filtering
o alternating least squares (ALS)
Clustering
o k-means ~ |~
a Gaussian mixture Spark Pa{-’kages
o power iteration clustering (PIC)
o latent Dirichlet allocation (LDA)
o streaming k-means . .
Dimensionaily reduction A community index of packages
o singular value decompaosition (SVD)
o principal component analysis (PCA)
Feature extraction and transformation
Frequent pattern mining
o FP-growth
Optimization (developer)
o stochastic gradient descent
o limited-memory BFGS (L-BFGS)

http://spark-packages.org/

MLIib is under active development. The APIs marked Experimental/DeveloperApi May change in future releases, and the migration guide below

MLIib .Spcwr‘l’\(z

MLIib
https://spark.apache.org/docs/latest/mlilib-guide.html

MLIib - Classification and Regression

MLIib supports various methods for binary classification, multiclass classification, and regression analysis. The table below outlines the supported
algorithms for each type of problem.

Problem Type Supported Methods
Binary Classification linear SWMs, logistic regression, decision trees, random forests. gradient-boosted trees, naive Bayes
Multiclass decision trees, random forests, naive Bayes

Classification

Regression linear least squares, Lasso, ridge regression, decision trees, random forests, gradient-boosted trees, isotonic
regression

More details for these methods can be found here:

+ Linear models
o binary classification (SVMs, logistic regression)
o linear regression (least squares, Lasso, ridge)
Decision trees
Ensembles of decision trees
o random forests
o gradient-boosted trees
Maive Bayes
Isotonic regression

-

-

MLIib .Spcwr‘l’\(z

MLIib
https://spark.apache.org/docs/latest/mlilib-guide.html

MLIib - Clustering

Clustering is an unsupervised learning problem whereby we aim to group subsets of entities with one another based on some notion of similarity.
Clustering is often used for exploratory analysis and/or as a component of a hierarchical supervised learning pipeline (in which distinct classifiers
or regression models are trained for each cluster).

MLIib supports the following models:

» K-means

Gaussian mixture

Power iteration clustering (PIC)
Latent Dirichlet allocation (LDA)
Streaming k-means

K-means

k-means is one of the most commonly used clustering algorithms that clusters the data points into a predefined number of clusters. The MLIibD
implementation includes a parallelized variant of the k-means++ method called kmeans||. The implementation in MLIib has the following
parameters:

= {5 the number of desired clusters.

« maxiterations is the maximum number of iterations to run.

s nitializationMode specifies either random initialization or initialization via k-means||.

= runs is the number of times to run the k-means algorithm (k-means is not guaranteed to find a globally optimal solution, and when run mulfiple
times on a given dataset, the algorithm returns the best clustering result).

= nitializationSteps determines the number of steps in the k-means|| algorithm.

» epsilon determines the distance threshold within which we consider k-means to have converged.

MLIib

Spcwr‘lgZ

MLIib

https://spark.apache.org/docs/latest/mlilib-guide.html

MLIib - Feature Extraction and Transformation

s TF-IDF
= Word2Vec
o Model
o Example
s StandardScaler
o Model Fitting
o Example
= Mormalizer
o Example
* Feature selection
o ChiSgSelector
= Model Fitting
= Example

MLIib - Dimensionality Reduction

» Singular value decomposition (SVD)
o Performance
o SVD Example

s Principal component analysis (PCA)

Spark.ml

Spc:r{(\Z

MLIib

http://spark.apache.org/docs/latest/ml-guide.html

SpriI1 o Overview Programming Guides = APl Docs~ Deploying = IMore~=

spark.ml

package

.

Overview: estimators,
transformers and
pipelines

Extracting, transforming
and selecting features
Classification and
Regression

Clustering

Advanced topics

spark.mllib

package

*

Data types

Basic siatistics
Classification and
regression
Collaborative Tiltering
Clusiering
Dimensionality reduction
Feature extraciion and
transformation
Frequent pattern mining
Evaluation metrics

Overview: estimators, transformers and pipelines -
spark.ml

The spark.m] package aims to provide a uniform set of high-level APIs built on top of DataFrames that help users create and
tune practical machine learning pipelines. See the algorithm guides section below for guides on sub-packages of spark.ml,
including feature transformers unique to the Pipelines API, ensembles, and more.

Table of contents

= Main concepts in Pipelines
« DataFrame
o Pipeline components
= Transformers
= Estimaiors
= Properties of pipeline components
o Pipeline
» How it works
= Details
= Parameters
s Saving and Loading Pipelines
« Code examples
o Exampile: Estimatar, Transformer, and Param
= Example: Pipeline
o Example: model selection via cross-validation
« Example: model selection via train validation split

FlinkML

https://ci.apache.org/projects/flink/flink-docs- & Fli n k

master‘aEis‘ batch‘libs‘ml‘

&Fr k Documentation 1.1 Quickstart - Setup - Programming Guides -~ Libraries - Internals - Search all pages Search
in

DataSet API _ _) _ _ _
Important: Maven artifacts which depend on Scala are now suffixed with the Scala major version, e.g. "2.10" or "2.11". Please

Transformations consult the migration guide on the project WIKI.

Zipping Elements

Fault Tolerance Batch Guide / Libraries / Machine Learning

Iterations

Connectors FlinkML - Machine Learning for Flink
Python API

FlinkML is the Machine Learning (ML) library for Flink. It is a new effort in the Flink community, with a growing list of algorithms and
Examples contributors. With FlinkML we aim to provide scalable ML algorithms, an intuitive API. and tools that help minimize glue code in end-
to-end ML systems. You can see more details about our goals and where the library is headed in our vision and roadmap here.

Libraries
Gelly Supported Algorithms
» Machine Learning Supervised Learning
Table Data Preprocessing

Hadoop Compatibility Recommendation
Utilities

Getting Started

Pipelines

How to contribute

FlinkML

https://ci.apache.org/projects/flink/flink-docs-
master/apis/batch/libs/ml

Flink

aFr k Documentation 1.1 Quickstart ~ Setup - Programming Guides - Libraries - Internals - Se:
In

Supported Algorithms

FlinkML currently supports the following algorithms:

Supervised Learning

« SVM using Communication efficient distributed dual coordinate ascent (CoCoA)
« Multiple linear regression
« Optimization Framework

Data Preprocessing

» Polynomial Features
= Standard Scaler
« MinMax Scaler

Recommendation

« Alternating Least Squares (ALS)

Utilities

= Distance Metrics

H,0 library H20

H2° http://0xdata.com/

Support for R, Python, Hadoop

Data Science in H,0O y Spark

* Cox Proportional Hazards Model)

+ Deep Leamning Way of working: It creates a
* Generalized Linear Model = =

* Gradient Boosted Regression and Classification new JVM that Optlmlzes_ the

+ K-Means paralellism of the algorithms

* Naive Bayes

* Principal Components Analysis

* Random Forest

= Summary

* Data Science and Machine Leaming
= Stochastic Gradient Descent

* References

m It contains Deep Learning algorithms

= World record to solve the MNIST problema
without preprocessing

http://0xdata.com/blog/2015/02/deep-learning-performance/

H,O0 Library H20

http://www.h20.ai/resources/

H,O APIs g
Spark’+ H,O
Overview and walkthroughs for the different APls to H,O.
SPARKLING
+ ROnH,0 WATER

* Tableau on H,O

http://h2o-release.s3.amazonaws.com/h2o/rel-turan/4/docs-
website/h2o0-r/h2o_package.pdf

Machine Learning with Sparkling Water:
H20 + Spark

. Sparkling Water allows users to combine the
fast, scalable machine learning algorithms of
H20 with the capabilities of Spark. With

;‘;‘:‘5;532 Sparkling Water, users can drive computation
WATER from Scala/R/Python and utilize the H20 Flow

UI, providing an ideal machine learning platform
for application developers.

Case of Study:
Random Forests

m Random Forest is a very well-

known machine learning RN
] - - ‘ a a @
technique for classification et
or regression. lehien™ |t
= Ensemble learning 2 s -
m Tree-based models —
= Random selection of features | N
) rr ¢ :.1-.r1:.;.',r .*._w.a:!
=] I &
o | =2 l
m Most promising ’

characteristics:
s Great generalization capabilities
m Detect variable importance

m Relatively efficient on large data
bases.

Random Forest under
MapReduce

1) Building phase

Initial Final
. P r*”?x T AA
/ I 'i’iﬁ";
. in
\ ﬁ. h T ﬁ;};

Original train dataset i
. £ h T AA

Ny o

Mappers train set Final Model = Random Forest

Random Forest under

MapReduce

2) Testing phase

Initial

Original train/test d:mn\» :
2 | -l

Mappers train/test set

Map

Proficied cless
Pradiciad class
Pradictsd cless
Predicied cless

Predficied class
Frodicted class
Pradichedl clasg
Pradicted olasy

Premeted clasg
Pipgictsd class
Prodched class
Prodicted cless

Final

Prediiod e
Presdicyis] class
Pl piwe chass
Prasdlicted chas
P i ciise] £hass
Predictes] iy
Peedicied diaszs
Prodicied dam

Prodlcime] ciass
Prnd |t pe] chass
Prosdl it e claas
Pl et clges

Big Data Analytics

Scalable machine learning

and data mining

Class Instance
Number

normal 972.781
DOS 3.883.370

PRB 41.102
R2L 1.126
U2R 52

Case of Study: Random Forest
for KddCup’'99

Time elapsed (seconds) for sequential versions:

Datasets RF

10% 50% full
DOS_versus_normal 6344 42 4913478 NC
DOS_versus_ PRE 4825.48 28819.03 NC
DOS_versus_ R2L 4454 58 28073.79 NC
DOS_versus_ U2R 334897 2477403 NC
normal_versus PRE 468.75 6011.70 NC
normal_versus_R2L 364.66 4773.09 14703.55
normal_versus_U2R 205.64 4785.66 14635.36

Big Data Analytics

Scalable machine learning

and data mining

Case of Study: Random Forest
for KddCup’'99

10% 50% full
Class Instance | . N
Number DOS_versus_norma 6344 .42 4013478 C
DOS_versus_PRE 4825.48 28819.03 NC
normal 972.781
DOS 3.883.370 Time elapsed (seconds) for Big data versions with 20 partitions:
P g P
PRB 41.102 Datasets RF-BigData
R2L 1.126 10% 50% full
U2R 52 DOS _versus_normal 03 221 236
DOS_versus_PRB 100 186 190
DOS _versus_R2L a7 157 136
Cluster ATLAS: 16 nodes DOS _versus_U2R a3 134 122
-Microprocessors: 2 x Intel E5-2620 normal_versus.PRB 94 58 72
(6 cores/12 threads, 2 GHZ) normal_versus_R2L G2 39 69
- RAM 64 GB DDR3 ECC 1600MHz normalversus.U2R 93 52 o4
- Mahout version 0.8

Case of Study:

.Spcrr‘ltz
K-means

MLIib

A\

= Mahout: The K-Means algorithm

= Input
m Dataset (set of points in 2D) -Large
m Initial centroids (K points) —Small

= Map Side
s Each map reads the K-centroids + one block from dataset
m Assign each point to the closest centroid
s Output <centroid, point>

R. M. Esteves, C. Rong, R. Pais, K-means Clustering in the Cloud - A Mahout Test.
|IEEE Workshops of International Conference on Advanced Information Networking and
Applications, pp.514,519, 22-25 March 2011.

