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Description: A new specification language, named Fuzzy Markup
Language (FML), is presented in this standard, exploiting the

benefits offered by eXtensible Markup Language (XML) specifications
and related tools in order to model a fuzzy logic system in a human-

readable and hardware independent way. Therefore, designers of

industrial fuzzy systems are provided with a unified and high-level
methodology for describing interoperable fuzzy systems. The W3C
XML Schema definition language is used by this standard to define
the syntax and semantics of the FML programs.
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The Computational Intelligence of MoGo Revealed

in Taiwan’s Computer Go Tournaments

Chang-Shing Lee, Senior Member, IEEE, Mei-Hui Wang, Guillaume Chaslot, Jean-Baptiste Hoock,
Arpad Rimmel, Olivier Teytaud, Shang-Rong Tsai, Shun-Chin Hsu, and Tzung-Pei Hong, Member, IEEE

Abstract—In order to promote computer Go and stimulate fur-
ther development and research in the field, the event activities,
Computational Intelligence Forum and World 9 x 9 Computer Go
Championship, were held in Taiwan. This study focuses on the in-
vited games played in the tournament Taiwanese Go Players Versus
the Computer Program MoGo held at the National University of
Tainan (NUTN), Tainan, Taiwan. Several Taiwanese Go players,
including one 9-Dan (9D} professional Go player and eight am-
ateur Go plavers, were invited by NUTN to play against MoGo
from Augzust 26 to October 4, 2008, The MoGo program combines
all-moves-as-first (AMAF)/rapid action value estimation (RAVE)
values, online “upper confidence tree (UCT)-like™ values, offline
values extracted from databases, and expert rules. Additionally,
four properties of MoGo are analyzed including: 1) the weakness
in corners, 2) the scaling over time, 3) the behavior in handicap
games, and 4) the main strength of MoGo in contact fights. The
results reveal that MoGo can reach the level of 3 Dan (3D) with:
1) good skills for fights, 2) weaknesses in corners, in particular, for
“semeai” situations, and 3) weaknesses in favorable situations such
as handicap games. It is hoped that the advances in Al and com-
putational power will enable considerable progress in the field of
computer Go, with the aim of achieving the same levels as com-
puter Chess or Chinese Chess in the future.

Index Terms—Computational intelligence, computer Go, game,
MuoGo, Monte Carlo tree search (MCTS).

. INTRODUCTION

ence research; however, Monte Carlo methods have very re-
cently shown significant promise, especially for small versions
of the game such as 9 x O games. Therefore, the upper confi-
dence tree (UCT) Monte Carlo has considerable potential for ap-
plication to other games such as Hex, Amazons, and even Shogi
[2]. [39]. Schaeffer and Herik [38], [39] noted that work on com-
puter games has resulted in advances in numerous computing
areas. Many ideas that developed through game-tree search have
been applied to other algorithms. For example, the UCT Monte
Carlo algorithm may have important applications to control non-
player characters (NPCs) in video games such as Quake [1],
[2]. Moreover, many studies have applied Al and evolutionary
computation to games. For instance. Chellapilla and Fogel [3].
[4] developed an expert program that plays Checkers without
using human expertise or expert knowledge. Messerschmidt and
Engelbrecht [3] developed a competitive learning approach to
playing games. Werf et al. [6] presented a search-based ap-
proach for playing Go on small boards. Bouzy and Cazenave
[7] presented an Al-oriented survey of computer Go. Togelus
ef al. [8] applied computational intelligence to racing games.
Chen [9] proposed a strategy that maximizes the chance of win-
ning when searching Go game trees. Cutumisu er al. [41] ad-
vocated the development of adaptive programming as an alter-
native to current constructive programming techniques, as '-\ie l
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Intelligent
Agents for the
Game of Go

I. Introduction shows the strengths and limitations of
onte-Carlo Trece Scarch MCTS, and in particular, the ck of

(MCTS) was recently Abstract Monte—Carlo_ Tree leaming. There are, however, a2 fow

propased |1, 2, 3] for Search (MOCTS) is a very efficient recent known tcchniques for introduc-

2 C - technology for games and planning, partcular— - ¢ £ 3
decision taking in . : : 3 ing lecarning: Rapid-Action
3 z iy in the hagh=dimensional case, when the number DI % g

discrete time cantrol problerres. of time steps is moderate and when there 5 no nas Value Estimate (RAVE) and
It was applicd wery cfficiendy ural evaluation function. Surprisngly, MCTS makes learnt patterns (both well-
to games [4. 5, 6. 7. 8] but also wvery little use of learming. In this paper. we present ‘ known now, and discussed
h (: logies, Bernstein races, Conm below): our focus is on more

to plannming problemns and fan- four t g b5
. 1 artificial intclls - textual Monte=Carlo and poolRave) for learning
ene agents in Monte—Carlo Tree Scarch, and
tasks [9, 10} It clearly outper- experiment them in difficult games and
formed alpha-beta techniques - i
when there was no human expertisc will show these less standard applica-
casy to cncode m a valuc function. In thas tons of supervised kcarning within MOCTS:
section, we will describe MCOCTS and how it Sccton 1 will show how to usc pat games for
allowed grecat improvements for computer Go. Scction 11 improving future games, and sectson IV will show the incla-
stion of lkearning inside 2 sgpven MCOCTS run. Sccson Vo will be
INpeal Gyt [t 10.1 105/ 08CT 2010 938360 the conduson.

recent and less widely-known
lcarning techniques introduced
in MCTS. The next two scctions
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Special Issue on Monte Carlo Techniques
and Computer Go