119

Case of Study:
K-means

Spor‘lzz

vs MLlib

Mahout: K-means clustering

= Reduce Side
m Gets all points for a given centroid
m Re-compute a new centroid for this cluster
s Output: <new centroid>

m Iteration Control

m Compare the old and new set of K-centroids If similar or
max iterations reached then Stop Else Start another Map-
Reduce Iteration

= THIS IS AN ITERATIVE MAP-REDUCE ALGORITHM

120

Case of Study: sl

K-means T
= Map phase: assign cluster IDs
(x1, y1), centroidl, centroid2, ... <cluster_n, (x1, y1)>
(x2, y2), centroidl, centroid2, ... <cluster_m, (x2, y2)>
(x3, y3), centroidl1, centroid2, ... <cluster_i, (x3, y3)>
(x4, y4) , centroid1, centroid2, ... <cluster_k, (x4, y4)>
= Reduce phase: reset centroids
<cluster_n, (x1, y1)> <cluster_n, centroid_n>
<cluster_m, (x2, y2)> <cluster_m, centroid_m>
<cluster_i, (x3, y3)> <cluster_i, centroid_i>

<cluster_k, (x4, y4)> <cluster_k, centroid_k>

Case of Study:

Spark
K-means

vs MLlib

Mahout: K-means clustering

- o

Split 2

it3

"Splitn2’

Dataset -

Map output -
<centroid_id, data_point>

S: Shuffle and Sorting

R. M. Esteves, C. Rong, R. Pais, K-means Clustering in the Cloud — A Mahout Test.
|[EEE Workshops of International Conference on Advanced Information Networking and
Applications, pp.514,519, 22-25 March 2011.

22

Case of Study:
K-means

.Spcrr‘l:Z

MLIib

A\

K-Means: An example of limitation of MapReduce

= What's wrong with these iterative approaches?

m [terative algorithms in MapReduce chain multiple jobs
together.

m The standard MapReduce is not ready to do this.

m Hadoop offers some snippets (Counters) to determine the
stopping criteria.

= Main issues:
s MapReduce jobs have high startup costs.
m Repetitive Shuffle.
m Results are serialized to HDFS.

123

K-means

K-Means Clustering using Spark

Focus: Implementation
and Performance

K-means

Mahout: K-means clustering

Dataset

Map output —
<centroid_id, data_point> s: Shuffle and Sorting

@ lterative algorithms in MapReduce chain multiple jobs
together.

@ The standard MapReduce is not ready to do this.
R. M. Esteves, C. Rong, K. Pais, K-means Clustering in the Cloud — A Mahout Test.J

IEEE Workshops of International Conference on Advanced Information Networking and

Applications, pp.514,519, 22-25 March 2011. 125

K-means

MLIib: K-means clustering

K-means pseudo-code:

* Initialize K cluster centers

* Repeat until convergence:
Assign each data point to
the cluster with the closest
center.
Assign each cluster center
to be the mean of its
cluster’s data points.

k-

means MLIib source

centers = data.takeSample(

talse, K, seed)

while (d > &)

}

closest = data.map(p =>
(closestPoint(p,centers),p))

pointsGroup =
closest.groupByKey()

newCenters =pointsGroup.mapValues(
ps => average(ps))

d = distance(centers, newCenters)

centers = newCenters.map(_)

126

K-Means Algorithm

A
N
()
| =
3 oo
© ® o0 °
e e *°
L oo .:..
° L o
°
o 00, 0
o ° %o o
.o:o o
o °

Feature 1

K-Means Algorithm

e Initialize K cluster

A
centers
N
(o)
| 9
3 .0.
(v []
E ...Q... .
‘...
o ¢
o ..0.‘
R [] LY °
..:. °
o o

Feature 1

K-Means Algorithm

e Initialize K cluster
centers

A
centers = data.takeSample(
false, K, seed) (g
(«)
ud
3 oo
© ¢ oo 1§
IE .0 °* °
..oo o0 o
o ®
o ..0.‘
o . LY °
o o
e ® |
° []

Feature 1

K-Means Algorithm

-

NN
-)]
Repeat until =
convergence: =) e,
[y * oo 1
() ° °
(1 o °* °
° .oo 0o o,
° ®
o ‘.o.‘
o . LY °
o o
] ° [.
o °

Feature 1

K-Means Algorithm

)

o

)

t

3

e o0 o

- © * oo 1§
Assign each data e ‘. *° .
point to the cluster °.* o0 ¢
with the closest . ol
center. , 1 %o o
L g

Feature 1

K-Means Algorithm

A
N
()
l
3 oo
[y * oo N
closest = data.map(p => IE °, °*° .
.... o0 O °
(closestPoint(p,centers),p)) °°.
o 00, 0
o . LY °
o o
e |
°]

Feature 1

K-Means Algorithm

A
N
()]
el
3 oo
[y * oo 1
closest = data.map(p => lg.) °. *° .
.... o0 O °
(closestPoint(p,centers),p)) o.'.
[) o ©
... LY
o o
A T N
° o

Feature 1

K-Means Algorithm

-

o

o)

| &9

: [N

TU' o ... |

ﬂ) o 00

= . K : o
Assign each , o' o
cluster center to oo a
be the mean of its o °

cluster’ s data —— ;
points. eature

K-Means Algorithm

A
N
)
el
3 oo
[y * oo 1
2 e
o o0 ': ° 4
o o ®
. o0 .o
pointsGroup = . ‘nm oo
closest.groupByKey() . : . .
° o

Feature 1

K-Means Algorithm

A
(o]
(o)
ul
3 oo
© * o0 1§
Ig.) .0 °° °
LI
o
o ®
o
pointsGroup = ‘g z’. o
closest.groupByKey() e .
0.0 .
newCenters = o °
pointsGroup.mapValues(

ps => average(ps)) Feature 1

K-Means Algorithm

A
(o]
(o)
ul
3 .0.
n * oo &
IE .0 °° °
....
o ®
o
pointsGroup = °* g :.0 o
closest.groupByKey() e y
L T |
newCenters = o °
pointsGroup.mapValues(

ps => average(ps)) Feature 1

K-Means Algorithm

A
N
- ()
e Repeat until =
convergence: & v,
‘. o0
ﬂ) o 00
- LI . : °
o ¢ o
o ®
.o o'y o
o ° e o
% : ° .
o °

Feature 1

K-Means Algorithm

A
N
. ()
e Repeat until =
convergence: = . 0
o0
while (dist(centers, newCenters) Ig.) ‘e *° B e
> E) o . o0 o0 O °
o ®
l. o' o
. ° e o
.0 : o o
o L

Feature 1

K-Means Algorithm

A
N
- Q
e Repeat until =
convergence: = . 0
o0
while (dist(centers, newCenters) ﬁE ‘e *° B e
> E) o . o0 o0 O °
[
closest = data.map(p => l. :0 |°.
. ° % o
(closestPoint(p,centers),p)) ‘.: . o
pointsGroup = ¢ °
closest.groupByKey()
Feature 1
newCenters

=pointsGroup.mapValues(
ps => average(ps))

K-Means Source

centers = data.takeSample(
false, K, seed)

while (d > €)

closest = data.map(p =>

(closestPoint(p,centers),p))

pointsGroup =
closest.groupByKey()

d = distance(centers, newCenters)

newCenters
=pointsGroup.mapValues(
ps => average(ps))

centers = newCenters.map(_)

}

Feature 2

Feature 1

K-Means Performance

K-Means
300 - E m Hadoop
Lines of code for K-Means = HadoopBinMem
Spark ~ 90 lines — %250 | i~ m Spark
E ~
Hadoop ~ 4 files, > 5
300 lines ‘g

25 50 100

Number of machines
[Zaharia et. al, NSDI’12]

M. Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing. NSDI 2012. J

K-Means and Logistic Regression Spor{(\z
Performance MLlib
Performance
K-Means Logistic Regression
300 N m Hadoop 250 m Hadoop
. = m HadoopBinMem _ 5 ® HadoopBinMem
% 250 = Spark % 200 i m Spark
£
s <0 5 £ 150
< o= = —
S 150 2 g =
L 3 S 100 o &
£ 100 8 o .
50 “ |
© ™
0 0

25

50
Number of machines

100

25 50 100
Number of machines

M. Zaharia et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing. NSDI 2012,

J

Big Data Analytics: 2 books

CYREILLY

Analytics with

Machine Learning
S:p afk with Spark

Sandy Byza. LUni Lasessor,
Span Dvven & Joh Wills

10 chapters giving a
quick glance on Machine
Learning with Spark

9 cases of study

BlG |
DATA Outline

A gentle introduction to Big Data

Big data tecnologies

Big Data analytics

Fuzzy-based models for Big Data Learning
Evolutionary models for Big Data Preprocessing
A case of study: the ECBDL'14 competition

Final Comments

BIG

DATA

ABIG
DATA

with Fuzzy Models

Big Data Classification
with Fuzzy Models

Uncertainty and Big Data

m Uncertainty is inherent to Big
Data due to
m Heterogeneous sources
m Variety in data
s Incomplete data
m Veracity in question

m Fuzzy Rule Based Classification
Systems can manage
m Uncertainty
s Vagueness
m Lack of data/Data fragmentation

Appearance of small disjuncts with the
MapReduce data fragmentation

e®
L]
©
)
[]
@
®
@
6

{";i*j: Rare cases or Small disjuncts are
%9 °5 % © those disjuncts in the learned classifier
;:i-u \ that cover few training examples.

®
I
Do
0
®e

-

(b) Small disjuncts

Dataset Knowledge Model

LT S Lo 10

! T ‘+ /
o4t ;,
L FT W Ty S Ot
| N

T
NRRIRAR AN
B S S T

N
i

8

+

o+
+

e =
4

o
-
+
b F

s !
+
+1
T
R iy
T+ \‘
—
4

|:>£ Learner JI :)

Minimize learning error
ot L T L ey +

maximize generalization 0 2 4 6 8 0

e

[l

LR +

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49

G.M. Weiss. Mining with Rarity: A Unifying Framework. SIGKDD Explorations 6:1 (2004) 7-19

Appearance of small disjuncts with the

MapReduce data fragmentation

Data fragmentation - Lack of data

N
B ERTR

“*"’t* : RN

1 4"‘3‘ { |

= =
(a) 10 % of training instances by 100 % of traming instances

Figura 11: Lack of density or srmall sample size on the yeastd datasat

The lack of data in the
training data may also
cause the introduction of

small disjuncts.

It becomes very hard
for the learning
algorithm to obtain a
model that is able to
perform a good
generalization when
there is not enough data
that represents the
boundaries of the
problem.

And, what it is also
most significant, when
the concentration of
minority examples is so
low that they can be
simply treated as noise.

Appearance of small disjuncts with the
MapReduce data fragmentation

Lack of data

Left-C4.5, right-Backpropagation (Pima and Wisconsin Breast
Cancer): These results show that the performance of classifiers,
though hindered by class imbalances, is repaired as the training
set size increases. This suggests that small disjuncts play a
role in the performance loss of class imbalanced domains.

D o=

o= o=

a7 O 1:9 o o140
i o 1:3 = m1:3
0g oS H

o= D 1=l o=} O 1:1
s (W3

a0 10D X0 <0 100 0

T. Jo, N. Japkowicz. Class imbalances versus small disjuncts. SIGKDD Explorations 6:1 (2004) 40-49

Appearance of small disjuncts with the
MapReduce data fragmentation

Lack of data. Fuzzy models performance

Chi algorithm performance. Pima
-
0,8
0,6 1%
w19
0.4 1 mi:3
0,2 m1:1
0

FARC-HD algorithm performance. Pima

40 100 200 0.8 S

0,6 - '
w19
Robustness to 04 9 =13
the lack of data? 0,2 - w11

4C 100 200

Big Data: Selected Computational :¥
Intelligence approaches "= DATA

with

Chi-FRBCS-BigData: A Case of Study

We choose a simple Learning Methods to analyze the potential of
FRBCSs for Big Data Classification

m MapReduce design based on the FRBCS algorithm (Chi et
al).
m Uses two different MapReduce processes
s Phase 1: Building the Fuzzy Rule Base
m Phase 2: Estimating the class of samples belonging to big
data sample sets
m Two versions which differ in the Reduce function of the
building of the FRB have been produced
s Chi-FRBCS-BigData-Max
s Chi-FRBCS-BigData-Average

S. Rio, V. Lopez, J.M. Benitez, F. Herrera. A MapReduce Approach to Address Big Data

Classification Problems Based on the Fusion of Linguistic Fuzzy Rules. International Journal of
Computational Intelligence Systems 8:3 (2015) 422-437. doi: 10.1080/18756891.2015.1017377

Big Data: Selected Computational :#
Intelligence approaches \

DATA

with

Chi-FRBCS

= Produces rules like "Rule R;: IF x; IS A%, AND ...
AND x, IS A", THEN Class = C; with RW,"”

m Builds the fuzzy partition using equally
distributed triangular membership functions

m Builds the RB creating a fuzzy rule associated to
each example

m Rules with the same antecedent may be created:
m Same consequent - Delete duplicated rules
m Different consequent - Preserve highest weight rule

Z. Chi, H. Yan and T. Pham, Fuzzy algorithms with applications to image processing
and pattern recognition, World Scientific, 1996.

Big Data: Selected Computational :#
Intelligence approaches \

DATA

with

Building the RB with Chi-FRBCS-BigData: A
Map Reduce approach

INITIAL MAP REDUCE FINAL

RB,
—
ey
Train set map,
DB
e~ —

RB, ————> RBy, ———>

Train set map,
v
Original train set Final KB

Train set map,,
Mappers RB generation Final RB generation

The key of a MapReduce data partitioning approach is
usually on the reduce phase

Two alternative reducers (Max vs average weights)

Big Data: Selected Computational :#

Intelligence approaches

DATA

with

:IFA, =L, AND A, =L, THEN C,; RW, = 0.8743
:IFA, =L, AND A, = L, THEN C,; RW, = 0.9142

RB,

:IFA, =L, AND A, = L, THEN C,; RW, = 0.9254
:IFA, =L, AND A, = L, THEN C,; RW, = 0.8842

RB,

:IFA, =L, AND A, = L, THEN C,; RW, = 0.6534
:IFA, =L, AND A, = L, THEN C,; RW, = 0.7142

RB,

:IFA, =L, AND A, = L, THEN C,; RW, = 0.2143
:IFA, =L, AND A, = L, THEN C,; RW, = 0.4715

RB,

:IFA, =L, AND A, = L, THEN C,; RW, = 0.7784
:IFA, =L, AND A, =L, THEN C,; RW, = 0.8215

RB

n

Building the FRB with
Chi-FRBCS-BigData-Max

REDUCE

:IFA, =L, AND A, = L, THEN C,; RW, = 0.9254
:IFA, =L, AND A, = L, THEN C,; RW, = 0.9142
:IFA, =L, AND A, = L, THEN C,; RW, = 0.8842
:IFA, =L, AND A, = L, THEN C,; RW, = 0.6534
:IFA, =L, AND A, = L, THEN C,; RW, = 0.4715
:IFA, =L, AND A, = L, THEN C,; RW, = 0.7784

RBg
Final RB generation

RB,, R,, C,, RW = 0.8743
RB,, R,, C,, RW = 0.9254
RB,, R,, C,, RW = 0.7142
RB,, R,, C,, RW = 0.2143
RB;, R,, C,, RW = 0.8215

Big Data: Selected Computational :#

Intelligence approaches

DATA

with

IFA, =L, AND A, = L, THEN C,; RW, = 0.8743
:IFA, =L, AND A, = L, THEN C,; RW, = 0.9142

RB,

:IFA, =L, AND A, = L, THEN C,; RW, = 0.9254
:IFA, =L, AND A, = L, THEN C,; RW, = 0.8842

RB,

:IFA, =L, AND A, = L, THEN C,; RW, = 0.6534
:IFA, =L, AND A, = L, THEN C,; RW, = 0.7142

RB,

:IFA, =L, AND A, = L, THEN C,; RW, = 0.2143
:IFA, =L, AND A, = L, THEN C,; RW, = 0.4715

RB,

:IFA, =L,AND A, = L, THEN C,; RW, = 0.7784
:IFA, =L, AND A, =L, THEN C,; RW, = 0.8215

RB

n

Building the FRB with
Chi-FRBCS-BigData-Ave

REDUCE

:IFA, =L, AND A, = L, THEN C,; RW, = 0.8033
:IFA, =L, AND A, = L, THEN C,; RW, = 0.9142
:IFA, =L, AND A, = L, THEN C,; RW, = 0.8842
:IFA, =L, AND A, = L, THEN C,; RW, = 0.6534
:IFA, =L, AND A, = L, THEN C,; RW, = 0.4715
:IFA, =L, AND A, = L, THEN C,; RW, = 0.7784

RB

Final RB generation

RB,, R,, C,, RW = 0.8743

RB,, R,, C,, RW = 0.9254
RB,, R,, C,, RW = 0.7142
RB,, R,, C,, RW = 0.2143

RC,, C,, RW,,, = 0.8033
RC,, C,, RW,,, = 0.5699

RB;, R,, C,, RW = 0.8215

Big Data: Selected Computational

Intelligence approaches

Estimating the class of a Big dataset with Chi-
FRBCS-BigData

INITIAL

—

@ @

Original classification set

g
Classification set map,

—
o A

~— —
Classification set map,

o

Classification set map,,

Mappers classification sets prediction

—>

MAP

ample,,:
ample,,:
ample,;:

Actual class C,; Predicted class C
Actual class C,; Predicted class C,
Actual class C,; Predicted class C,

Predictions set,

ample,;:
ample,,:
ample,;:

Actual class C,; Predicted class C,
Actual class C,; Predicted class C,
Actual class C,; Predicted class C,

Predictions set,

ample, :
ample,,:
ample,;:

Actual class C,; Predicted class C,
Actual class C,; Predicted class C,
Actual class C,; Predicted class C,

Predictions set,

FINAL

Sample,,:
Sample,,:
Sample,;:

Sample,,:

> Sample,,:

Sample,,:

Sample,,:
Sample,,:
Sample,;:

Actual class C,; Predicted class C,
Actual class C,; Predicted class C,
Actual class C,; Predicted class C,

Actual class C,; Predicted class C,
Actual class C,; Predicted class C,
Actual class C,; Predicted class C,

Actual class C,; Predicted class C,
Actual class C,; Predicted class C,
Actual class C,; Predicted class C,

Final predictions file

Big Data: Selected Computational :# |
Intelligence approaches "= DATA

with

Experimental Analysis: Chi-FRBCS-BigData

m 6 Datasets with two classes problem
m Stratified 10 fold cross-validation

m Parameters:

= Conjunction Operator: Product T-norm Experimental
m Rule Weight: Penalized Certainty Factor Framework
m Fuzzy Reasoning Method: Winning Rule
m Number of fuzzy labels per variable: 3 labels
= Number of mappers: 16, 32, 64
| Datasets | #Ex. | #Atts. | Selected classes | #Samples per class |
RLCP 5740132 2 (FALSE; TRUE) (5728201; 20031)
Kddcup DOS_vs_normal 4856151 41 (DOS; normal) (3883370;072781)
- Poker_o_vs_1 946799 10 (0;1) (513702;433097)
Covtype_2_vs_1 405141 54 (2;1) (283301; 211840)
Census 141544 41 (-_50000.;50000+.) (133430;8114)

Fars_Fatal Ini_vs No Inj] 62123 20 (Fatal Inj; No_Inj) (42116;20007)

»)
‘
.

Big Data: Selected Computatlonal
Intelligence approaches

'too

DATA

with
Analysis of the Performance, Precision
Datasets 8 maps
Chi-FRBCS Chi-BigData-Max Chi-BigData-Ave
Acc;y AcCy Accy, AcC; g Acc,, Accq
Poker_0O_vs_1 63.72 61.77 62.93 60.74 63.12 60.91
Covtype_2_vs_1 74.65 74.57 74.69 74.63 74.66 74.61
Census 96.52 86.06 97.12 93.89 97.12 93.86
Fars Fatal ITnj_vs No_Inj 99.66 89.26 97.01 95.07 97.18 05,25
Average 83.64 7192 82.94 81.08 83.02 81.16

Good precision!