HE technique of Monte Carlo tree search (MCTS) has
T revolutionized the field of computer game playing, and 1s
starting to have an impact in other search and optimization do-
mains as well. In past decades, the dominant paradigm in game
algorithms was alpha—beta search. This technique, with many
refinements and game-specific engineering, led to breakthrough
performances in classic board games such as Chess, Checkers,
and Othello. After Deep Blue's famous victory over Kasparov
i 1996, some of the research focus shifted to games where
alpha—beta search was not sufficient. Most prominent among
these games was the ancient Asian game of Go. Despite much
effort, progress remained slow for another decade. During the
last few years, the use of MCTS techniques in Computer Go has
really taken off, but the groundwork was laid much earlier. In
1990, Abramson [1] proposed to model the expected outcome
of a game by averaging the results of many random games. In
1993, Briigmann [2] proposed Monte Carlo techniques for Gao
using almost random games, and developed the refinement he
termed all-moves-as-first (AMAF). Ten years later, a group of
French researchers working with Bouzy and Cazenave took up
the idea [3]. Bouzy’s Indigo program used Monte Carlo simu-
lation to decide between the top moves proposed by a classical
knowledge-based Geo engine.

Coulom’s Crazy Stone [4] was the first to add the crucial
second element, a selective game tree search controlled by the
results of the simulations. The last piece of the puzzle was the
upper confidence tree (UCT) algorithm of Kocsis and Szepes-
vari [5]. which applied ideas from the theory of multiarmed
bandits to the problem of how to selectively grow a game tree.

fessional 5th Dan Guo Juan. Crazy Stone demonstrated almost
perfect play. In 2009, a series of matches held on a9 x 9 board,
culminated in program wins playing as both white (the easier
color) with Fuego and black with MoGo/MoGoTW against the
top level professional Ge player Chun-Hsun Chou. In 2010,
MoGo and Many Faces of Go achieved wins against strong am-
ateur players on 13 x 13 with only two handicap stones. On the
full 19 x 19 board, programs have racked up a number of wins
(but still a lot more losses) on six and seven handicap stones
against top professional Ge players [8], [9].

Besides rapid progress in Go, the most exciting recent devel-
opments in MCTS have shown an ever increasing array of ap-
plications. In games such as Hex, Havannah, and Lines of Ac-
tion, MCTS is the state of the art. MCTS can play very well
even with little knowledge about the game as evidenced by its
success in general game playing. In areas as diverse as energy
optimization problems, tuning of libraries, domain-independent
planning, and solving Markov decision processes (MDPs), tech-
niques inspired by MCTS are rapidly being developed and ap-
plied. However, current MCTS technigques do not work well for
all games or all search problems. This poses some interesting
questions. When and why does it succeed and fail? How can
it be extended to new applications where it does not work yet?
How best may it be combined with other approaches such as
classical mimmax search and knowledge-based methods?

The purpose of this Special Issue on Monte Carlo Techniques
and Computer Go 15 to publish high-quality papers reporting
the latest research covering the theory and practice of these
and other methods applied to Go and other games. {The spegial
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T2FS-Based Adaptive Linguistic Assessment System

for Semantic Analysis and Human Performance

Evaluation on Game of Go

Chang-Shing Lee, Senior Member, IEEE, Mei-Hui Wang, Meng-Jhen Wu, Member, IEEE, Olivier Teytaud,
and Shi-Jim Yen, Senior Member, IEEE

Abstract—The game of Go is a board game with a long history
that is much more complex than chess. The uncertainties of this
game will be higher when the board size gets bigger. For eval-
wating the human performance on Go games, one human could
be advanced to a higher rank based on the number of winning
games via a formal human against human competition. However,
a human Go player's performance could be influenced by factors
such as the on-the-spot environment, as well as physical and men-
tal situations of the day, which causes difficulty and uncertainty in
certificating the human’s rank. Thanks to a sample of one player’s
eames, evaluating his/her strength by classical models such as the
Bradley-Terry model is possible. However, due to inhomogeneous
came conditions and limited access to archives of games, such es-
timates can be imprecise. In addition, classical rankings (1 Dan, 2
Dan, . . .) are integers, which lead to a rather imprecise estimate of
the opponent’s strengths. Therefore, we propose to use a sample of
cames played against a computer to estimate the human’s strength.
In order to increase the precision, the strength of the computer is
adapted from one move to the next by increasing or decreasing
the computational power based on the current situation and the
result of games. The human can decide some specific conditions,
such as komi and board size. In this paper, we use type-2 fuzzy sets
' T2FSs) with parameters optimized by a genetic algorithm for es-
timating the rank in a stable manner, independently of board size.
More precisely, an adaptive Monte Carlo tree search (MCTS) esti-
mates the number of simulations, corresponding to the strength of
its opponents. Next, the T2FS-based adaptive linguistic assessment
system infers the human performance and presents the results us-
ine the inemstic deserintion. The exnerimental resnlis <show that

I. INTRODUCTION

WING to the prosperity of artificial intelligence (Al)

research, many researchers have devoted themselves to
challenging humans based on the Al techniques, especially ap-
plications to the board games. The game of Go originated from
China [1], and it 1s played by two players: black and white. Two
Go players alternatively play their stone at a vacant intersection
of the board by following the rules of Go. The most common
board size for human against human is 19 = 19, and 9 = 9
15 also popular for Go beginners. In the end, the player with a
bigger territory wins the game [1]. Additionally, Go is regarded
as one of the most complex board games because of its high
state-space complexity 107!, game-tree complexity 1076, and
branching factor 250 [2]. Because of this, Go has a high uncer-
tainty especially on a 19 « 19 big-size board.

For evaluating the human performance on Go games, humans
could be advanced to a higher rank based on the number of win-
ning games via a formal human against human competition,
for example, by winning four out of five games. However, the
invited human Go player’s strength might be affected by some
factors. such as the on-the-spot environment, physical and men-
tal situations of the day, and game settings; therefors; they Go
player’s rank may be with an uncertain possibility. Additionally,

Aane nlavearte ctranath mav oradnallv decrasaes hacaneas oF ostfino
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Human vs. Computer Go: Review and Prospect

e

he Google DeepMind challenge

match in March 2016 was a histor-

ic achievement for computer Go
development. This article discusses the
development of computational ntelli-
gence (CI) and its relative strength in
comparison with human intelligence for
the game of Go. We first summarize the
milestones achieved for computer Go
from 1998 to 2016. Then, the computer
Go programs that have participated in
previous [EEE CIS competitions as well
as methods and techniques used in Alpha-

MAGE UCENSED 8v ORaFC ST0CK

Go are briefly introduced. Commentaries
from three high-level professional Go
players on the five AlphaGo versus Lee

puter Go competitions in [EEE CIS flag-
ship conferences since 2009. Fig. 1 shows
the year and the location of the confer-

Professional Go players are ranked entirely
in dan, abbreviated with the letter P (e.g.
Lee Sedol is ranked at 9P). In the amateur
level, cach difference in rank roughly
translates to a single stone of handicap (H),
where the weaker player is allowed to
place an additional stone on the board
pror to play to even out the game. The
skill difference between professional ranks
1s much less than one stone for every rank
difference. Go is typically played on
19 X 19 size boards, but 9 X 9 size boards
are also common for beginners. The com-
plexity of the 9 X9 game is far less than
the standard game, and the 9 X9 game
had been one of the interim goals for

computer Go programs. Go is a game that
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Move 1 (B R15)
Move 3 (B P3)
Move 5 (BF17)
Move 7 (B K16)
Move 9 (B Q17)
Move 11 (B R4)
Move 13 (B Q10)
Move 15 (B C6)
Move 17 (B B4)
Move 19 (B G16)
Move 21 (B L14)
Move 23 (B Q14)
Move 25 (B R16)
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Game Finish
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(Num simulation
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(Num simulation
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Move 2 (W D16)
Move 4 (W D4)
Move 6 (W C14)
Move 8 (W H17)
Move 10 (W F16)
Move 12 (W E17)
Move 14 (W K4)
Move 16 (W F3)
Move 18 (W M16)
Move 20 (W G17)
Move 22 (W P15)
Move 24 (W Q16)
Move 26 (W P17)

Black Recommendation White (87.04%)

Facebook Darkforest
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Adaptive Diet )
Assessment Ontolog Domain Layer

L
T

ow-Fat Milk ",
5(1.5) servings £

‘Corn Soup
1(1)portion

Caramel
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FGB: Food Group Balance -
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<
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DO: Desired Output S 340G.42) 44) _ % PCC: Percentage of Calories from Carbohydrate
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Fuzzy Markup Language
Toward the first standard in
Computational Intelligence

Technical Committee on Standards
Task Force on Novel Standard Proposal

Giovanni Acampora, Plamen Angelovand Bruno Di Stefano

December 11th, 2011

IEEE Computational Intelligence Society
MIMICKING NATURE FOR PROBLEM SOLVING
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Goal

Propose the Fuzzy Markup Language (FML)
as a standard tool for the design and implementation

of Fuzzy Systems
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Motivations

A standard tool for fuzzy logic is necessary for:
e Designing fuzzy controllers in hardware independent
way;
e Distributing fuzzy systems in complex pervasive
environment;

e Representing fuzzy rules in a unified way in order to
allow different scientist groups to compare the
performance of their learning algorithmes;

e Allowing conference organizers to use a well-defined
approach for organizing fuzzy based competitions.



Current Tools for FC Design

Fuzzy Logic
Controller

MATLAB
Syntax

Centralized
approach




Fuzzy Control Language (FLC)

FCL was standardized by IEC 61131-7

INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)

TECHNICAL COMMITTEE No. 65: INDUSTRIAL PROCESS MEASUREMENT
AND CONTROL

SUB-COMMITTEE 65 B: DEVICES

[t is a domain-specific programming language
e it has no features unrelated to fuzzy logic;

e one does not write a program in FCL, but one may write part of it in
FCL.
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FCL drawbacks

FCL is static

e it contains information about the data but not about the
functions needed to process the data;

e It cannot generate an executable program;

FCL does not support “hedges”;

FCL lacks support for higher-order fuzzy sets;

FCL does not allow binding data and function, a
standard feature of OOP languages;



FCL drawbacks

An FCL description of an algorithm may result in
different implementations of the algorithm;

FCL was definitely an accomplishment in the gos
because it allowed practitioners no exchange
information about fuzzy algorithms;

However, it reflected the close world of proprietary
systems, where interchange of building blocks was
discouraged in the attempt to lock clients into
corporate platforms.



Drawbacks

Fuzzy Logic

Controller

Implementation Drawbacks

Hard Parsing Lack of portability on
heterogeneous hardware
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A New Paradigm for Fuzzy Control Design
Fuzzy Markup Language

Fuzzy Logic
Controller

Unicode
Text

MATLAB
Syntax

Distributed

Centralized
approach

approach




FML Idea

FML is a XML-based language which allows FC designers
to model the controllers in a human-readable and hardware
independent way in highly distributed environments.

$

FML allows to model
Transparent Fuzzy Controllers
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FML Benefits

Minimize effort to reprogram controllers on
different hardware architecture.