Big Data: Selected Computational ¥4 E [(5
Intelligence approaches

e DATA

with Fuzzy Models

Analysis of the Performance, Number of rules

Kddeup DOS wvs normal dataset

MurmRules by map Final nurnRules

EFq size: 211 EEp size: 301

EFq size: 212

RBo size: 221 Robusthess to the lack of data

RE.size: 216 Increasing the final number of rules

REssize: 213 i

RE¢ E%EE: 210 . :zzz \\ ‘_/"{ ‘,"f

REq size: 211 5 093 \\ ;,;-" /"

RBg size: 214 1 4
Class Instance wn e mm ame

Number ——Chi FREOS Bipliate Max ===l FRBOE Biplnt Ave

normal 972.781 (by Kddcup_ DOS_vs_normal dataset
DOS 3.883.370

BIG
DATA

with Fuzzy Models

Big Data: Selected Computational :#
Intelligence approaches

Analysis of the Performance, Number of rules

Datasets 8 maps
Chi-FRBCS Chi-BigData-Max Chi-BigData-Ave
Average NumRules Average NumRules Average NumRules
Census 31518.3 34278.0 34278.0
Covtype 2_vs_1 6962.7 7079.1 7079.1
Fars Fatal Inj_vs No_Inj 16843.3 17114.9 17114.9
Poker_0_vs_1 51265.4 52798.1 52798.1

Robustness to the lack of data for the data
fragmentation, increasing the final number of rules

This may cause a improvement in the performance

L

Intelligence approaches

of th rmance, Precision

JLETET: ets Chi-BigData-Max Chl—ﬁgggm,—_&m
Accy AcC Accy

Kddcup DOS vs _nonmal 99.92 90.02 00.92 00.92

A.cctr &cch., &cch

RLCP s9.65 [IGBEA o3 -
Kddcup DOS vs nommal 99.03 |199:93 00.03 |199:03
6035

Poker_o0_vs_1 62.18 50.88 62.58

Poker_o_ws_1 61.27 58.03 61.82 50.30
CDWE—E—VS—I 74.77 74.72 7477 ?469 Covt}rpe_2_vs_1 ?469 ?462 ?488 ?485
i 97-14 - 97-15 93-52 Census 97.11 93.48 97.12 93.32
Fars Fatal Ini vs No Ini 96.69 94.75 97.06 - Fars Fatal Ini vs No Ini 96.49 04.26 06.87 04.63

CFAETIETS

m Performance improves
Sll?htl y with less maps
(alleviate the small sample size
problem)

RLCP
Kddcup DOS wvs nommal

Poker_o_ws_1 60.45 57.05

Covtype_2_v=_1 L s Chi-BigData-Ave obtains slightly
e — 97.07 9330 9743 931 better classification results
Fars_Fatal Inj vs No Inj g6.27 93.98 06.76 94.56

o

Big Data: Selected Computational :#
Intelligence approaches "= DATA

with

Analysis of the Performance, Runtime
(Chi-BigData-Ave)

Datasets 8 maps
Chi-FEBCS Chi-BigData-Max Chi-BigData-Ave
Runtime (s} Runtime (s) Runtime (s}
Census 38655.60 1102.45 1343.92
Covtype 2 _vs_1 8624770 248200 2512.16
Fars_Fatal_Inj_vs_No_Inj 8056.60 24196 311.95
Poker 0_vs_1 114355.80 567250 7682.15
Average 61828.93 2374.82 2862.56
Maps Seconds
KddCUP’99 number
8 116.218,26
Class Instance oy e
Number e
normal 972.781 32 7.708,96
64 2.096,34
DOS 3.883.370

132 1.579,77

Big Data: Selected Computational :
Intelligence approaches \

DATA

with

FRBCS for Big Data: Model for Imbalanced classes

m Chi-FRBCS-BigDataCS: algorithm for imbalanced
bigdata

Initial Map Reduce Final

@

» Class Cost
Estimation
» i 35 RB; RBg .. FinalKB
h
L] L]

=3 DB generation

Original train
dataset

RB,

During the building
Mappers \ of the Rule Base the
misclassification

train set
costs are
considered

V. Lopez, S. Rio,]J.M. Benitez, F. Herrera. Cost-Sensitive Linguistic Fuzzy Rule Based
Classification Systems under the MapReduce Framework for Imbalanced Big Data. Fuzzy Sets

and Systems 258 (2015) 5-38.

Big Data Classification
with Fuzzy Models

with Fuzzy Models

Code for our approaches:

Fuzzy Rule Based System for classification

Fuzzy Rule Based System with cost sensitive
for imbalanced data sets

Sara e[Rio

https://github.com/saradelrio

Popular repositories

Chi-FRBC $-BigData-Ave
Chi-FRBCS-BigData-Ave: MapReduce implementation of the Chi et al.’s approach.

Chi-FRBC 5-BigData-Max
Chi-FRBCS-BigData-Max: MapReduce implementation of the Chi et al.’s approach.

Chi-FRBC S-BigDataC5
Chi-FRBCS-BigDataCS: MapReduce implementation of the basic Chi et al.’s algornthm 1

hadoop-imbalanced-preprocessi
ng
MapReduce implementations of random oversampling, random undersampling and “Sy
Echnique” (SMOTE) algorithms using Hadoop

RF-BigDataC$
RF-BigDataCS: A cost-sensitive approach for Random Forest MapReduce algorithm to

ABIG
DATA

with Fuzzy Models

Big Data Classification
with Fuzzy Models

m Linguistic fuzzy models for Big Data under the
MapReduce framework:

s Manages big datasets
s Without damaging the classification accuracy
m Fast response times (increasing with the number of Maps)

m Some challenges:
m Reduce phase for approximate fuzzy models
m Deep analysis “ensembles vs fusion of rules”

m Deep analysis on the small disjuncts preprocessing for fuzzy
models

m New fuzzy models based on accurate algorithms

m A promising line of work for the design of high
performance Fuzzy Models for Big Data

BlG |
DATA Outline

A gentle introduction to Big Data

Big data tecnologies

Big Data analytics

Fuzzy-based models for Big Data Learning
Evolutionary models for Big Data Preprocessing

A case of study: the ECBDL'14 competitic

Final Comments IG
DATA

Data Preprocessing for Big Data

Data Preprocessing: Tasks to discover quality data prior to

use knowledge extraction algorithms.

Processed —
data
YN \
N
data
N Preprocessing

Selection

Knowledge

_ Patterns
/V

Data Mining

Interpretation
Evaluation

Data Preprocessing

D. Pyle, 1999, pp. 90:

“The fundamental purpose of data
preparation is to manipulate and transform
raw data so that the information content
enfolded in the data set can be exposed, or
made more easily accesible.”

Dorian Pyle

Data Preparation for Data
Mining Morgan Kaufmann
Publishers, 1999

Data Preprocessing

S. Garcia, J. Luengo, F. Herrera, 2015, Preface vii:

“Data preprocessing is an often neglected
but major step in the data mining process.”

T S. Garcia, J. Luengo, F. Herrera
Data Data Preprocessing in Data Mining

Preprocessing

in Data Springer, January 2015

Mining
Website:

http://sci2s.ugr.es/books/data-preprocessing

Data Preprocessing

S. Garcia, J. Luengo, F. Herrera, 2015, Preface viii:

There are many advantages that data preprocessing provides:

I. To adapt and particularize the data for each data mining
algorithm.

II. To increase the effectiveness and accuracy in predictive tasks.

III. To reduce the amount of data required for a suitable learning
task, also decreasing its time-complexity.

IV. To make possible the impossible with raw data, allowing data
mining algorithms to be applied over high volumes of data.

V. To support to the understanding of the data.

VI. Useful for various tasks, such as classification, regression and
unsupervised learning...

Salvador Gafffa
Julidn Luengh
ranciseo Haers

Data

Preprocessing
in Data
Mining

Data Preprocessing

Effort (%)

60

50

40

30

20

10

Data preprocessing spends
a very important part of the
total time in a data mining
process.

Objectives Data Data Interpretation &
Determination Preparation Mining Evaluation

BlG |
DATA Outline

A gentle introduction to Big Data

Big data tecnologies
Big Data analytics
Fuzzy-based models for Big Data Learning
Evolutionary models for Big Data Preprocessing
Feature Selection
Instance Reduction
Undersampling for Imbalanced problems

A case of study: the ECBDL'14 competition

Final Comments

EEE WCCI 2016
ar LI g Canada

BIG

DATA

Feature Selection

The problem of Feature Subset Selection (FSS)
consists of finding a subset of the
attributes/features/variables of the data set that
optimizes the probability of success in the

subsequent data mining taks.

Feature Selection

1

0
0

1

1

0

1

Var. 13

1

00

1

00

1

001010

1

1

1

0

1

0/(0(0|O0

00

1
1

1
1

0

1
1

1

00

1

1
1

L{ Var. 5

1

00

1

1

1

0/0]0

2134 (5|6|7|8|910{1112{13[{14|15|16

0

1

1

0/0[{0]0|0]0O|J0O0]|O0

0(0(0]0

0

Var. 1.

A
B

Feature Selection

The problem of Feature Subset Selection (FSS) consists of
finding a subset of the attributes/features/variables of the
data set that optimizes the probability of success in the
subsequent data mining taks.

Why is feature selection necessary?

m More attributes do not mean more success in the data
mining process.

m Working with less attributes reduces the complexity of the
problem and the running time.

m With less attributes, the generalization capability increases.

m The values for certain attributes may be difficult and costly
to obtain.

Feature Selection

¥ The outcome of FS would be:
* Less data - algorithms could learn quicker
“* Higher accuracy - the algorithm generalizes better

% Simpler results > easier to understand them

¥ FS has as extension the extraction and construction
of attributes.

Big Data Preprocessing: MR-EFS

Evolutionary Feature Selection for Big Data Classification: A
MapReduce Approach

D. Peralta, S. del Rio, S. Ramirez-Gallego, I. Triguero, J.M. Benitez, F. Herrera.
Evolutionary Feature Selection for Big Data Classification: A MapReduce
Approach. Mathematical Problems in Engineering, Vol. 2015, Article ID 246139, 11
pages, 2015, doi: 10.1155/2015/246139

D. Peralta

Big Data Preprocessing: MR-EFS

Evolutionary Feature Selection (EFS)

Each individual represents a set of selected features (binary
vector).

The individuals are crossed and mutated to generate new
candidate sets of features.

Fitness function:

Classification performance in the training dataset using only
the features in the corresponding set.

Big Data Preprocessing: MR-EFS

Evolutlonary Algorithm: CHC

~ Parents Oﬁspnng New population

]

| HUX

. HUX

N s

S incest
S reventlon

S:S

N
| W(Ifnooffsprlng is generated |

Restart populat|on

Yes

dO’?

Select best

D%DDDD

T

d < d-1

L. J. Eshelman, The CHC adaptative search algorithm: How to have safe search
when engaging in nontraditional genetic recombination, in: G. J. E. Rawlins (Ed.),
Foundations of Genetic Algorithms, 1991, pp. 265--283.

Big Data Preprocessing: MR-EFS

Parallelizing FS with MapReduce

Map phase
Each map task uses a subset of the training data.
It applies an EFS algorithm (CHC) over the subset.
A k-NN classifier is used for the evaluation of the population.
Output (best individual):
Binary vector, indicating which features are selected.

Reduce phase
One reducer.
It sums the binary vectors obtained from all the map tasks.
The output is a vector of integers.
Each element is a weight for the corresponding feature.

Big Data Preprocessing: MR-EFS

MapReduce EFS process

Initial Map

-

—

Original train dataset K‘

Mappers train set

H

TIRT,
T

Reduce

Final

H

AR

Tl

H

TR
Tt

— | 1320...

= 0100..