Enable the distribution of fuzzy inference engine
task in order to optimize performances and
support the development of application based on
the sensors network paradigm.
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... hereafter

The Fuzzy Markup Language: Theory and Practice

FML Visual Environment for Transparent Fuzzy
Systems Design

FML Applications



Fuzzy Markup Language



Fuzzy Logic Controller Structure

Knowledge

Rule Base
Base

m—p  Fuzzifier Defuzzifier pm—lp

Real valued Real valued

inputs oufputs
\ J A 4
Fuzzy Inference

Fuzzy input Engine Fuzzy output
sets sets

Simpler than PID controllers (based on differential
equation)

Use a linguistic approach (If...Then) to define the
devices behavior
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The novel vision of a FLC

An alternative vision of FLCs implementation is

necessary to model the controllers in hardware
independent way.

This novel vision is based on the labeled tree idea, a

data structure defined by means of the well-known
graph theory.

e A labeled tree is a connected and acyclic labeled graph,
i.e, a graph where each node is associated with a label.



/
FLC Labeled Tree

name
/ andMethod
Rulebase
orMethod
MAX
MIN
FuzzyVariable )} - FuzzyVariable
A
Rule .
"""" activationMethod

N

MIN



" FLC Labeled Tree

Labeled tree for the variable tip

Fuzzy_Variable

name
defuzzifier
tip L accumulation
scale \
type MAX

FEuro . ..
right_limit Default_Value
left_limit

output \ \

20.0 0.0
chrm

name Trlangular FuzzySet ) complement
average false
param] param?2 param3

5.0 10.0 15.0



- FLC Labeled Tree

Labeled Tree for rule 3

ntecedent

Consequent
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Labeled Tree & XML

The labeled trees are data models derived by the XML-
based document representation.

So, if a FLC can be modeled through a labeled tree then it
is representable by means of a corresponding XML
document.

XML is the main technology for abstraction data:

e The XML representation of FLC allows designers to model the
controller in a human-readable and hardware independent way.

e FML is the XML-based language modeling FLC.
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From labeled tree to FML

FML is the XML-based language modeling FLCs, i.e, a
collection of tags and attributes that are individuated
starting from the analysis of the FLC labeled tree.

So, thanks to FML, it is possible to implement the same
FLC on different hardware without additional design and
implementation steps.

Transparent Fuzzy Control




FML definition

FML is essentially composed by three layers:

e XML in order to create a new markup language for fuzzy logic
control;

e a document type definition (DTD), initially, and now a XML
Schema in order to define the legal building blocks;

e Extensible Stylesheet Language Transformations (XSLT) in
order to convert a fuzzy controller description into a specific
programming language.

FML permits to model the two well-known fuzzy
controllers: Mamdani and TSK.
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FML tree

<fuzzySystem name="“system_name" ip=“ip_address” >

</fuzzySystem>




FML tree

Knowledge base

<fuzzySystem name="system_name” networkAddress="ip_address” >
<knowledgeBase ip="“ip_address” >

</fuzzySystem>
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FML tree

Knowledge base

<fuzzySystem name="“system_name" networkAddress="ip_address”>
<knowledgeBase networkAddress="ip_address” >

Variable <fuzzyVariable name="“variable_name” domainLeft=“dl”

domainRight=“dr” scale=“u” defaultValue=“dv”

accumulation=“methodA” defuzzifier="methodD”

type=“output”’>

</fuzzySystem>
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FML tree

Knowledge base

<fuzzySystem name="system_name" networkAddress="ip_address”>
<knowledgeBase networkAddress="ip_address” >
<fuzzyVariable name="variable_name” domainLeft="dl”
Variable domainRight="dr” scale="u” defaultValue=“dv”
accumulation="methodA” defuzzifier="methodD”
type="“input’>
<fuzzyTerm name=“term_name” complement="“false”’>

</fuzzySystem>
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FML tree

Knowledge base

<fuzzySystem name="system_name” networkAddress="ip_address” >
<knowledgeBase networkAddress="ip_address” >

<fuzzyVariable name="variable_name” domainLeft="dl”
domainrRight="dr” scale="u" defaultValue="dv”
accumulation="methodA” defuzzifier="methodD”
type="input”>
<fuzzyTerm name="“term_name” complement="false”>

<triangularShape parami=“p1” param2=“p2” param3=“p3”/>

</fuzzyTerm>

Variable

</fuzzySystem>
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FMIL tree

Rule base

<fuzzySystem name="system_name” networkAddress="ip_address” >
<mamdaniRuleBase name=“rulebase_name”
andMethod="And_Meth”
orMethod=“Or_Meth” activationMethod="“Activation_Meth”
networkAddress="ip_address” >
</mamdaniRuleBase>
</fuzzySystem>
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FMIL tree

Rule base

<fuzzySystem name="system_name” networkAddress="ip_address” >
<mamdaniRuleBase name="“rulebase_name”
andMethod=“And_Meth”
orMethod=“Or_Meth” activationMethod="Activation_Meth”
networkAddress="ip_address” >
<rule name=“rule name” connector=“AND”
andMethod="And_Meth” weight="“w">

</mamdaniRuleBase>
</fuzzySystem>



FML tree

Rule base

<fuzzySystem name="system_name”
networkAddress="ip_address” >

<mamdaniRuleBase name="“rulebase name”

andMethod=“And_Meth”
orMethod=“Or_Meth”

activationMethod="Activation_Meth” Antecedent
networkAddress="ip_address” >
<rule name="“rule_name” connector="AND” Consequent

andMethod="And_Meth” weight="w">
<antecedents>......</antecedent>
<consequent>......</consequent>
</rule>
</mamdaniRuleBase>
</fuzzySystem>



FML tree

' <fuzzySystem name="system_name" networkAddress=“ip_addrea”

<mamdaniRuleBase name="“rulebase name”
andMethod=“And_Meth"”
orMethod=“Or_Meth” activationMethod="“Activation_Meth”
netwrokAddress="ip_address” >
<rule name=“rule_name” connector="AND/OR”
andMethod="And_Method” weight="w">

Rule base

<antecedent>
<clause>
<variable>Variable Name</variable>
<term>Term_ Name</term>
</clause>

</antecedent> Antecedent
<consequent>

<then> Consequent
<clause>

<variable>Variable Name</variable>
<term>Term_Name</term> Clause

</clause> Clause

</then>
</consequent>
</rule>

</mamdaniRuleBase> Variable
</fuzzySystem>

Variable
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FML grammar

The labeled tree’ s labels and relationships have to be
represented by means of a grammar in order to be
used in a computing scenario.

This grammar definition can be accomplished by
means of XML tools able to translate the FLC labeled
tree description in a context free grammar.

Latest version of FML grammar has been developed
through XML Schema




variable gram

<xs:complexType name="fuzzyVariableType">

<xs:sequence>
<xs:element name="fuzzyTerm" type="fuzzyTermType" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Fuzzy Set</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attribute name="name" type="xs:ID" use="required"/>
<xs:attribute name="scale" type="xs:string" />
<xs:attribute name="domainleft" type="xs:float" use="required"/>
<xs:attribute name="domainright" type="xs:float" use="required"/>
<xs:attribute name="type" type="typeType" default="input"/>
<xs:attribute name="accumulation” type="accumulationType" default="MAX" />
<xs:attribute name="defuzzifier" type="defuzzifierType" default="COG" />
<xs:attribute name="defaultValue" type="xs:float" default="0"/>
<xs:attribute name="networkAddress" default="127.0.0.1" type="networkAddressType"/>
</xs:complexType>
<xs:complexType name="fuzzyTermType">
<xs:choice>
<xs:element name="rightLinearShape" type="twoParamType" >
<xs:annotation>
<xs:documentation>Right Linear Fuzzy Set</xs:documentation>
</xs:annotation>
</xs:element>
</xs:choice>
<xs:attribute name="name" type="xs:ID" use="required"/>

</xs:complexType>
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Example: tipper.fml

<?xml version="1.0" encoding="UTF-8"?>
<fuzzySystem name="newSystem" networkAddress="127.0.0.1">

<knowledgeBase>

nn

<fuzzyVariable name="food" domainLeft="0.0" domainRight="10.0" scale="" type="input">

<fuzzyTerm name="delicius" complement="false">
<trapezoidShape parami="7.0" param2="9" param3="10.0" param4="10.0"/>
</fuzzyTerm>
<fuzzyTerm name="rancid" complement="false">
<trapezoidShape parami="0.0" paramz2="0.0" param3="1" param4="3"/>
</fuzzyTerm>
</fuzzyVariable>

nmn

<fuzzyVariable name="service" domainLeft="0.0" domainRight="10.0" scale="" type="input">
<fuzzyTerm name="excellent" complement="false">
<leftGaussianShape parami="10.0" param2="1.5"/>
</fuzzyTerm>
<fuzzyTerm name="good" complement="false">
<PIShape parami="5.0" param2="3.0"/>
</fuzzyTerm>
<fuzzyTerm name="poor" complement="false">
<rightGaussianShape parami="0.0" param2="1.5"/>
</fuzzyTerm>

</fuzzyVariable>




/ Example : tipper.fml

<fuzzyVariable name="tip" domainLeft="0.0" domainRight="20.0" scale="null"
defaultValue="0.0" accumulation="MAX" defuzzifier="COG" type="output">

<fuzzyTerm name="average" complement="false">
<triangularShape parami="5.0" paramz2="10.0" param3="15.0"/>
</fuzzyTerm>
<fuzzyTerm name="cheap" complement="false">
<triangularShape parami="0.0" param2="5.0" param3="10.0"/>
</fuzzyTerm>
<fuzzyTerm name="generous" complement="false">
<triangularShape parami="10.0" param2="15.0" param3="20.0"/>
</fuzzyTerm>
</fuzzyVariable>

</knowledgeBase>



“Example : tipper.

<mamdaniRuleBase name="Rulebase1” andMethod="MIN"
orMethod="MAX" activationMethod="MIN" >

m

<rule name="reg2" connector="or"

<rule name="reg1" connector="or"
orMethod="MAX" weight="1.0">
<antecedent>
<clause>
<variable>food</variable>
<term>rancid</term>
</clause>
<clause>
<variable>service</variable>
<term>poor</term>
</clause>
</antecedent>
<consequent>
<then>
<clause>
<variable>tip</variable>
<term>cheap</term>
</clause>
</then>
</consequent>

</rule>

andMethod="MAX" weight="1.0">
<antecedent>
<clause>
<variable>service</variable>
<term>good</term>
</clause>
</antecedent>
<consequent>
<then>
<clause>
<variable>tip</variable>
<term>average</term>
</clause>
</then>
</consequent>

</rule>



Example : tipper.fml

<rule name="reg3" connector="or" andMethod="MAX"“ weight="1.0">
<antecedent>
<clause>
<variable>service</variable>
<term>excellent</term>
</clause>
<clause>
<variable>food</variable>
<term>delicius</term>
</clause>
</antecedent>
<consequent>
<then>
<clause>
<variable>tip</variable>
<term>generouse</termx>
</clause>
</then>
</consequent>
</rule>
</mamdaniRuleBase>
</fuzzySystem>



FML Sinthesys

FML represents a static and human oriented view of
FLCs

[t is necessary to ‘compile’ FML programs.