The vector of
weights is
binarized with a
threshold

Big Data Preprocessing: MR-EFS

Dataset reduction

Initial Map Final
8 No reduce
/ phase

' - Reduced dataset
Original train/test *
dataset 0

=]
-
i
=

h 4
v/
VS

L 4

=}
=
(=1
=

v
(/777
77777

L 4

;

7777,
77777 |-
L 4

>

Mappers train/test set

The maps
remove the
" discarded

_J features

Big Data Preprocessing: MR-EFS

Experimental Study: EFS scalability in MapReduce

Table 3: Execution times (in seconds) over the epsilon subsets

Instances Sequential CHC MR-EFS Splits
1000 391 419 1
2000 1352 409 2
5000 8667 413 5

10 000 39 576 431 10
15 000 91 272 445 15
20000 159 315 455 20
400 000 — 6531 512

Time (seconds)

100000 150000

50000

_|—e— Sequential CHC

-0- MR-EFS
..... - MR-EFS (full dataset)

0 5000 10000 15000 20000

Number of instances

CHC is quadratic w.r.t. the number of instances
Splitting the dataset yields nearly quadratic

acceleration

Big Data Preprocessing: MR-EFS

Experimental Study: Classification

Two datasets Three classifiers in Spark
epsilon SVM
ECBDL14, after applying Logistic Regression
Random Oversampling Naive Bayes
The reduction rate is Performance measures
controlled with the weight AUC = w
threshold . .
Training runtime
Dataset Training instances Test instances Features Splits Instances per split
epsilon 400 000 100 000 2000 512 ~T80
ECBDLI14 31992921 2897917 631 - -

ECBDL14-ROS 65 003 913 2897917 631 32768 ~1984

Big Data Preprocessing: MR-EFS

Experimental Study: results

Table 4: AUC results for the Spark classifiers using epsilon

Logistic Regression Naive Bayes SVM (1= 0.0 SYM (1=10.3)
Threshold Features | Training Test | Training Test | Training Test | Training Test
0.00 2000 0.6786 0.6784 0.7038 0.7008 0.6440 0.6433 0.6440 0.6433
0.55 121 0.6985 0.7000 0.7154 0.7127 0.6855 0.6863 0.6855 0.6865
0.60 337 0.6873 (.6867 0.7054 0.7030 0.6805 0.6799 0.6805 0.6799
0.65 110 0.6496 0.6497 0.6803 0.6794 0.6492 0.6493 0.6492 0.6493
0.70 - Classifier
-@- LogisticRegression
NaiveBayes
@ SVM-0.0
§ 0.68 @ SVM-05
Set
@ Training
0.66 - A Test

0.64 -

1
500

1 1
1000 1500
Features

1
2000

Big Data Preprocessing: MR-EFS

Experimental Study: Feature selection scalability

[
= _|—=— Sequential CHC
7 |-o- MR-EFS
T - MR-EFS (full dataset)
=
[
= =
S 3
(_’:. b
&
g o
= 2 4
-
L
_
I | I I I

0 5000 10000 15000 20000

Number of instances

Figure 5: Execution times of the sequential CHC and MR-EFES.

Big Data Preprocessing: MR-EFS

EFS for Big Data: Final Comments

The splitting of CHC provides several advantages:
It enables tackling Big Data problems
The speedup of the map phase is nearly quadratic
The feature weight vector is more flexible than a binary vector

The data reduction process in MapReduce provides a scalable
and flexible way to apply the feature selection

Both the accuracy and the runtime of the classification were
improved after the preprocessing.

o https://github.com/triguero/MR-EFS

BlG |
DATA Outline

A gentle introduction to Big Data

Big data tecnologies
Big Data analytics
Fuzzy-based models for Big Data Learning
Evolutionary models for Big Data Preprocessing
Feature Selection
Instance Reduction
Undersampling for Imbalanced problems

A case of study: the ECBDL'14 competition

Final Comments

EEE WCCI 2016
ar LI g Canada

BIG

DATA

Instance Reduction

Instance Reduction methods aim to
reduce the number of training samples
to find better and smoother decision
boundaries between classes, by
selecting relevant training samples or
artificially generating new ones.

Advantages:

v" Reduce Storage Requirements
v" Remove noisy samples
v Speed up learning process

Big Data Preprocessing: MRPR

Prototype Generation: properties

The NN classifier is one of the most used algorithms in machine
learning.

Prototype Generation (PG) processes learn new representative
examples if needed. It results in more accurate results.

Advantages:

PG reduces the computational costs and high storage
requirements of NN.

Evolutionary PG algorithms highlighted as the best
performing approaches.
Main issues:

Dealing with big data becomes impractical in terms of

Runtime and Memory consumption. Especially for
Evolutionary PG models.

Big Data Preprocessing: MRPR

Evolutionary Prototype Generation

Evolutionary PG algorithms are typically based on adjustment of
the positioning of the prototypes.

Each individual encodes a single prototype or a complete
generated set with real codification.

The fitness function is computed as the classification performance
in the training set using the Generated Set.

Currently, best performing approaches use differential evolution.

I. Triguero, S. Garcia, F. Herrera, IPADE: Iterative Prototype Adjustment for Nearest
Neighbor Classification. IEEE Transactions on Neural Networks 21 (12) (2010) 1984-1990

. . . . Proto{%:e Sglection
More information about Prototype Reduction can be found in O dize
the SCI2S thematic website: http://sci2s.ugr.es/pr AR

l. Triguero

Big Data Preprocessing:MRPR

MRPR: A Combined MapReduce-Windowing Two-Level Parallel
Scheme for Evolutionary Prototype Generation

I. Triguero, D. Peralta, J. Bacardit, S.Garcia, F. Herrera. A Combined MapReduce-
Windowing Two-Level Parallel Scheme for Evolutionary Prototype Generation.
Evolutionary Computation (CEC), 2014 IEEE Congress on, 3036-3043

l. Triguero

Big Data Preprocessing: MRPR

Parallelizing PG with MapReduce

Map phase:
Each map constitutes a subset of the original training data.
It applies a Prototype Generation step.

For evalution, it uses Windowing: Incremental Learning with
Alternating Strata (ILAS)

As output, it returns a Generated Set of prototypes.

Reduce phase:
We established a single reducer.

It consists of an iterative aggregation of all the resulting
generated sets.

As output, it returns the final Generated Set.

Big Data Preprocessing: MRPR

Parallelizing PG with MapReduce

The key of a MapReduce data partitioning approach is usually
on the reduce phase.

Two alternative reducers:
Join: Concatenates all the resulting generated sets.

This process does not guarantee that the final generated set
does not contain irrelevant or even harmful instances

Fusion: This variant eliminates redundant prototypes by fusion of
prototypes. Centroid-based PG methods: ICPL2 (Lam et al).

W. Lam et al, Discovering useful concept prototypes for classification based on filtering and abstraction. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 8, pp. 1075-1090, 2002

Big Data Preprocessing: MRPR

Windowing: Incremental Learning with Alternating Strata (ILAS)

Training set is divided into strata, each iteration just uses one
of the stratum.
0 Ex/n 2-Ex/n

3-Ex/n Ex

Training set

Iterations ﬂlﬂ[l]l]l

0 Iter

Main properties:
v'Avoids a (potentially biased) static prototype selection
v'This mechanism also introduces some generalization pressure

J. Bacardit et al, Speeding-up pittsburgh learning classifier systems: Modeling time and accuracy In
Parallel Problem Solving from Nature - PPSN VIII, ser. LNCS, vol. 3242, 2004, pp. 1021-1031

Big Data Preprocessing: MRPR

The MRW'EPG Scheme Windc?wing_: Incremental

Learning with Alternating Strata
(ILAS)

\\ ¢

< RS, are obtained in random order -_-.'_'.'.::..\ A\
{;'_" dependmg on their computatlon time ""'_'-;_._ —— N

, Windowing |
| ,
I |
/ [W gl
| 0 / \
/ | ‘ Wl [,.f/ \\\ \ |
/o I Jerc | |
TRITC W, Step | -'J o
| R
| ‘ \ B /_/ |
| m
|
|
|
|
|

Reduce RS

@/ method/ ,
E I _Reduce /" Jes! = = = = = — - — = = —
o method.--"’ RS, “ |
o ' - ReduceMethod :
o ~ [RS |
7 ..-'Reduce - T o
~ Current ~ Next
- I — Jom/Fusmn —+ |
|

Big Data Preprocessing: MRPR

Experimental Study

PokerHand data set. 1 million of instances, 3x5 fcv.

Performance measures: Accuracy, reduction rate, runtime,
test classification time and speed up.

PG technique tested: IPADECS.

TABLE I: Parameter specification for all the methods

Algorithm Parameters
MRW-EPW Mappers = 16/32/64/128, Reducers= 1
Windows = [1-7], ReduceType = Join/Fusion.

IPADECS PopulationSize = 10, iterations of Basic DE = 500
iterSFGSS =8, iterSFHC=20, FI=0.1, Fu=0.9
ICLP2 (Fusion) | Filtering method = RT2

NN Number of neighbors = 1, Euclidean distance.

l. Triguero

Big Data Preprocessing: MRPR

ReS u |tS PokerHand
15000 -
10000 -
©w
Q
E
c
o]
o
5000 -
)
Sl
ooh
® M0
0 -
1 1 1 1 1 | 1 1
0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49

o A
uo; “aa
: A A
AT A
:‘
! |
0.50 0.51

Accuracy test

ReduceType
@ Join
A \terativeFusion

Mappers
© 16
® 32
® 64
128

PokerHand: Accuracy Test vs. Runtime results obtained by MRW-EPG

l. Triguero

Big Data Preprocessing: MRPR

Results

TABLE III: Results obtained incorporating the windowing scheme with MRW-EPG and fusion reducer.