Different approaches has been used to compile FML
programs

o XSLT + Web Services
e JAXB + Berkeley Sockets
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XSLT

XSLT languages translator is used to convert FML fuzzy controller in a
general purpose computer language using an XSL file containing the

translation description.

p
It is possible to translate the ( Web Services ) (Y
FML programs into o) SN :

Java programs embedded z 3 —
in web services components [ B ) g [\ |,
in order to realize ( - ) g s
distribution features and 2
to strong the hardware A r O U

independence

Concept. \( Used technologies and methodologies ) 4(

Ami Features




- JAXB

* The JAXB XML Binding technology (or its open source version:
JaxMe2) generates a Java classes hierarchy starting from the FML
control description.

FML Schema
derived Java classes




e
FML + JAXB + TCP/IP

It is possible to integrate JAXB XML Binding technology with a TCP/IP
Client/Server application to separate the real control from the
controlled devices and, consequently, to obtain the total independence
of the devices from the language used to code the fuzzy controller.

- ~

FML TSP Server

(’_ Compiler Environment _) I
(,— RunTime Environment ___)
= e
N ot i e
¥ )

(: Controlled Environments )
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Distributing FML

It is possible to split FML tree structure into subtrees
and place each one on a specific host.

Advantages:
e parallelize the fuzzy inference engine;
» manage distributed knowledge environment;

* exploit mobile agents as a natural and efficient
technology to share data distribution and dispatch
running code on a network.



/ \

=

Distributing FML

Application example: an agent-based framework

designed for providing proactive services in domotic
environments.

Ubiquitous devices can be used to parallel the fuzzy
inference engine task by distributing fuzzy rules on them.

FML program is a good model for rules distribution

e It is simple to break FML code into many FML programs,
each one containing a subset of FML rules.



Distributing FML program by means of Mobile Agents

<knowledgebase>

<\knowledgebase>
<rulebase
<rule> xx <\rule>
<rule> yyy <\rule>
<rule> zzz <\rule>
<\rulebase>

Creator

J Agent
ledgebase edg

Creator Agent is a software entities capable of
reading FML code and breaking it into m FML
programs, where m is the number of stationary
agents living in the system.

Stationary Agent are agents able to compute
FML program by means of aforementioned
technology (XSLT, JAXB, etc.)

Transport Agents are mobile entities moving
from Registry Agent to Stationary Agents and
vice versa. They transport the input/output
values of fuzzy controller.

Registry Agent is the interface between
controlled system and multi-agent system. It
knows the Stationary Agents location and it uses
Transport Agents to send input system values to
Stationary Agents. Moreover, it compute a
defuzzification method with values returned by
Transport Agents.
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An IDE for designing Transparent Fuzzy Agents

The tree representation of a FLC and its mapping in FML language offers
an additional important benefit: it allows to design and implement a

fuzzy controller by means of simple visual steps.

EY FML Editor

File Edit Edit System Verification Tuning Synthesis
o @ | AL 3

Project Name

Automata Set Up

|new project

Input Variables ‘ l/ Tree View - tipper r FML View - tipper r Type View - tipper System Set
food: type_food tipper
service: type_service
Types
type_service
type_tip
type_food
Output Variables ‘
tip: type_tip reg2 reg1 reg3
Rulebases
" Rulebase1

Current system: tipper

Zoom Mouse Mode

[+ | - | |mansForming ||




DE — Creating a fuzzy variable

|£| Type Editor

-.:—-Ehg

Type features type_tip
Name M 10
Domain Left | OE_ 0g
I : - Domain Right 20 e
| % Variable Editor SN b H N
. Terms =
Variable features | Hee
generouse B
" 2 0
Name |t|p [cheap | =
average ’
Scale | 03
02
i Qutput |v| l
Sign ‘ p .
MethOd ‘COG |"| DIDD 1 2 3 4 5 [} 7 8 9 10 11 12 13 14 15 18 117 18 18 20
X
) | Add Term | | Delete Term ‘
Accumulation ‘Mﬂx |V| | |— generouse—cheap—average|
Default || (]El | OK ‘ ‘ Refresh ‘ ‘ Cancel | | Export chart |
| Type | type_tip ~|
New Type...
r . I T =
| | £ Type Creation E@g L e Edt ot b 4 o [ )
| OK | Cancel Term features
Type features
| —— __Term Name | [cheap e
Name type_tip 0s PARN
Fuction ‘TriangularShape |V| 08 N\
Function | TriangularShape -
g| J P | | | Complement | [] gw \
I o B \
Parent H
g | | | I Parameters E o2 \
{ = 0.4 S N\
Domain Left | | o | a I o]/
- 0.2 k
Domain Right| | 20 . I ] /
I No Terms || 3&‘ = H—WE D'DD. 1 2 3 4 5 6 7 8 8 10
. X
| Create H Cancel ‘ | Set ‘ | Refresh | | Cancel | | Export chart
— e B — ﬂ =N E———— T




FML IDE— Creating a rule base

[£:| Mew Rulebase

-

New Rulebase

Name | |Ru|ebase1
Type | Mamdani |~
Implication | |MIN v
And Method | |MIN -
Or Method | |MAX v
| Create Cancel
i -

|£:| Rulebase Editor

Pm—— e, | eibie

Rulebase features

Rulebase Name

| Rulebase1 Implication |

Rules (3) \

RULE1:

Rule features

Rule Name | [RULE1 weight | | 1H I
Connector ‘ and - Operator | ‘MIN ‘v‘
Antecedent | Consequent |

! variable | [food [~] variable | [tip i~ W
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| AddRule | | ModifyRule | | Delete Rule |
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"FML Applications

Ambient Intelligence
Network Control
Meeting Scheduling
Computer Go

Capability Maturity Model Integration (CMMI)
Medical applications
e Diet
= Ontology-based Multi-AgentS (OMAS)
= Type-2 Fuzzy Diet Assessment Agent
= Intelligent Healthy Diet Planning Multi-agent
= Ontology-based Intelligent Fuzzy Agent



/FIVIL Activities

Special Session
e [EEE WCC(I 2010
e Fuzz-1EEE 2011
e [EEE WCCI 2012

Special Issue
e Springer Soft Computing Journal

Other Editorial Activities
e On the Power of Fuzzy Markup Language -
Studies in Computational Intelligence - Springer



“Conclusions

A novel approach for fuzzy controllers design has been
introduced.

Based on XML
Hardware Heterogeneity
Multi-Agent Approach

FML can be applied in different application scenarios



Thanks for Your Attention
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DarkForest: An Open Source
Computer Go engine

Facebook Al Research



The Game of Go

™ O O -+ Brilliant.sgf - Gennan Inseki vs Honinbo Shusaku =

7

“A minute to learn, a lifetime to master”




Rules

Black and white take turns on a 19*19 board.
(4-)connected group dies if surrounded by enemy.
The player with more territory wins.

cso@oocoocoo
rFUTCoToCoCoTo
o« o = pa -« -y -y =

Why Go is interesting?

1. Unites Pattern Matching with Search
2. Combine Reason/Logic and Intuitions




Computer Go

* 50 years of Computer Go

— Rule-based with alpha-beta pruning (1968-2005)
* Kyu level

— Monte-Carlo Tree Search (2006-2015)
* 6d

— Deep Convolutional Neural Network (2014-)
* 6d -> Beyond 9p




Overview of DarkForest

Proposed by Yuandong Tian

Developed by 2 people. Yuandong Tian and
Yan Zhu

Name after The three body problem, Volume
Il, The Dark Forest

1/100-1/1000 resource compared to AlphaGo



Strength of DarkForest

Pure DCNN: KGS 3d, DCNN+MCTS: KGS 5d (stronger now)
« 3rdplace on KGS January Tournaments

2"d place in UEC Computer Go Competition
4-GPU version: 6d-7d (tested by Chang-Shing Lee’s team)




History of DarkForest

Data collection (May 2015)

Pure DCNN on KGS (Aug 2015)

MCTS working (Nov 2015)

Distributed version (Dec 2015, Thanks Tudor Bosman!)
Pachi’s default policy (Dec 2015)

ICLR Accepted (Feb 2016)

Learning-based default policy (Feb 2016, Thanks Ling
Wang for Tygem dataset)

Value network (July 2016)



Open Source

https://github.com/facebookresearch/darkforestGo

License: BSD + PATENTS

Self-made multithreaded Monte Carlo Tree Search
Pretrained DCNN models (KGS 3d)

Learning-based default policy

Value network

Training code to be released soon (using Torchnet)



How Go Al engine works

Even with a super-super computer,
it is not possible to search the entire space.
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How Go Al engine works

Even with a super-super computer,
it is not possible to search the entire space.

Extensive search Evaluate Conseqguence

Black wins

White wins

> Black wins

EEEEEP e REES) [

Current game situation ) )
g > White wins




How Go Al engine works

How to expand a node? — Tree policy
Which node to expand? — Monte Carlo Tree Search

Extensive search Evaluate Consequence

Black wins

White wins

A 4

> Black wins

EEEEEP e REES) Tt

Current game situation ) .
g White wins

\ 4




How Go Al engine works

How to evaluate? — Default Policy / Value function

Extensive search Evaluate Consequence

Black wins

White wins

Black wins

EEEEEP e REES) Tt

Current game situation ) .
g White wins




Monte Carlo Tree Search

* Aggregate win rates, and search towards the good nodes.

Selecton — Expansion —— Simulation —> Backpropagation \

£ b g

Tree Default
Policy Policy
v
- a y
(b) 22/40

2/10
10/18

9/10

=y TTe€ pOlicy
s Default policy



Why Go is Hard...

* Policy/Value function is hard to model
— Chess: Summing over pieces, Go: ?
— One stone difference completely changes the game.

* Traditional Heuristic Approach

— Slow, hard to tune.
* Pachi (open source go player) e

e

has lots of parameters to tune manually. ’ '
— Conflicting parameters, not scalable. |
— Need strong Go experience.




Deep Learning can help!

* End-to-End training
— No parameter tuning.

e Much less human intervention.

— Minimal Go knowledge required.

 Amazing performance
— Get the gist of the situation



Neural Network Attempts

1990s (small size and one hidden layer)

— Not successful.

University of Edinburgh, ICML 2015:
— 4k-5k level

Deepmind [ICLR 2015]

— 12 layer CNN,beat Pachi (strongest open source Al)
with 11% win rate.

This paper [ICLR 2016]
Deepmind Alpha Go [Nature 2016]



Overview of Architecture



Overview of Architecture

 DCNN training/testing
* Monte Carlo Tree Search (MCTS)
* Learning-based default policy




DCNN in DarkForest

DCNN as a tree policy

— Predict next k moves (rather than next move)
— Trained on 170k KGS dataset/80k GoGoD, 57.1% accuracy.
— KGS 3D without search (0.1s per move)

Conv layer Conv layers x 10 Conv layer k parallel softmax
Current board 25 feature planes 92 channels 384 channels k maps P
5 x 5 kernel 3 x 3 kernel 3 x 3 kernel

______________

— G e e o
WL 1 ::f g i | Our next move (next-1)
N o e < $ . =D AW ) wmm =

"8:?, 203 3% o | Opponent move (next-2)
"!a?.gv s | x]_o A - = -

************* Our counter move (next-3)

£



DCNN in DarkForest

* DCNN as a tree policy

feature type: standard

1.
'
=J6=nstep=1
O £33
= 0.9 nstep=3
Our/enemy liberties 8
o
Ko location ' 08 ﬁ
=
Our/enemy stones/empty place %0_7 i
Our/enemy stone history o)
0.6
Opponent rank c
2
0.5 ' : : ' '
Feature used for DCNN 20 30 40 50 60 70

epoch




Pure DCNN

darkforest: Only use top-1 prediction, trained on KGS
darkfores1: Use top-3 prediction, trained on GoGoD
darkfores2: darkfores1 with fine-tuning.

GnuGo (level 10) Pachi 10k Pachi 100k | Fuego 10k | Fuego 100k
Clark & Storkey (2015) 91.0 - - 14.0
Maddison et al. (2015) 97.2 47.4 11.0 23.3 12.5
darkforest 98.0x 1.0 715121 27330 | 845x15 | 56.7L£2.5
darkfores1 99.7£0.3 88.7£21 | 59.0£33 | 93215 | 78.0x1.7
darkfores2 100 £ 0.0 94.3+1.7 | 726+1.9 | 9851+0.1 | 89.7+ 2.1

Win rate between DCNN and open source engines.



Monte Carlo Tree Search

* Multi-threaded (use folly library)
 Block allocation for tree nodes

* Synchronized evaluation
— Separate program for DCNN and MCTS

— Communication: Linux Pipe (single machine) /
Thrift (multiple machine)



Monte Carlo Tree Search

 December version
— 100% synchronized.
— Top3/5 moves from DCNN
— Add noise to win rate
— Use pachi default policy

* March version

— 95% threads waiting until DCNN return/ 5% threads
back to the root immediately

— Virtual Counts: random 5 games at each new leaf
— Use learning-based default policy
— 85% win rate over previous version



Board evaluation

e Dead Stone Evaluation

— Play default policy 100 times, stones are dead if
they have low probability of survival

e Default policy

— Rules: Save ours, attack opponents, play patterns,
play nakade points, etc.
— Learning:
* Local 3x3 patterns hashed by Zobrist hashing

* Keep a heap storing promising local 3x3 patterns.

— Code includes: simple (only rules), pachi, v2 (full)



DCNN + MCTS

darkfmcts3: Top-3/5, 75k rollouts, ~12sec/move, KGS 5d

darkforest+MCTS | darkforesl+MCTS | darkfores2+MCTS
Vs pure DCNN (1000rl/top-20) 84.8% 74.0% 62.8%
Vs pure DCNN (1000rl/top-5) 89.6% 76.4% 68.4%
Vs pure DCNN (1000rl/top-3) 91.6% 89.6% F9:2% 94.2%
Vs pure DCNN (5000rl/top-5) 96.8% 94.3% 82.3% (with v2
Vs Pachi 10k (pure DCNN baseline) 71.5% 88.7% 94.3%

Vs Pachi 10k (1000rl/top-20)
Vs Pachi 10k (1000rl/top-5)
Vs Pachi 10k (1000rl/top-3)

01.2% (+19.7%)
88.4% (+16.9%)
95.2% (+23.7%)

92.0% (+3.3%)
94.4% (+5.7%)
98.4% (+9.7%)

95.2% (+0.9%)
97.6% (+3.3%)
99.2% (+4.9%)

Vs Pachi 10k (5000/top-5)

Win rate between DCNN + MCTS and open source engines.

98.4%

99.6%

100.0%



Learning based default policy

* DF: 6 microsecond per move, ~30% accuracy.

— However, Top-1 is not a good metric. Likelihood is

* Fig 2(b) in DeepMind’s nature paper:

Mean squared error

0.50 -

0.45 - X 8
; 0.40 RN e o
g 0351 - Uniform random '
+ 0.30- rollout policy DE:
o) . :
S 025{ 7 rast rellout pelicy ~26% in Move 280
“C’ 000l — Value network
© - SL policy network

0991 s HL policy network

0.10

15 45 5 105 185 165 195 225 255 >285
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Learning based default policy

How to close the gap?

— Zen & CrazyStone spent 5-10 years in rules.
Critical moves have to be 100% correct.

— 2-point semeai.

— Complicated Semeai on more than two groups.

— Complicated life and death situations (corner &
center)

For now, no good way to learn automatically.
How does AlphaGo solve this?



Value Network

e Board Evaluation
— Use default policy:
* Noisy/time consuming.

— Use value function: fast!
e Accuracy is the key
 Hard to train




Value Network

Extended Data Table 7 | Results of a tournament between different variants of AlphaGo

Short Policy Value Rollouts Mixing Policy Value Elo
name network network constant GPUs GPUs rating
[ Do o Dy A=0.5 2 6 2890
Qlyp Do Vg - A=0 2 6 2177
Qo Der — Do A=1 8 0 2416
Oty [pr] Vg D A=0.5 0 8 2077
Qy [pr] o) - A=0 0 8 1655
o [pr] - Dre A=1 0 0 1457
ap o = - - 0 0 1517

Evaluating positions using rollouts only (o, ar), value nets only (ev,p, o), or mixing both (e, o); either using the policy network p,(onp, ayp, cp), Or no policy
network (anp, oy, ep), that is, instead using the placeholder probabilities from the tree policy p, throughout. Each program used 5 s per move on a single machine
with 48 CPUs and 8 GPUs. Elo ratings were computed by BayesElo.

+500 Elo (~2 stones) for AlphaGo

My guess:
+ Playout/Simulation is good at local battle in complicated situations.
+ Value network is good at global reading, saving thousands of simulations




Value Network

* We made some progress (~0.15 MSE)

— Generate 1.2M self-play games with DF+DF2
* Similar approach with AlphaGo
* DF for more diverse moves
* DF2 for precise moves (for better end-game evaluation)

— Initialize the weights of last few layers with DF2.
— Adagrads works very well.



Thanks!