#Windows nw | #Mappers Training Test Runtime Reduction rate || Classification

Avg. | Std | Avg | Std Avg. | Std. Avg. | Std. time (T'S)
1 16 0.5121 | 0.0028 || 0.5120 | 0.0031 | 15058.4740 | 1824.6586 || 99.9863 | 0.0007 26.2472
2 16 0.5115 | 0.0035 || 0.5113 | 0.0036 8813.7134 | 678.1335 || 99.9875 | 0.0007 23.8804
3 16 0.5038 | 0.0032 || 0.5039 | 0.0033 4666.5424 | 412.5351 || 99.9883 | 0.0010 26.5612
4 16 0.5052 | 0.0060 || 0.5055 | 0.0057 4095.8610 | 941.5737 || 99.9890 | 0.0011 25.8442
5 16 0.5041 | 0.0024 || 0.5034 | 0.0022 32440716 | 534.8720 || 99.9899 | 0.0015 25.0526
6 16 0.5031 | 0.0042 || 0.5028 | 0.0041 26394266 | 3603121 || 99.9905 | 0.0011 26.6988
7 16 0.5000 | 0.0067 || 0.4998 | 0.0069 2099.5182 | 339.7356 || 99.9895 | 0.0010 25.8770
1 32 0.5089 | 0.0031 || 0.5086 | 0.0029 6963.5734 | 294.3580 | 99.9772 | 0.0018 28.1252
2 32 0.5084 | 0.0045 || 0.5080 | 0.0041 4092.5484 | 855.7351 || 99.9789 | 0.0016 30.6644
3 32 0.5067 | 0.0025 || 0.5065 | 0.0024 23431542 | 104.7222 || 99.9794 | 0.0012 336744
4 32 0.5012 | 0.0045 || 0.5012 | 0.0039 1639.0032 | 335.6036 || 99.9785 | 0.0015 26.8272
5 32 0.5012 | 0.0045 || 0.5012 | 0.0039 1639.0032 | 335.6036 || 99.9785 | 0.0015 26.8272
6 32 0.4824 | 0.0104 || 0.4820 | 0.0101 1083.1116 | 143.9288 || 99.9768 | 0.0019 35.1896
7 32 0.4838 | 0.0072 || 0.4835 | 0.0065 1129.8838 173.9482 || 99.9757 | 0.0024 35.4692

l. Triguero

Big Data Preprocessing: MRPR

Results: Speed-up

PokerHand (16 mappers)

ReduceType
— Join

= = lterativeFusion

i
2

Nuhber of windc;ﬁvs
l. Triguero

Big Data Preprocessing: MRPR

EPG for Big Data: Final Comments

There is a good synergy between the windowing and
MapReduce approaches. They complement themselves in
the proposed two-level scheme.

Without windowing, evolutionary prototype generation could
not be applied to data sets larger than approximately ten
thousands instances

The application of this model has resulted in a very big
reduction of storage requirements and classification time for
the NN rule.

l. Triguero

Big Data Preprocessing: MRPR

EPG for Big Data: Final Comments

PokerHand
150040 -

10000 -

Reduce Type
— Jiin

- - Filtering
.- Fusion

Awerage runtime {s)

5000 -

-
"5 ' i '
64 128 256 512 1024

Mumiber of mappers

Fig. 6 Average runtime obtained by MRPR. (a)

PokerHand
Complete study: I. Triguero, D. Peralta, J. Bacardit, S. Garcia, F. Herrera. MRPR: A

MapReduce solution for prototype reduction in big data classification.
Neurocomputing 150 (2015) 331-345.

Big Data Preprocessing: MRPR

EPG for Big Data: Final Comments

Complete study: I. Triguero, D. Peralta, J. Bacardit, S. Garcia, F. Herrera.
MRPR: A MapReduce solution for prototype reduction in big data
classification. Neurocomputing 150 (2015) 331-345.

Training data
& g Map |
@ :
5 . 7
g Randomize - Prototype
= _‘,.--"";:'-';::F.'.::::':':;._-'"-i P Re?‘;nnun
Get| Get |Get Get Eft
RS, RS, |[RS, |RS
1 m
L '-.__\ T 7 ety RS
RN B S ol :
RS ane obiaingd in random o R A o A
dl!Fl'!m ng an thasir COMmpuUtanon S
= 1 ‘
o Redie s /| .. ReduceMethod RS ;
n rnT1r|u|J .‘.--""HH\ T 'I ¥
= o Reduce frs | £ ' I
o * method i 5 | RS, : Y .
X Reduce | | f [Reducer type? !
2 method ¥ ’ . |
&"‘ Lh-igj%: | Curment _‘l" Fusion J' | [Mext |
v "oRS F——' Join i—— RS
~ » Filtering ~ '
RS ™ |

https://github.com/triguero/MRPR

BlG |
DATA Outline

A gentle introduction to Big Data

Big data tecnologies
Big Data analytics
Fuzzy-based models for Big Data Learning
Evolutionary models for Big Data Preprocessing
Feature Selection
Instance Reduction
Undersampling for Imbalanced problems

A case of study: the ECBDL'14 competition

Final Comments

EEE WCCI 2016
ar LI g Canada

BIG

DATA

Class imbalance problem

22 1 1
I I I I I I ¥ Majonty (negative) class
3 B Minorty (positive) class
i x ® : |
® X = xxx: 3
= "“ x ey ¥ »
L - 4
x 4 X
161 x X X : &J(’F xnﬁﬂ*‘ X i
x " x ® x . x X
” % ¥ W 5 T TR I
i x x2 o Y WE X x ¥ |
{; w " - * % sdd = X * ,*x
2 e ,f‘?ag! ,’:ﬁﬂu :!‘:f o x
£ ol ¥ w2 i x?‘ xEn x¥F. %N x i
* " o %, ¥x ,‘!u x x a
x ot % ® g’%ml l“ X x
x x * ﬁt . x ﬂ E f xl *
101 - F’ﬁ.-i" i AP * 1
e e e R
x L *® ¢ % 8 !!x x50 x
B b fﬂ!x x X T
® x & - o ®
B - . " -
b
4 1 1 1 1 1 1 1 1
4 B 5 10 12 14 16 18 20 22
Featura 1

FIGURE : An example of an imbalanced data-set

Class imbalance problem

Two main approaches to tackle this
problem:

Data sampling
Undersampling
Oversampling

Hybrid approaches
Algorithmic modifications

V. Lépez et al, An insight into classification with imbalanced data: Empirical results and current trends on
using data intrinsic characteristics, Information Sciences 250 (2013) 113-141

Evolutionary Undersampling

Evolutionary undersampling (EUS) aims to select the best
subset of instances from the original training set.

EUS not only intends to balance the training set, but also
to increase the overall performance on both classes of the
problem.

To do so, a genetic algorithm is used to search for an
optimal subset of instances.

This resulting set can be used by any standard
classification model.

S. Garcia and F. Herrera, “Evolutionary under-sampling for classification with imbalanced
data sets: Proposals and taxonomy”, Evolutionary Computation, 17 (3) (2009). 275-306

Evolutionary Undersampling in the
big data context

The application of EUS in big data problems is interesting
because it does not generate more data, as opposed to
oversampling methods.

However, the increasing number of instances would lead
to obtain an excessive chromosome size that can limit
their application.

The required runtime increases not only with the number
of examples but also with the imbalance ratio (IR).

Imbalanced Big Data

Evolutionary Undersampling for Imbalanced Big Data

I Triguero, M Galar, S Vluymans, C Cornelis, H Bustince, F Herrera, 1. Saeys.
Evolutionary undersampling for imbalanced big data classification.
IEEE Congress onEvolutionary Computation (CEC), 2015, 715-722.

Evolutionary Undersampling

Evolutionary undersampling (EUS) aims to select the best
subset of instances from the original training set.

EUS not only intends to balance the training set, but also
to increase the overall performance on both classes of the
problem.

To do so, a genetic algorithm is used to search for an
optimal subset of instances.

This resulting set can be used by any standard
classification model.

S. Garcia and F. Herrera, “Evolutionary under-sampling for classification with imbalanced
data sets: Proposals and taxonomy”, Evolutionary Computation, 17 (3) (2009). 275-306

Evolutionary Undersampling in the
big data context

The application of EUS in big data problems is
interesting because it does not generate more
data, as opposed to oversampling methods.

However, the increasing number of instances
would lead to obtain an excessive chromosome
size that can limit their application.

The required runtime increases not only with the
number of examples but also with the imbalance
ratio (IR).

W i

| -

Evolutionary undersampling

Representation of the solution

V'= (0 B Ws Viriioos B)y B €40, 1} forall i=1,...,m

Performance: g-mean, 1NN hold-one-out

g-mean = \/ TP - TN
Fitness Function

+

g-mean — ‘1 S -P‘ ifN—>0

fitnesspye =
g-mean — P iEN—==8,

We use the CHC algorithm and GM as performance
measure.

L. J. Eshelman, The CHC adaptive search algorithm: How to have safe search when
engaging in nontraditional genetic recombination, in Foundations of Genetic
Algorithms, G. J. E. Rawlins, Ed. San Francisco, CA: Morgan Kaufmann, 265-283, 1991. :

Windowing: Incremental Learning
with Alternating Strata (ILAS)

Training set is divided into strata, each iteration just

uses one of the stratum.
0 Ex/n 2:Ex/n 3-Ex/n Ex

Iterations ulﬂmm --------------------------------------- ‘ I

0 Iter

Main properties:

v'Avoids a (potentially biased) static prototype selection
v'This mechanism also introduces some generalization pressure

J. Bacardit et al, Speeding-up pittsburgh learning classifier systems: Modeling time and accuracy In
Parallel Problem Solving from Nature - PPSN VIII, ser. LNCS, vol. 3242, 2004, pp. 1021-1031 5

EUS-BD: A two-level
parallelization model for EUS

A two-level parallelization scheme:

The MapReduce phase will allow us to divide
the computational effort over different

machines.
Goal: Memory limitations and runtime.

The windowing scheme will be applied to
reduce the computational time required by

EUS.
Goal: Runtime.

Parallelizing EUS with MapReduce

Map phase:

Each map constitutes a subset of the original
training data.

Then, it applies a EUS step (with/without
windowing).

It builds a model with the corresponding base
classifier (Decision tree).

As output, it returns the built model (a tree).
Reduce phase:
We established a single reducer.

It consists of an iterative aggregation of all the
resulting models.

As output, it returns a set of trees.

Parallelizing EUS with windowing: Motivation

The MapReduce algorithm allows us to use EUS with big
data problems. However, the runtime required for each

mapper can still be too long and highly depending on the
ratio of imbalance.

For this reason, we design a second level parallelization
based on a windowing scheme.

Windowing for Class Imbalance

Disjoint windows with equal class distribution may lead to
information loss of the positive class.

The minority class set will be always used to evaluate a
chromosome.

The majority class set is divided into several disjoint
strata. The size of each subset will correspond to the
number of minority class instances.

It means: Fixed number of strata.

Parallelizing EUS-BD with windowing: Properties

Properties:

Within this scheme, the algorithm disposes of the whole
information although it is accessed in successive iterations.

This model itself aims to improve the runtime requirements
of EUS. But it does not deal with the memory consumption
problem.

This is why we use this strategy as a second level
parallelization scheme after a previous distribution of the
processing in a cluster of computing elements.

The EUS-BD scheme: learning phase

Splitting

| Evolutionary
| undersampling |
| + windowing

Map Phase

Building
a model

Aggregation

e
s
L

Ec
e
LA
[

JEN
)—"}

ec
oL
ec
[

Reduce phase

B 3

L

The EUS-BD scheme: testing phase

Estimating the class for a Big Dataset

Initial Map

Predicted
class

Predicted class
Predicted class
Predicted class

Predicted class
Predicted class
Predicted class
Predicted class

Original
train/test

Predicted class
dataset Predicted class

Predicted class
Predicted class

Mappers train/test . .
set

Final

Predicted class
Predicted class
Predicted class
Predicted class
Predicted class
Predicted class
Predicted class
Predicted class

Predicted class
Predicted class
Predicted class
Predicted class

Experimental Framework

Different versions of the Kdd Cup 1999 data set with more
than 4 million of instances, 3x5 fcv.

Performance measures: AUC, g-mean, building time, and
classification time.

Different number of mappers: 128,256 and 512.

Data set #negalive #positive IR
kddcup DOS vs. normal 3883370 072781 3.99
kddcup DOS vs. PRB 3883370 41102 04 .48
kddcup DOS vs. R2L 3883370 1126 3448.82

kddcup DOS vs. U2ZR 3883370 52 74680.25

Results obtained without using the windowing

mechanism
Data set #Mappers AUC o-mean Building Time Classification Time
kddcup DOS vs. normal 128 0.99962397 0.99962395 0422014 35.8988
256 0.99924212 0.99924194 509.8122 38.4968
512 0.99904700 0.99904674 287.2052 321572
kddcup DOS vs. PRB 128 0.99942820 0.99942822 2525.5332 33.4956
256 0.99808006 0.99807901 2025.4140 41.9696
512 0.99595677 0.99595641 1258.4924 48.9682
kddcup DOS vs. R2L 128 0.99817501 0.99817073 13595.0602 32.0616
256 0.99817501 0.99817073 2720.0972 35.9038
512 0.99817501 0.99817073 1045.7074 46.0528
kddcup DOS vs. U2R 128 0.97429702 0.97393535 124147948 31.2804
256 0.98306267 0.98280252 5850.2702 35.2638
512 0.98365571 0.98339482 1978.1212 46.0796

Results obtained using the windowing

mechanism
Data set Mappers AUC g-mean Building Time Classification Time
kddcup DOS vs. normal 128 0.99986345 0.99986345 845.5972 36.9734
256 0.99979807 0.99979806 419.9624 31.3188
512 099906136 0.99906110 228.9790 52.6386
kddcup DOS vs. PRB 128 0.99941760 0.99941754 422.4786 34.2640
256 099778456 0.99778390 240.4662 36.7934
512 099513122 0.99513099 156.4354 48.4240
kddcup DOS vs. R2L 128 0.99817501 0.99817073 444.7252 31.7255
256 099817501 0.99817073 266.2424 36.1147
512 099817501 0.99817073 178.8536 42.0057
kddcup DOS vs. U2R 128 0.98750466 0.98728379 459.6002 31.8436
256 097617662 0.97583158 248.1038 35.5862
512 097656950 0.97624880 152.3752 46.6194

Building time (s)

Results: Building time comparison

104
r " . —&—normal
_— | —- PRB
| ——R21.
Al . —s—12R
0.75
0.5
0.25 + ﬁ-———————————s:._____ — b
sy T o
128 256 512

#Mappers

Building time against the number of
mappers, without using the windowing
scheme.

Building time (s)

—=5—normal
—-—PRB
. —— R21,
= —=U2R
500 +
250 |

128 956 512
#Mappers

Building time against the number
of mappers, using the windowing
scheme.

Final comments

Good synergy between the windowing and MapReduce
approaches.

It enables EUS to be applied on data sets of almost arbitrary
size.

See my new paper #16712:

|. Triguero et. al. Evolutionary Undersampling for Extremely
Imbalanced Big Data Classification under Apache Spark.

SS CDCI08, Monday at 17:30, Room: 202.

BlG |
DATA Outline

A gentle introduction to Big Data

Big data tecnologies

Big Data analytics

Fuzzy-based models for Big Data Learning
Evolutionary models for Big Data Preprocessing
A case of study: the ECBDL'14 competition

Final Comments

BIG

DATA

ECBDL'14 Big Data Competition
Vancouver, 2014

ECBDL'14 Big Data Competition 2014: Self-deployment track

Objective: Contact map prediction

Details:

a 32 million instances

0 631 attributes (539 real & 92 nominal values)
U 2 classes

0 98% of negative examples

0 About 56.7GB of disk space

Evaluation:

True positive rate - True negative rate
TPR - TNR

http://cruncher.ncl.ac.uk/bdcomp/index.pl?action=data

J. Bacardit et al, Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple
predicted structural features, Bioinformatics 28 (19) (2012) 2441-2448 :

Evolutionary Computation for
Big Data and Big Learning

WorkshoE

ECBDL'14 Big Data Competition 2014: Self-deployment track

The challenge: BMG"’
i “Eﬁmﬁ%.
: o i i R = o B
Q Very large size of the training set B i 1 i | S
O Does not fit all together in memory. nuums STORAGE "
i AT GET ';l".l.H_:: i

O Even large for the test set (5.1GB, 2.9 million instances)
 Relatively high dimensional data.

O Low ratio (<2%) of true contacts. Imbalance rate: > 49
J Imbalanced problem!
= Imbalanced

O Imbalanced Big Data Classification ==B I G

= _DATA

ssification

Imbalanced Big Data Classification

A MapReduce Approach

= Imbalanced

E;E;BIG
“=DATA

sification

32 million instances, 98% of negative examples

Low ratio of true contacts (<2%). Imbalance rate: > 49.

problem!

Imbalanced

Previous study on extremely imbalanced big data:

S. Rio, V. Lopez, J.M. Benitez, F. Herrera, On the use of
MapReduce for Imbalanced Big Data using Random Forest.
Information Sciences 285 (2014) 112-137.

Over-Sampling
Random
Focused

Under-Sampling
Random
Focused

Cost Modifying (cost-sensitive)

Boosting/Bagging approaches (with
preprocessing)

Original O

Undersampling -

Oversampling | ——

ECBDL'14 Big Data Competition

ECBDL 14 Big Data Competition 2014
Our approach:

1. Balance the original training data
1 Random Oversampling
O (As first idea)

2. Learning a model.
1 Random Forest

ECBDL'14 Big Data Competition

We initially focused on

0 Oversampling rate: 100%

RandomForest:

O Number of used features: 10 (log n +1); Number of trees: 100
O Number of maps: {64, 190, 1024, 2048}

TNR*TPR

N2 mappers TPR _tst TNR_tst Test
64 0,601723 | 0,806269 | 0,485151

Very low TPR (relevant!)

ECBDL'14 Big Data Competition

score

0.50

0.498

0,47

0.46

Team = Efdamis = Emeraldiogic = HyperEns = 1COS = LidaGroup = PUC-Rio_1CA = UNSW

Oversampling rate: {100%}
RandomForest

TNR*TPR
=3 TPR TNR Test
. ROS+RF (RS: 100%) | 0.6351f 0.7733] 0.491186

. . How to increase the TPR rate?

L] 1 - . » " -
2l14—-00—19 2014—-05-26 Z20714-06—02 Z2014—-06—0%2 Z20714-068—16 2014—06—23 20140630

Date

ECBDL'14 Big Data Competition

Team = Efdamis = Emeraldiogic = HyperEns = 1COS = LidaGroup = PUC-Rio_1CA = UNSW

What can we do?

TNR*TPR

.50 =

- TPR TNR Test
ROS+RF (RS: 100%)

score

0.49 —

0,498 —

0,47 =

:. - . How to increase the TPR rate?

(] I = . " " -
2014 —-05—1%9 201405 —26 2074-06—02 Z2014—-06—0%9 2014-06—16 2014—06—23 2014—-06—-30
Date

ECBDL'14 Big Data Competition

ECBDL 14 Big Data Competition 2014
Our approach:

1. Balance the original training data
1 Random Oversampling increasing the ROS percentage
O (As first idea, it was extended)

2. Learning a model.
1 Random Forest

ECBDL'14 Big Data Competition

How to increase the TPR rate?
|ldea: To increase the ROS percentaje

O Oversampling rate: {100, 105, 110, 115, 130}

RandomForest:
O Number of used features:10; Number of trees: 100

TNR*TPR

TPR TNR Test
ROS+RF (RS: 100%) | 0.6351] 0.7733| 0.491186
ROS+RF (RS: 105%) | 0.6568| 0.7555| 0.496286|
ROS+RF (RS: 110%) | 0.6759| 0.7337| 0.495941
ROS+RF (RS: 115%) | 0.7041] 0.7103| 0.500175
ROS+RF (RS: 130%) | 0.7472| 0.6609] 0.493913

The higher ROS percentage, the higher TPR and the lower TNR

ECBDL'14 Big Data Competition

score

0.54

.51

0.49

0.48

0.47

0.46

Efdamis = EmeraldLogic = HyperEns = (1COS

Team =
£ -
-
e
-
- L3 L
-
& @
'l....
-
- -

2014—-05—19

i
2071 4—0D5—26

[-]
sl - -
-

- Ll

- -
-
=

2074 —-06—02

201 4—0D6—09
Date

= LidiaGroup = PUC-Rilo_ICA = LUNSW

201494-06—16 2014—06—23

2014—06—30

ECBDL'14 Big Data Competition

score

Q.

Q

0.5

8

Q

54

51

49

48

47

4G

Team = Efdamis = Emeraldiogic = HyperEns = 1COS = LidaGroup = PUC-Rio_1CA = UNSW

2014—-05—19

L] -
-
e
-
-
L=
=
L]

1
201 4—05 -2

-
. ° -
-

- £l
- -
-

L 3

20 T4—06—02

20143 —.I Yo —0%9
Date

What can we do?

2014-06—16 2014—-06—23

2014—06—30

ECBDL'14 Big Data Competition

How to increase the performance?

Third component: MapReduce Approach for Feature Weighting
for getting a major performance over classes

e R —— | ______
Training data] ! |
% I g g __ | | Mapj
|
g s | !
= —
% - fﬁ_-ﬁ; - | DEFW :
= Get Get Get Get | Step |
Weights | Weights | Weights, | = | Weights | | |
N
|

B

A}
Al
— We qr'tq are obtai neﬂ in randorm arder _.J.,; \| E@E DDE

‘Ef_—' dcpendlng nnthmrcomputannn t|me _J —— _— = = — —

~

,R—‘—Waghts - ; 5:
@/ educe /'~ i ReduceMethod
w0/ mEEhﬂd) W-Elghiﬁ i - - - - - — = = — —
E Reduce / ! / | Current Weights, Next |
o mcthud— y W""J.htsu | Weights Weights |
2 “Reduc:e / m E' |
3 7 method/ Y | W]
-1} /Reduce / ; |
14 7 method/ | W] - |
|
|
|

¥
R L i

Final WE|gh[S | Initially all 0's

ECBDL'14 Big Data Competition

|———— — -
E Training data j / ,
. / Map J \

I
|
|
|

p phase

[|
= Get Get Get Get DSEtI;f
Weights_ ‘Weights eights Weights
SO\ N
—C Weights are nhtwned n mnl:h:-m order o >y \ E E

.;‘_'_ — depﬂnl:llng on their c:urr'pl.rtﬂnm tme "_'_;. U

ECBDL'14 Big Data Competition

_ T, A A _f
T Wieghts are obtared in andom oder >y
o depending on their computation time —

Redua= weights;”
frecuce /- ReduceMethod

method’ A Weights —— - - - - — = - = = —
= ‘Reduce | Current Wejghm; |"-.|I_E."}l.'t |
o / method’ r Weights / | Weights Weights |
3 [y edce/ -/ W W, W)
3 [method’ ¥ W] W,)
.- = .
Q /Reduce
& L O | W] m=p e

| N

ECBDL'14 Big Data Competition

ECBDL 14 Big Data Competition 2014
Our approach:

1. Balance the original training data
1 Random Oversampling increasing the ROS percentage
O (As first idea, it was extended)

2. Learning a model.
1 Random Forest

3. Detect relevant features.
1. Evolutionary Feature Weighting

Classifying test set.

ECBDL'14 Big Data Competition

Evolutionary Feature Weighting.
It allows us to construct several subset of features (changing
the threshold).

TNR*TPR TNR*TPR

Training TPR TNR

ROS+RF (130% - Feature Weighting 63)[0.726350| 0.66949/0.775652) 0.519292

ROS+RF (115% - Feature Weighting 63)| 0.736596 0.652692/0.790822| 0.516163]

ROS+RF (100% - Feature Weighting 63)[0.752824) 0.626190/0.811176 0.507950|

ECBDL'14 Big Data Competition

Team = Efdamis = Emeraldiogic = HyperEns = |COS = LidiaGroup = PUC-Rilo_ICA =

o ROS (130) + Evolutionary Feature Weighting
Q.52 - = ;
£) - e == : - @ .‘ :
0 050 =C = I - o~ :
8 = Tl I = S
* 0.49 - - e - =SS
0.48 — - — . "
0.47 — E -) - = -
0.46 — * g . - _ B ". S Sy)
045 — i =

I "
2014 —-05—1%9 201405 —-—26 Z2074-06—02 Z2014—-06—0%9 2014-06—16 2014—06—23 201
Date

rsw

G —06—30

ECBDL'14 Big Data Competition

We decided to investigate:

a) On the Random Forest: the influence of the Random Forest’'s parameters
(internal features and number of trees)
b) Higher number of features (90) and ROS with 140%

TNR*TPR TNR*TPR

Training Test

ROS+ RF (130%+ FW 63+6f+100t)

ROS+ RF (130%+ FW 63+6f+200t) 0.632078 0.700064 0.745225 0.521705)
ROS+ RF (140%+ FW 63+15f+200t) 0.627409 0.719678 0.728912 0.524582
ROS+ RF (140%+ FW 90+15f+200t) 0.635855 0.722639 0.726397 0.524923
ROS+ RF (140%+ FW 90+25f+200t) 0.629273] 0.721652 0.729740 0.526618

Correct decisions with FW 90 and RF with 25f and 200 trees.
Good trade off between TPR and TNR

ECBDL'14 Big Data Competition

The less number of maps, the less TPR and the high TNR

190 mappers
TNR*TPR TNR*TPR

Algorithms Training TPR TNR Test
ROS+ RF (140%+ FW 90+25f+200t) 0.629273] 0.721652/0.72974(

64 mappers and we got 0.53

TNR*TPR TNR*TPR

Algorithms Training TPR TNR Test
ROS+ RF (130%+ FW 90+25f+200t)| 0.736987] 0.6712790.783911] 0.
ROS+ RF (140%+ FW 90+25f+200t)| 0.717048 0.6951090.763951| 0.531029)

ROS 130 - 65 (140 — 68) replications of the minority instances

4 days to finish the competion:

Can we take decisions for improving the model?

ECBDL'14 Big Data Competition

Last decision: We investigated to increase ROS until 180% with
64 mappers

64 mappers

TNR*TPR TNR*TPR

Training Test
ROS+ RF (130%+ FW 90+25f+200t) 0.736987 0.671279 0.783911 0.52622
ROS+ RF (140%+ FW 90+25f+200t) 0.717048 0.695109 0.763951 0.531029
ROS+ RF (150%+ FW 90+25f+200t) 0.706934 0.705882 0.753625 0.531971
ROS+ RF (160%+ FW 90+25f+200t) 0,698769 0.718692 0.741976 0.533252|
ROS+ RF (170%+ FW 90+25f+200t) 0.682910 0.730432| 0.730183 0.533349
ROS+ RF (180%+ FW 90+25f+200t) 0,678986 0.737381 0.722583 0.532819

To increase ROS and reduce the mappers number lead us to get a trade-
off with good results

ROS 170 — 85 replications of the minority instances

ECBDL'14 Big Data Competition

0.7700

0.7600 -

0.7500 ™

0.7400 =

0.7300 a—

TPR & TNR

0.7200

0.7100

0.7000

0.6900 - - - -
ROS (140%) ROS (150%) ROS (160%) ROS {170%) ROS (180%)

TPR == == TNR

Figure 8: TPR. vs. TNE, varying the ROS percentage

ROS 170 — 85 replications of the minority instances
Experiments with 64 maps

ECBDL'14 Big Data Competition

Evolutionary Computation for Big Data and
Big Learning Workshop

Results of the competition: Contact map prediction

TPR -
Team Name TPR TNR Acc TNR
Efdamis 0.730432 0.730183 0.730188 0.533349
ICOS 0.703210 0.730155 0.729703 0.513452
UNSW 0.699159 0.727631 0.727153 0.508730
HyperEns 0.640027 0.763378 0.761308 0.488583

PUC-Rio_ICA 0.657092 0.714599 0.713634 0.469558

EFDAMIS team ranked first in the ECBDL’14 big data competition
http://cruncher.ncl.ac.uk/bdcomp/index.pl?action=ranking

ECBDL'14 Big Data Competition

D —————————

ECBDL’14: Evolutionary Computation for
Big Data and Big Learning Workshop
July 13th, 2014
GECCO0O-2014, Vancouver, Canada

This is to certify that team EFDAMIS, formed
by Isaac Triguero, Sara del Rio, Victoria
Lépez, José Manuel Benitez and Francisco
Herrera, ranked first in the ECBDL'14 big data

competition

Ir‘“

L

Jaume Bacardit, organizer
ECBDL'14 big data competition

ECBDL'14 Big Data Competition

Final comments

Team Name

Efdamis

ICOS

UNSW
HyperEns
PUC-Rio_ICA
EmeraldLogic

LidiaGroup

Learning strategy

Oversampling+EFW+Random
Forest

Oversampling+Ensemble of
Rule sets

Ensemble of Deep Learning
classifiers

SVM
Linear GP
~Linear GP
1-layer NN

Computational
Infrastructure

MapReduce

Batch HPC

Parallel HPC
Parallel HPC
GPUs
GPUs
Spark

ECBDL'14 Big Data Competition

At the beginning ROS+RF (RS: 100%)

TNR*TPR

N2 mappers TPR_tst TNR_tst Test

64 0,601723 | 0,806269 | 0,485151

At the end 64 mappers

TNR*TPR TNR*TPR
Training

ROS+ RF (160%+ FW 90+25f+200t)

ROS+ RF (170%+ FW 90+25f+200t)] 0.682910 0.730432|0. 730183| 0.533349

ROS+ RF (180%+ FW 90+25f+200t) 0,678986 0.737381{0.722583 0.532819

Preprocess

Quality models based on quality data!

ECBDL'14 Big Data Competition
Our algorithm: ROSEFW-RF

MapReduce
Problem
Process
y
Random Oversampling Feature
Weighting
Ite rative Increasing the +
Oversampling Rates to
Ma Reduce increment the True Random Forest Feature Selection Threshold
p Positive Rate (increasing the ﬁ
Process 'y diversity)
Analysis of the
True Positive Relevant
Low True Positive Rate and True Features

Negative Rates

Final Results

https://github.com/triguero/ROSEFW-RF

I. Triguero, S. del Rio, V. Lépez, J. Bacardit, J.M. Benitez, F. Herrera.
ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An
extremely imbalanced big data bioinformatics problem. Knowledge-Based Systems,

Volume 87, October 2015, Pages 69-79

BlG |
DATA Outline

A gentle introduction to Big Data

Big data tecnologies

Big Data analytics

Fuzzy-based models for Big Data Learning
Evolutionary models for Big Data Preprocessing
A case of study: the ECBDL'14 competition

Final Comments

BIG

DATA

| BIG:: .
Final Comments DATA:"

Preprocess

Data Mining, Machine learning and data preprocessing:
Huge collection of algorithms

Big Data Analytics

Big Data: A small subset of algorithms

BIG Big Data Preprocessing:
A few methods for preprocessing in
Big Data analytics.

Preprocess

Final Comments

Where we are going: 3 Big Data stages
http://www.kdnuggets.com/2013/12/3-stages-big-data.html Enuggets“‘

By Gregory Piatetsky, Dec 8, 2013.
Big Data 3.0: Intelligent

Google Now, Watson (IBM) ...

Big Data 3.0 would be a
combination of data, with huge
knowledge bases and a very
large collection of iy,
algorithms, 4 '“’ g &
perhaps reachlng\’;@i.q'i ‘J : .-*
the level of true b ‘
Artificial Intelligence X
(Singularity?). |

Transactional

Big Data 2.0:
Networked

Big Data 3.0:
Intelligent

MWD 4
S Gl

10
P,

|IEEE WoRLD CONGRESS ON

COMPUTATIONAL INTELLIGENCE
EEE WCCI 2016 24-29 JULY 2016, VANCOUVER, CANADA

Computational Intelligence
Approaches for Big Data

Francisco Herrera Isaac Triguero
Soft Computing and School of Computer Science
Information Intelligent Systems (SCI2S) University of Nottingham
University of Granada, Spain United Kingdom
Email: herrera@decsai.ugr.es Email: Isaac.Triguero@nottingham.ac.uk
http://sci2s.ugr.es

r The Uni:rersitgof
&' | Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

Big Data at SCI4S - UGR

http://sci2s.ugr.es/BigData

SCIZ2S website

Home » Thematic Sites » Big Data: Algorithms for Data Preprocessing, Computational Intelligence, and Imbalanced Classes

Big Data: Algorithms for Data Preprocessing, Computational Intelligence, and
Imbalanced Classes

The web is organized according to the following summary: B I G podl
[N N NN

. , e
1. Introduction to Big Data DATA *ag ,
2. Big Data Technologies: Hadoop ecosystem and Spark = |mbalanced]
3. Big Data preprocessing o Preprocess
4. Imbalanced Big Data classification o I
s. Big Data classification with fuzzy models T o
6. Big Data Applications . DATA j‘g B I G
7. Dataset Repository —===Classification ==
8. Literature review: surveys and overviews DATA
9. Keynote slides with Fuzzy Models
10. Links of interest

This Wehbsite contains SCI°S research material on algorithms for data preprocessing, computational intelligence and classification with
imbalanced datasets in the scenario of Big Data. All information shown here is related to the following SCI%S review and papers:

