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Data stream mining
- content

 Data streams – introduction to the topic

 Concept drift

 Various strategies of learning

 How to deal with concept drift?

 Data stream classification methods – short overview 

 Decision trees for data streams (including new results 2016) 

 Ensemble methods for data streams (including new results 2016)

 Probabilistic neural networks for stream data mining (including 

new results 2016)

 Final remarks and challenging problems 

 References 
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Rutkowski L., New Soft Computing Techniques for System Modelling, 

Pattern Classification and Image Processing, Springer, 2004.

(1) Probabilistic neural networks to 

solve various problems of 

system modelling and 

classification in a non-stationary  

environment. 

(2) Image compression methods. 

(3) RLS learning algorithms for 

multilayer neural networks. 

(4) Systolic architectures of 

multilayer neural networks.
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Rutkowski L., Flexible Neuro-Fuzzy Systems. Structures, learning and 

performance evaluation, Kluwer, 2004.

(1) New fuzzy systems which 

outperform previous approaches to 

system modelling and classification. 

(2) Framework for unification, 

construction and development of 

neuro-fuzzy systems. 

(3) Complete algorithms in a systematic 

and structured fashion, easing 

understanding and implementation.
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Rutkowski L., Computational intelligence, 

Springer, 2008.

(1) Selected issues of artificial intelligence. 

(2) Methods of knowledge representation 

using rough sets. 

(3) Methods of knowledge representation 

using type-1 and type-2 fuzzy sets. 

(4) Neural networks and their learning 

algorithms.

(5) Evolutionary algorithms. 

(6) Data clustering methods. 

(7) Neuro-fuzzy systems of Mamdani, 

logical and Takagi-Sugeno type. 

(8) Flexible neuro-fuzzy systems.
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Rutkowski L., Duda P., Jaworski M., Pietruczuk L., Stream Data Mining: 

Algorithms and Their Probabilistic Properties, Studies in Big Data, 

Springer, 2017.

This book shows methods and algorithms which are mathematically justified.

(1) It shows how to adopt the static decision trees, like ID.3 or CART, to deal with data streams.

(2) A new technique, based on the McDiarmid bound, is developed.

(3) New decision trees are designed, by a proper combination of the Gini index and misclassification

error impurity measures, leading to the original concept of the hybrid decision trees.

(4) The problem of designing ensembles and automatic choosing their sizes is described and

solved.

(5) Nonparametric techniques based on the Parzen – kernels and orthogonal series, are adopted to

deal with concept drift in the problem of non-stationary regressions and classification in time-

varying environment. Nonparametric procedures are developed and their probabilistic properties

are investigated.
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Scherer R., Multiple Fuzzy Classification Systems, 

Springer, 2012.

(1) Ensemble techniques (bagging, 

boosting, negative correlation 

learning etc.). 

(2) Relational modular fuzzy systems. 

(3) Ensembles of the Mamdani, logical 

and Takagi-Sugeno fuzzy systems. 

(4) Rough–neuro–fuzzy ensembles for 

classification with missing data.
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Starczewski J., Fuzzy Logic and Systems 

with Membership Uncertainty, Springer, 2013.

(1) Algebraic operations on fuzzy 

valued fuzzy sets.

(2) Defuzzification of uncertain 

fuzzy sets. Generalized 

uncertain fuzzy logic systems. 

(3) Uncertainty generation in 

uncertain fuzzy logic systems. 

(4) Designing uncertain fuzzy 

logic systems.
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Cierniak R., X-Ray Computed Tomography in Biomedical Engineering, 

Springer, 2011

(1) Discusses X-ray CT tomography from a 

historical point of view, the design and 

physical operating principles of 

computed tomography apparatus, the 

algorithms 

of image reconstruction and the quality 

assessment criteria of tomography 

scanners. 

(2) Algorithms of image reconstruction 

from projections, a crucial problem in 

medical imaging, are considered in 

depth.
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Stream Data

• huge volumes of continuous data,

• possibly infinite,

• multidimensional features,

• often fast changing,

• requiring fast, real-time responses.
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Examples of data streams

-Telecommunication calling records,

- Credit card transaction flows,

- Network monitoring and traffic engineering, 

- Financial market, 

- Audio and video recording of various processes,

- Computer network information flow,

- Web logs and Web page click streams,

- Satelite data flow.
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Stream Data
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𝑋𝑖 = 𝑥𝑖
1, … , 𝑥𝑖

𝑑, 𝑦𝑖 = 𝒙𝑖 , 𝑦𝑖 , 𝑥𝑖
𝑗
∈ 𝐴𝑗 , 𝑦𝑖 ∈ 𝐵

𝐴1 ×⋯× 𝐴𝑑 - space of attributes values

𝑋1, … , 𝑋𝑁 from probability distribution 𝜚 𝒙, 𝑦

Two types of supervised learning:

1) Regression - 𝐵 continuous

2) Classification - 𝐵 nominal

Typical problems in data mining
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𝑋1, … , 𝑋𝑁 derived from 𝜚 𝒙, 𝑦 , 𝐵 ⊂ ℝ

Aim: Construct a mapping function:

𝑓: 𝐴1 ×⋯× 𝐴𝑑 → 𝐵,

such that for any  𝑋 = [ 𝒙,  𝑦] from 𝜚 𝒙, 𝑦 :

𝑓 = argmin
𝑓∗

{𝐸[𝐿 𝑓∗  𝒙 ,  𝑦 ]},

where L is a loss function, e.g. 

𝐿 𝑓∗  𝒙 ,  𝑦 = 𝑓∗  𝒙 −  𝑦 2

Typical problems in data mining
- Regression
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one-dimensional

regression problem

𝒇(𝒙)
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𝑋1, … , 𝑋𝑁 derived from 𝜚 𝒙, 𝑦 , 𝐵 = {𝐶1, … 𝐶𝐾}

Aim: Construct a mapping function:

𝑓: 𝐴1 ×⋯× 𝐴𝑑 → 𝐵,

such that for any  𝑋 = [ 𝒙,  𝑦] from 𝜚 𝒙, 𝑦 :

𝑓 = argmin
𝑓∗

{𝐸[𝐿 𝑓∗  𝒙 ,  𝑦 ]},

where 𝐿 𝑓∗  𝒙 ,  𝑦 =  
0, 𝑓∗  𝑥 =  𝑦
1, 𝑓∗(  𝑥) ≠  𝑦



Supervised learning:
Classification

two-dimensional

classification problem

𝒈 𝒙 = 𝟎

𝒇 𝒙 =  
, 𝒔𝒈𝒏 𝒈 𝒙 ≥ 𝟎

, 𝒔𝒈𝒏(𝒈 𝒙) < 𝟎
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Stream Data
- concept drift

it is a phenomenon describing the

change in data distribution, character or their meaning, e.g.

assigning e-mails to the ”spam” category.
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In data streams the joint probability

distribution 𝜚 𝒙, 𝑦 can vary over time:

𝑋1 from 𝜚1 𝒙, 𝑦 ;
𝑋2 from 𝜚2 𝒙, 𝑦 ;
……………….. ;
𝑋𝑁 from 𝜚𝑁 𝒙, 𝑦 ;

Stream Data
- concept drift
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𝜚𝑖 𝒙, 𝑦 - joint probability distribution

𝜚𝑖 𝒙, 𝑦 =  𝜚𝑖 (𝑦|𝒙)  𝜚𝑖 𝒙

Type of change:      drift:

 𝜚𝑖 (𝑦|𝒙) real

 𝜚𝑖 𝒙 virtual

Stream Data
- concept drift
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Stream Data
- concept drift

Virtual concept drift

Real concept drift

26

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



Concept
drift

Sudden

Incremental

Gradual

Recurring
context

Irregular
phenomena

Cyclic
phenomena

Stream Data
- concept drift
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Different kinds of learning*

(regarding time constraints and examples availability)

Batch mode learning

Incremental learning

Online learning

Anytime learning

32

* V. Lemaire, Ch. Slaperwyck, A. Bondu, A Survey on Supervised Classification on Data Streams, Lecture Notes in

Business Information Processing, vol. 205, pp. 88-125, Srpinger, 2015
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Batch mode learning

Batch mode learning:

consists of learning a model from a representative

dataset which is fully available at the beginning of the

learning stage. This type of algorithm is not appropriate

for stream data.
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Incremental learning

Incremental learning:

consists of receiving and integrating new examples

without the need to perform a full learning phase from

scratch. For any examples 𝑋1, 𝑋2, … , it generates the

hypotheses 𝑓1, 𝑓2, … , such that 𝑓𝑛+1depends only on 𝑓𝑛
and the current example 𝑥𝑛+1.

34

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



Online learning

Online learning:

an incremental learning for which the examples

continuously arrive from data stream. The requirements

in terms of time complexity are stronger than for the

incremental learning. Concept drift must be managed by

algorithms of this type.
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Anytime learning

Anytime learning:

algorithm is able to maximize the quality of the learned

model (with respect to a particular evaluation criterion)

until an interruption (which may be the arrival of a new

example).
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Learning on data streams

37

Desired properties*

(1) Fayyad, U.M. et al.: Advances in Knowledge Discovery and Data Mining. American Associacion for Artificial

Intelligence, Menlo Park, CA, USA (1996);

(2) Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the 7th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, NY, USA (2001) 97-106;

(3) Stonebraker, M. Çetintemel, U., Zdonik, S.: The 8 requrements of real-time stream processing. ACM

SIGMOD Record 34(4) (December 2005) 42-47;

* V. Lemaire, Ch. Slaperwyck, A. Bondu, A Survey on Supervised Classification on Data Streams,

Lecture Notes in Business Information Processing, vol. 205, pp. 88-125, Srpinger, 2015
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How to process stream data?

Online processing

(instant incremental)

39
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• The model (classifier) is

updated after reading every

single data element

• Updating must be completed

before the next data element

arrives



How to process stream data?

Block (chunk) processing
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• The model (classifier) is

updated after reading

every chunk of data

• Updating must be

completed before the

next chunk of data is

collected
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How to deal with concept drift? 

42
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Sliding windows

Goal: limit the number of training examples to the most recent ones, 

consequently eliminate examples coming from an old concept

Two approaches: 

• window of a fixed sized
- classifier based on a small window reacts quickly to concept drifts but loses an accuracy in 

periods of stationary data

- Classifier based on a large window fails to react quickly to concept drift 

• window size adjusted heuristically (e.g. ADWIN)

* Alexey Tsymbal, Mykola Pechenizkiy, Padraig Cunningham, and Seppo Puuronen. Dynamic integration of classifiers 

for handling concept drift. Information Fusion, vol. 9, no 1, pp. 56–68, 2008.



How to deal with concept drift? 

Sliding windows
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How to deal with concept drift? 

Weighted windows

The oldest examples are discarded by using a decay function assigning a 

weight to each example, e.g.

𝑤1 𝑡 = 𝑒−λ𝑡, λ > 0,

𝑤2 𝑡 = 𝑡−𝛼, 𝛼 > 0,

𝑤3 𝑡 = 1 −
𝑡

|𝑊|
,

where 𝑡 represents the age of an example (𝑡 = 0 for a new example and 

𝑡 = 𝑊 − 1 for the last one).

44
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* Edith Cohen, Martin J. Strauss, Maintaining time-decaying stream aggregates, J. Algorithms, vol. 59, no. 1, 

pp. 19–36, 2006.
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Weighted windows
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How to deal with concept drift? 
(a family of algorithms called FISH)

The FISH* algorithms are family of methods that take advantage of

similarities between data elements both in time and space. Based on

distances in space d(s)
ij and in time d(t)

ij we calculate the distance between

Xi and Xj as follows:

Dij=a1d
(s)

ij + a2d
(s)

ij

where a1 and a2 are the weight coefficients.

46

* Indre Žliobaite, Combining time and space similarity for small size learning under concept drift, In Foundations of 

Intelligent Systems, volume 5722 of Lecture Notes in Computer Science, pp.412–421, Springer Berlin Heidelberg, 2009. 

** Indre Žliobaite, Adaptive Training Set Formation, PhD thesis, Vilnius University, Lithuania, 2010. 
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How to deal with concept drift? 
(a family of algorithms called FISH)

In the first version of the algorithm, the number of data instances in the

created training sample is determined by the user, while in FISH2** this

number is not fixed. Moreover, FISH* builds separate data sets for each

class, while the second version takes data from all classes based only on

the closeness of the data elements. In the third version of this algorithm

(FISH3**), a search for the best weight coefficients a1 and a2 is being

conducted. In this case, the size of the data window is established

dynamically.

47

* Indre Žliobaite, Combining time and space similarity for small size learning under concept drift, In Foundations of 

Intelligent Systems, volume 5722 of Lecture Notes in Computer Science, pp.412–421, Springer Berlin Heidelberg, 2009. 

** Indre Žliobaite, Adaptive Training Set Formation, PhD thesis, Vilnius University, Lithuania, 2010. 
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How to deal with concept drift? 
- the ADWIN

This algorithm was obtained to regulate the size of data elements windows. It uses

hypothesis that is based on differences of mean value of windows 𝑊0 and 𝑊1

compared with the threshold value 𝛼. If we assume that |𝑊0| and |𝑊1| denote the

number of data elements in windows 𝑊0 and 𝑊1 respectively, then we have to find

𝜖𝑐𝑢𝑡 such that |𝜇  𝑊0 − 𝜇  𝑊1| < 𝜖𝑐𝑢𝑡. The value of 𝜖𝑐𝑢𝑡 is determined as follows:

𝜖𝑐𝑢𝑡 =
1

2𝑚
ln

4

𝛿′

𝑚 =
1

1

|𝑊0|
+

1

|𝑊1|

𝛿′ =
𝛿

|𝑊0| + |𝑊1|

In this method we compare every possible split of entire window into windows 𝑊0

and 𝑊1. 

50
* Bifet A., Avalda R., Kalman filters and adaptive windows for learning in data streams. In Proc. of the 9th int. conf. on 

Discovery science, DS. 29–40, 2006.
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* Bifet A., Avalda R., Kalman filters and adaptive windows for learning in data streams. In Proc. of the 9th int. conf. on 

Discovery science, DS. 29–40, 2006.
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How to deal with concept drift?
- the Drift Detection Method (DDM)

52

João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues, Learning with drift detection, In AnaL.C. Bazzan and Sofiane

Labidi, editors, Advances in Artificial Intelligence – SBIA 2004, vol. 3171 of Lecture Notes in Computer Science, pp. 286–295, 

Springer Berlin Heidelberg, 2004.
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In the DDM algorithm the authors noticed that the class assigned by a classifier can

be either true or false. Therefore they model the number of classification errors with

a binomial distribution. Let 𝑝𝑖 denote the probability of a false prediction, then the

standard deviation is calculated as follows:

𝑠𝑖 =
𝑝𝑖(1 − 𝑝𝑖)

𝑖

For a sufficiently large number of examples (𝑛 > 30), the binomial distribution can

be approximated by a Gaussian distribution with the same mean and variance. The

error rate is monitored by updating two registers: 𝑝𝑚𝑖𝑛 and 𝑠𝑚𝑖𝑛.

• warning level 𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 𝛼 ∙ 𝑠𝑚𝑖𝑛

• alarm level 𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 𝛽 ∙ 𝑠𝑚𝑖𝑛



How to deal with concept drift?
- the Drift Detection Method (DDM)
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João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues, Learning with drift detection, In AnaL.C. Bazzan and Sofiane

Labidi, editors, Advances in Artificial Intelligence – SBIA 2004, vol. 3171 of Lecture Notes in Computer Science, pp. 286–295, 

Springer Berlin Heidelberg, 2004.
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The main difference between DDM* and EDDM** is the definition of parameter

that is being investigated. In this method 𝑝′𝑖 defines the distance between two

errors and 𝑠′𝑖 is its standard deviation. It is expected that with increasing

accuracy of the system this distance will increase.

• warning level
𝑝′𝑖+2𝑠′𝑖

𝑝′𝑚𝑎𝑥+2𝑠′𝑚𝑎𝑥
< 𝛼

• alarm level
𝑝′𝑖+2𝑠′𝑖

𝑝′𝑚𝑎𝑥+2𝑠′𝑚𝑎𝑥
< 𝛽

In the article authors proposed to set values of 𝛼 and 𝛽 to 2 and 3,

respectively, which represents 95% and 90% of the distribution.

54

*João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues, Learning with drift detection, In AnaL.C. Bazzan and 

Sofiane Labidi, editors, Advances in Artificial Intelligence – SBIA 2004, volume 3171 of Lecture Notes in Computer

Science, pp. 286–295, Springer Berlin Heidelberg, 2004.

** Manuel Baena-García, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, Ricard Gavaldá, and Rafael Morales-Bueno. 

Early drift detection method, In Fourth International Workshop on Knowledge Discovery from Data Streams, 2006.
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Early drift detection method, In Fourth International Workshop on Knowledge Discovery from Data Streams, 2006.
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How to deal with concept drift?
- the Early Drift Detection Method (EDDM)



56

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016

How to deal with concept drift?
- the Page-Hinkley test

The Page-Hinkley test was originally used as a sequential analysis technique for change

detection in signal processing. Recently it has been proposed as a drift detector*. It allows

to efficiently detect changes in the normal behavior of a process established by a model.

The cumulative variable 𝑈𝑇 of this test is defined as the cumulative difference between the

observed values 𝑋𝑖 and their mean up to the current moment in time:

𝑈𝑇 =  

𝑖=1

𝑇

𝑋𝑖 −  𝑋𝑇 − 𝛿

where  𝑋𝑇 = 1/𝑡  𝑖=1
𝑡 𝑋𝑖 and 𝛿 corresponds to the magnitude of changes that are allowed.

In the drift detection we treat the classifier’s error rate as the observed value.

* João Gama, Raquel Sebastião, Pedro P. Rodrigues, On evaluating stream learning algorithms, Machine Learning, vol. 90, no. 3, 

pp. 317–346, 2013
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How to deal with concept drift?
- the Page-Hinkley test

The minimal 𝑈𝑇 is defined as

𝑈𝑇
𝑚𝑖𝑛 = min 𝑈𝑇; 𝑖 = 1, … , 𝑡 .

The PH test calculates the difference between 𝑈𝑇
𝑚𝑖𝑛 and 𝑈𝑇

𝑃𝐻𝑇= 𝑈𝑇 − 𝑈𝑇
𝑚𝑖𝑛.

If this difference is higher than a user specified threshold 𝜆, a change is flagged. The

threshold 𝜆 depends on the admissible false alarm rate. Increasing its value will entail

fewer false alarms, but might miss or delay some changes. Controlling this detection

threshold parameter makes it possible to establish a trade-off between the false alarms and

the miss detections.
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How to deal with concept drift?
- the Welch’s 𝑡-test

This test applies on two samples of size 𝑛1 and 𝑛2 and is an adaptation of the Student’s 𝑡
test. This test is used to statistically test the null hypothesis that the means of two

populations  𝑋1 and  𝑋2, with unequel variances (𝑠2
1 and 𝑠2

2), are equal. The formula of this

test is:

p-value =
 𝑋1−  𝑋2

𝑠2
1

𝑛1
−

𝑠2
2

𝑛2

The null hypothesis can be rejected depending on the p-value.
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How to deal with concept drift?
- the Kolmogorov-Smirnov test

The Kolmogorov–Smirnov statistic determines a distance between the empirical

distribution function of the sample and the reference distribution or between the empirical

distribution functions of two samples. In the latter case we calculate

𝐷𝑛,𝑛′ = sup
𝑥

|𝐹1,𝑛 𝑥 − 𝐹2,𝑛′ 𝑥 | ,

where 𝐹1,𝑛 𝑥 and 𝐹2,𝑛′ 𝑥 are the empirical distribution functions of the first and the

second sample respectively, and sup is the supremum function.

The null hypothesis that the samples are drawn from the same distribution is rejected with

a confidence α if

𝐷𝑛,𝑛′ > 𝑐 𝛼
𝑛 + 𝑛′

𝑛𝑛′ .

The value of 𝑐 𝛼 can be found in the Kolmogorov-Smirnov table.
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Data stream classification 

methods

Neural networks

Support vector machine

Naive Bayes classifier

Rule-based systems

Nearest neighbor (lazy learners)

Decision trees

Ensemble methods
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Data stream classification 

methods
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 Various strategies of learning

 How to deal with concept drift?

 Data stream classification methods – short overview 

 Decision trees for data streams (including new results 

2016) 

 Ensemble methods for data streams (including new results 2016)

 Probabilistic neural networks for stream data mining (including 

new results 2016)

 Final remarks and challenging problems 
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DECISION TREES 
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Commonly known decision tree algorithms:

CART algorithm – L. Breiman, J. H. Friedman,R. A.

Olshen, & C. J. Stone, „Classification and regression

trees.” Monterey, CA: Wadsworth & Brooks/Cole, 1984.

Advanced Books & Software.

C4.5 algorithm – J. R. Quinlan, „C4.5: Programs for

Machine Learning,” Morgan Kaufmann Publishers, 1993

 ID3 algorithm – J. R. Quinlan, “Induction of decision

tree,” Machine Learning, Vol. 1, No. 1, pp. 81-106, 1986.

DECISION TREES 
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DECISION TREES 

• The most critical

point is the choice of

a splitting attribute

in each node;

• In ID3, C4.5, CART

– the choice based

on an impurity

measure.
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Impurity Measure

Lowest possible (0) impurity

measure – maximally „pure” set

Highest possible impurity

measure

Highest possible impurity

measure
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Impurity measure –

information entropy

The entropy of S is defined as follows

H(S) = − 𝑖=1
𝐾 𝑝𝑖 log 𝑝𝑖 ,

S – training set (𝑋1, … , 𝑋𝑁)

𝐾 – number of classes

𝑝𝑖 – probability that element belongs to the i-th class 

(proportion of elements in S belonging to the i-th 

class)
76
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Impurity measure –

information entropy

H(S) = − 𝑖=1
𝐾 𝑝𝑖 log 𝑝𝑖 ,

• If 𝒑𝒊 =
𝟏

𝑲
, 𝒊 = 𝟏,… ,𝑲, then 𝑯 𝑺 = 𝐥𝐨𝐠𝟐𝑲 - maximal value

• If 𝒑𝒋 = 𝟏, 𝒑𝒊≠𝒋 = 𝟎, then 𝑯 𝑺 = 𝟎 - minimal value
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Split measure function

78

For each attribute the quality of potential split is

measured by the SPLIT MEASURE FUNCTION

Split measure function – a reduction of an

impurity measure
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Split measure function
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𝑺𝟏
𝑺𝟐

𝑺

𝑺 – high impurity measure 𝒈 𝑺
𝑺𝟏- low impurity measure 𝒈 𝑺𝟏
𝑺𝟐- low impurity measure 𝒈 𝑺𝟐

Split measure:

𝒇 𝑺 = 𝒈 𝑺 −
𝑺𝟏
𝑺

𝒈 𝑺𝟏 −
𝑺𝟐
𝑺

𝒈(𝑺𝟐)
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Example



Split measure – information gain

𝐻 𝑆 𝑎 = 𝐻 𝑆 −  𝑖=1
|𝑎|

𝑤𝑖𝐻(𝑆𝑖),
where

𝑎 – an attribute with values in set {𝑎1, … , 𝑎|𝑎|}

|𝑎| – number of different values of attribute 𝑎

𝑤𝑖 - fraction of elements with value  𝑎𝑖
(probability that elements in 𝑆 take value 𝑎𝑖 for attribute 𝑎)

𝑆𝑖 - subset of set 𝑆, with data elements for which the value of 

attribute 𝑎 is equal 𝑎𝑖

80
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Information entropy and information gain –

an example

married age uses computer at work buy computer

Yes young Yes Yes

Yes young Yes Yes

No young Yes Yes

Yes middle Yes Yes

No middle Yes Yes

No old Yes Yes

Yes old No No

Yes old No No

Yes young No Yes

Yes middle No No

𝐻 𝑆 = −
7

10
𝑙𝑜𝑔2  7 10 +

3

10
𝑙𝑜𝑔2  3 10 = 0,88129
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Partition according to „uses computer at work”

𝑆𝑌𝑒𝑠
is married age uses computer at work by computer

Yes young Yes Yes

Yes young Yes Yes

No young Yes Yes

Yes middle Yes Yes

No middle Yes Yes

No old Yes Yes

𝑆𝑁𝑜
is married age uses computer at work by computer

Yes old No No

Yes old No No

Yes young No Yes

Yes middle No No
82
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Information gain: H(S|use computer at work)

𝑃 𝑎 = 𝑌𝑒𝑠 =  6 10 = 𝑤1 𝐻 𝑆𝑌𝑒𝑠 = 0
𝑃 𝑎 = 𝑁𝑜 =  4 10 = 𝑤2 𝐻 𝑆𝑁𝑜 = 0,81128

𝐻 𝑆 𝑎 = 𝐻 𝑆 −  6 10 ∗ 0 −  4 10 ∗ 0,81128

= 0,55678

𝑆𝑌𝑒𝑠
is married age uses computer at work by computer

Yes young Yes Yes

Yes young Yes Yes

No young Yes Yes

Yes middle Yes Yes

No middle Yes Yes

No old Yes Yes

𝑆𝑁𝑜

is married age uses computer at work by computer

Yes old No No

Yes old No No

Yes young No Yes

Yes middle No No
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Obtained decision tree

attribute a H(S|a)

is married 0,191631

age 0,330313

uses computer at work 0,55678
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Other impurity measures

85

• Gini index:

Gini(S) = 𝟏 −  𝑖=1
𝐾 𝑝𝑖

2 ,

• Misclassification error:

Mis(S) = 𝟏 − max
𝑖∈{1,…,𝐾}

𝑝𝑖
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Decision Trees for data mining

(non-stream data)

86
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Non stream data impurity measures

Entropy

e.g. ID3, C4.5

Gini index

e.g. CART

Misclassification 

error

     
1

i

i

a
a

a a

i

S
f S H S H S

S

 

  1 max i
i

Mis S p 

     
1

i

i

a
a

a a

i

S
f S Gini S Gini S

S

       
1

i

i

a
a

a a

i

S
f S Mis S Gini S

S

 

Among d attributes choose one such that

 
 1, ,

arg max a

a d

b f S




Split measures

𝐺𝑖𝑛𝑖(𝑆) = 1 − 𝑝𝑖
2 𝐻(𝑆) = − 𝑝𝑖 log 𝑝𝑖  
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In the case of data streams data arrive continuously

to the considered node

Decision tree for static data:

1) Which attribute to choose?

Decision tree for stream data:

1) Which attribute to choose?

2) When to make a split?

Decision tree for data stream

88
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The aim is to design a decision tree learning

system, applied to data streams, which provides an

output nearly identical to that induced by a

conventional learner.

Decision tree for data stream

89
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90

P. Domingos and G. Hulten, ”Mining high-speed data streams”, Proc. 6th ACM SIGKDD

Internat. Conf. on Knowledge Discovery and Data Mining, pp. 71-80, 2000.

G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, In Proceedings

of the seventh ACM SIGKDD international conference on Knowledge discovery and data

mining (KDD '01), ACM, New York, NY, USA, pp. 97-106, 2001

Decision tree for data stream

Hoeffding trees
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Main ideas applied in the Hoeffding tree

algorithm:

1) Sufficient statistics

2) Splitting criterion

Hoeffding Tree Algorithm - 2000

91

P. Domingos and G. Hulten, ”Mining high-speed data streams”, Proc. 6th ACM SIGKDD Internat.

Conf. on Knowledge Discovery and Data Mining, pp. 71-80, 2000.

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



In each node information collected in a form of „sufficient

statistics”:

𝑵𝒊𝒋𝒌 - numer of data elements from the k-th class

which take the j-th value of the i-th attribute

Required memory per node: 𝑀 = 𝐾 𝑖=1
𝑑 𝑣𝑖 .

For two-class binary problem: 𝑀 = 4𝑑.

Hoeffding tree algorithm: sufficient statistics

92

P. Domingos and G. Hulten, ”Mining high-speed data streams”, Proc. 6th ACM SIGKDD Internat.

Conf. on Knowledge Discovery and Data Mining, pp. 71-80, 2000.
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Hoeffding tree algorithm: splitting criterion

93

1) Compute the split measure function 𝒇𝒊(𝑺) for each

attribute 𝒊 = 𝟏,… , 𝒅 based on the currently collected data

sample 𝑺 = 𝑿𝟏, …𝑿𝑵

2) Find two attributes with the highest values of 𝒇:

𝒇𝒂𝒎𝒂𝒙𝟏
𝑺 , 𝒇𝒂𝒎𝒂𝒙𝟐

𝑺
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Hoeffding tree algorithm: splitting criterion
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3) If

𝒇𝒂𝒎𝒂𝒙𝟏
𝑺 − 𝒇𝒂𝒎𝒂𝒙𝟐

𝑺 > 𝜺 = 𝜺(𝐍, 𝛅),

then with probability 𝟏 − 𝜹

𝑬 𝒇𝒂𝒎𝒂𝒙𝟏
𝑺 > 𝑬[𝒇𝒂𝒎𝒂𝒙𝟐

𝑺 ]

and choose 𝒂𝒎𝒂𝒙𝟏 as a splitting attribute

Else, wait for more data elements in this node
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Online Decision Tree – general algorithm

Splitting criterion:

𝒇𝒂𝒎𝒂𝒙𝟏
− 𝒇𝒂𝒎𝒂𝒙𝟐

> 𝝐
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Hoeffding tree algorithm: splitting criterion

96

Splitting criterion:

𝒇𝒂𝒎𝒂𝒙𝟏
𝑺 − 𝒇𝒂𝒎𝒂𝒙𝟐

𝑺 > 𝜺 = 𝜺(𝐍, 𝛅),

Challenge: How to find formula for 𝜺 𝐍, 𝛅 ???
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The commonly known algorithm called ‘Hoeffdings Tree’ was introduced

by P. Domingos and G. Hulten in [1]. The main mathematical tool used in

this algorithm was the Hoeffding’s inequality [2]:

Theorem: If 𝑋1, 𝑋2, … , 𝑋𝑵 are independent random variables and

𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 (𝑖 = 1, 2, … ,𝑵), then for 𝜖 > 0

𝑃  𝑋 − 𝐸[  𝑋] ≥ 𝜖 ≤ 𝑒−2𝑵
2𝜖2/  𝑖=1

𝑵 (𝑏𝑖−𝑎𝑖)
2

where

 𝑋 =
1

𝑵
 𝑖=1
𝑵 𝑋𝑖 and 𝐸[  𝑋] is expected value of  𝑋.

Hoeffding’s inequality - 1963

[1] P. Domingos and G. Hulten, ”Mining high-speed data streams”, Proc. 6th ACM SIGKDD

Internat. Conf. on Knowledge Discovery and Data Mining, pp. 71-80, 2000.

[2] W. Hoeffding, ”Probability inequalities for sums of bounded random variables”, Journal

of the American Statistical Association, vol. 58, issue 301, pp. 13-30, March 1963. 97
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𝑷  𝑿 − 𝑬[ 𝑿] ≤
𝑹𝟐 𝐥𝐧 𝟏/𝜹

𝟐𝑵
≥ 𝟏 − 𝜹

Assuming that 𝑷  𝑿 − 𝑬[ 𝑿] ≥ 𝝐 ≤ 𝜹
and 𝒃𝒊 − 𝒂𝒊 = 𝑹, 𝒊 = 𝟏,… ,𝑵, 

the Hoeffding’s inequality is equivalent to:

98

[1] W. Hoeffding, ”Probability inequalities for sums of bounded random variables”,

Journal of the American Statistical Association, vol. 58, issue 301, pp. 13-30, March

1963.

[2] P. Domingos and G. Hulten, ”Mining high-speed data streams”, Proc. 6th ACM

SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining, pp. 71-80, 2000.

Hoeffding’s inequality - 1963
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P. Domingos and G. Hulten claimed that owing to the 

Hoeffding’s inequality the form of 𝜺 is given by:

𝜺 = 𝜺 𝑵, 𝜹 =
𝑹𝟐 𝐥𝐧  𝟏 𝜹

𝟐𝑵
,

where 𝑹 is a range of values of the applied split

measure, e.g. 𝑹 = 𝐥𝐨𝐠𝟐𝑲 for information gain

99

[1] P. Domingos and G. Hulten, ”Mining high-speed data streams”, Proc. 6th ACM

SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining, pp. 71-80, 2000.

Hoeffding’s trees
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Very Fast Decision Tree (VFDT)

The VFDT (Very Fast Decision Tree) algorithm makes several

modifications to the Hoeffding tree algorithm to improve both speed and

memory utilization. The modifications include:

• breaking near-ties during attribute selection more aggressively,

• computing function 𝑓𝑎 after a number of training examples,

• deactivating the least promising leaves whenever memory running

low,

• dropping poor splitting attributes,

• improving the initialization method.

Algorithms based on 

the Hoeffding’s bound - 2000 

100

[1] P. Domingos and G. Hulten, ”Mining high-speed data streams”, Proc. 6th ACM

SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining, pp. 71-80, 2000.
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Concept-adapting Very Fast Decision Tree (CVFDT)

for handling concept drift

CVFDT uses a sliding window approach, the main features are the following:

• it does not construct a new model from scratch each time,

• it updates statistics at the modes by incrementing the counts associated

with new examples and decrementing the counts associated with old

ones,

Algorithms based on 

the Hoeffding’s bound - 2001 

101

G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, In Proceedings

of the seventh ACM SIGKDD international conference on Knowledge discovery and data

mining (KDD '01), ACM, New York, NY, USA, pp. 97-106, 2001

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



102

Concept-adapting Very Fast Decision Tree (CVFDT)

for handling concept drift

• If there is a concept drift, some nodes may no longer pass the Hoeffding

bound. When this happens, an alternate subtree will be grown, with the

new best splitting attribute at the root. As new examples stream in, the

alternate subtree will continue to develop, without yet being used for

classification. Once the alternate subtree becomes more accurate than

the existing one, the old subtree is replaced.

Algorithms based on 

the Hoeffding’s bound - 2001 

G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, In Proceedings

of the seventh ACM SIGKDD international conference on Knowledge discovery and data

mining (KDD '01), ACM, New York, NY, USA, pp. 97-106, 2001
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The Hoeffding's bound

The Hoeffding's bound is a wrong

tool to solve the problem of

choosing the best attribute to make

a split in the node!!!
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The Hoeffding's bound

Hoeffding’s inequaity is applicable only for sums (or

arithmetic averages) of random variables.

Nonlinear impurity measures, like information entropy

𝑯 𝑺 = − 

𝒊=𝟏

𝑲

𝒑𝒊(S) 𝐥𝐨𝐠𝟐 𝒑𝒊(S)

or Gini index

𝑮𝒊𝒏𝒊 𝑺 = 𝟏 − 

𝒊=𝟏

𝑲

(𝒑𝒊(S))
𝟐,

can not be presented as a sum of elements.
104
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[1] P. Domingos and G. Hulten, ”Mining high-speed data streams”, Proc. 6th ACM SIGKDD Internat.

Conf. on Knowledge Discovery and Data Mining, pp. 71-80, 2000.

[2] W. Hoeffding, ”Probability inequalities for sums of bounded random variables”, Journal of the

American Statistical Association, vol. 58, issue 301, pp. 13-30, March 1963.

The idea presented in [1] violates the assumptions of

the Hoeffding’s theorem (see [2]) and the concept of

Hoeffding Trees has no theoretical justification.

105

The Hoeffding's bound
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Challenge in Stream Data Mining

Find an appropriate, mathematically

justified, form of the bound 𝜺 = 𝜺(𝐍, 𝛅)
in the general splitting criterion:

𝒇𝒂𝒎𝒂𝒙𝟏
𝑺 − 𝒇𝒂𝒎𝒂𝒙𝟐

𝑺 > 𝜺 = 𝜺(𝐍, 𝛅)

106

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016
WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



What will be shown on the next slides???

107

a) We will study split measures based on the 

following impurity measures:

- information entropy,

- Gini index,

- misclassification error. 

b) We will propose two different techniques to 

solve the problem:

- the McDiarmid’s inequality,

- the Gaussian approximation.
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What will be shown on the next slides???

108

c) We will propose the decision trees  algorithms such 

that if 

𝒇𝒂𝒎𝒂𝒙𝟏
− 𝒇𝒂𝒎𝒂𝒙𝟐

> 𝜺(𝑵, 𝜹)

then

𝑬 𝒇𝒂𝒎𝒂𝒙𝟏
> 𝑬 𝒇𝒂𝒎𝒂𝒙𝟐

with probability 𝟏 − 𝜹 𝒅−𝟏, 𝐰𝐡𝐞𝐫𝐞 𝒅 𝐢𝐬 𝐭𝐡𝐞 𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟
𝐚𝐭𝐭𝐫𝐢𝐛𝐮𝐭𝐞𝐬.

WHAT IS THE VALUE OF 𝜺 ???
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Papers concerning the issue

Leszek Rutkowski, Lena Pietruczuk, Piotr Duda, Maciej Jaworski, Decision trees for 

mining data streams based on the McDiarmid's bound, IEEE Transactions on 

Knowledge and Data Engineering, vol. 25, no. 6, pp. 1272–1279, 2013.

Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, Piotr Duda, Decision trees for 

mining data streams based on the Gaussian approximation, IEEE Transactions on 

Knowledge and Data Engineering, vol. 26, no. 1, pp. 108-119, Jan. 2014.

Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, Piotr Duda, The CART 

decision tree for mining data streams, Information Sciences, vol. 266, pp. 1 – 15, 2014.

Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, Piotr Duda, A new method for 

data stream mining based on the misclassification error, IEEE Transaction on Neural 

Networks and Learning Systems, vol. 26,PP 1048-1059, no. 5, 2015.

109
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How to 

deal

with 

stream

data?

110

Under condition (*)

𝑬 𝒇𝒂𝑴𝑨𝑿𝟏
> 𝑬 𝒇𝒂𝑴𝑨𝑿𝟐

with probability 1 − 𝛿 𝑑−1.

H𝐎𝐖 𝐓𝐎 𝐃𝐄𝐓𝐄𝐑𝐌𝐈𝐍𝐄 𝐓𝐇𝐄 𝐕𝐀𝐋𝐔𝐄 𝐎𝐅 𝝐 ???

𝑓𝑎(𝑆) = 𝐻(𝑆) − 
 𝑆𝑎𝑖  

|𝑆|
𝐻(𝑆𝑎𝑖

)

|𝑎|

𝑖=1

 𝑓𝑎(𝑆) = 𝐺𝑖𝑛𝑖(𝑆) − 
 𝑆𝑎𝑖  

|𝑆|
𝐺𝑖𝑛𝑖(𝑆𝑎𝑖)

|𝑎|

𝑖=1

 𝑓𝑎(𝑆) = 𝑀𝑖𝑠(𝑆) − 
 𝑆𝑎𝑖  

|𝑆|
𝑀𝑖𝑠(𝑆𝑎𝑖)

|𝑎|

𝑖=1

 

ID3 CART
DT based on 

misclas.

Among d attributes choose one such that
𝑏 =

𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎 ∈ {1,… , 𝑑}𝑓𝑎(𝑆) 

McDiarmid theorem or Gaussian approximation

Split criteria for stream data 
Choose an attribute such that

(*)𝑓𝑀𝐴𝑋1
(𝑆) − 𝑓𝑀𝐴𝑋2

(𝑆) > 𝜀 

Split measures for non stream data



Let 𝑆 = 𝑋1, … , 𝑋𝑁 be the set of i.i.d. random variables, 𝑋𝑖 ∈ 𝑈𝑖

Suppose that the (measurable) function
 𝑓: 𝑈𝑖 → ℝ satisfies

𝒔𝒖𝒑

𝑿𝟏, … , 𝑿𝑵,  𝑿𝒊
| 𝒇(𝑿𝟏, … , 𝑿𝒊, … , 𝑿𝑵)− 𝒇(𝑿𝟏, … ,  𝑿𝒊, …𝑿𝑵)| ≤ 𝒄𝒊,

for some constants 𝒄𝒊, 𝐢 = 𝟏,… , 𝐍. Then

Pr(  𝑓(S)−E|  𝑓(S)| ≥ 𝜀) ≤ exp
−2𝜀2

 𝑖=1
𝑁 𝑐𝑖

2 .

C. McDiarmid, On the Method of Bounded Differences, Surveys in Combinatorics, J. Siemons, ed.,

pp. 148-188, Cambridge Univ. Press, 1989

McDiarmid’s inequality

111
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The main result of our research is the

following theorem stating that if the difference

between the information gain estimates

obtained for two attributes is greater than a

specific value 𝜀 𝑁, 𝛿 , then with a fixed

probability 1 − 𝛿 there is, roughly speaking, a

statistical difference between the expected

values of information gain.
112

Application of the McDiarmid’s inequality to 

stream data mining
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L. Rutkowski, L. Pietruczuk, P. Duda, M. Jaworski, Decision trees for mining data streams

based on the McDiarmid’s bound, IEEE Transactions on Knowledge and Data

Engineering, vol.25, no.6, pp.1272-1279, June 2013 113

McDiarmid’s inequality - information gain
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Theorem 1: Let 𝑆 = {𝑋1, … , 𝑋𝑁} be the set of independent

random variables, with each of them taking values in the set

𝐴1𝘹…𝘹 𝐴𝑑 × 𝑌 . Then, for any fixed 𝛿 and any pair of

attributes 𝑎 and 𝑏, where 𝐻 𝑆|𝑎 − 𝐻 𝑆|𝑏 > 0, if

𝜀 = 𝐶𝐺𝑎𝑖𝑛 𝐾,𝑁
ln 1/𝛿

2𝑁

where

𝐶𝐺𝑎𝑖𝑛 𝐾,𝑁 = 6 𝐾 log2 𝑒𝑁 + log2 2𝑁 + 2 log2𝐾
then

𝐸 𝐻 𝑆 𝑎 > 𝐸[𝐻 𝑆 𝑏 ], with prob. 1 − 𝛿. 



L. Rutkowski, L. Pietruczuk, P. Duda, M. Jaworski, Decision trees for mining data streams

based on the McDiarmid’s bound, IEEE Transactions on Knowledge and Data

Engineering, vol.25, no.6, pp.1272-1279, June 2013
114

McDiarmid’s inequality - Gini gain
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Theorem 2: Let S= {𝑋1, … , 𝑋𝑁} be the set of independent

random variables, with each of them taking values in the

set 𝐴1𝘹…𝘹 𝐴𝑑 × 𝑌 . Then, for any fixed 𝛿 and any pair of

attributes 𝑎 and 𝑏, where 𝐺𝑖𝑛𝑖 𝑆|𝑎 − 𝐺𝑖𝑛𝑖 𝑆|𝑏 > 0, if

𝜀 =
8ln 1/𝛿

2𝑁

then

𝐸 𝐺𝑖𝑛𝑖 𝑆 𝑎 > 𝐸[𝐺𝑖𝑛𝑖 𝑆 𝑏 ],  with prob. 1 − 𝛿.



Conclusion: If the number of data elements 𝑁
satisfies the condition

then the number of data elements is sufficient

enough to say that attribute 𝑎 is „better” (with

probability 1 − 𝛿 to make a split than attribute 𝑏.

𝑁 > 64
ln 1/𝛿

2 𝐺𝑖𝑛𝑖 𝑆|𝑎 − 𝐺𝑖𝑛𝑖 𝑆|𝑏

115

McDiarmid’s inequality - Gini gain
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or equivalently 

where

𝒑𝒊 – probability that element belongs to the 𝑖-th class

(proportion of elements in S belonging to the 𝑖-th class)

𝑵𝒊 - the number of data elements in 𝑆 from the 𝑖-th class

𝑴𝒊𝒔 𝑺 = 𝟏 − 𝐦𝐚𝐱
𝒊=𝟏…𝑲

𝒑𝒊

116

𝑴𝒊𝒔 𝑺 = 𝟏 −
𝐦𝐚𝐱
𝒊=𝟏…𝑲

𝑵𝒊

𝑵

Misclassification error
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𝑴𝒊𝒔 𝑺 = 𝟏 − 𝐦𝐚𝐱
𝒊=𝟏…𝑲

𝒑𝒊

117

Misclassification error

Comparison for two-class problem

𝑮𝒊𝒏𝒊 𝑺 = 𝟏 − 

𝒊

𝑲

𝒑𝒊
𝟐

𝑯 𝑺 = − 

𝒊

𝑲

𝒑𝒊 log𝟐 𝒑𝒊
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𝑴𝒊𝒔 𝑺|𝒂 = 𝑴𝒊𝒔 𝑺 − 

𝒊=𝟏

𝒂
𝑺𝒊
𝑺

𝑴𝒊𝒔(𝑺𝒊)

118

Split measure function based on the 

misclassification error

Analogously to the information gain: 

𝑯 𝑺 𝒂 = 𝑯 𝑺 −  𝒊=𝟏
𝒂 𝑺𝒊

𝑺
𝑯(𝑺𝒊),

And Gini gain:

Gini 𝑺 𝒂 = 𝑮𝒊𝒏𝒊 𝑺 −  𝒊=𝟏
𝒂 𝑺𝒊

𝑺
𝑮𝒊𝒏𝒊(𝑺𝒊).
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Theorem 3: Let us consider two attributes 𝑎 and 𝑏, for which the

values of split measure function based on the misclassification

error were calculated for set S. If the condition Mis 𝑆|𝑎 −
𝑀𝑖𝑠 𝑆|𝑏 > 𝜀 is satisfied, where

𝜺 = 𝒛(𝟏−𝜹)
𝟏

𝟐𝑵
,

𝑧(1−𝛿) is the 1 − 𝛿 −th quantile of the standard normal distribution

𝒩 0,1 , then E[𝑀𝑖𝑠 𝑆 𝑎 ] is greater then E[𝑀𝑖𝑠 𝑆 𝑏 ] with

probability 1 − 𝛿.

L. Rutkowski, M. Jaworski, L. Pietruczuk, P. Duda, A new method for data stream mining

based on the misclassification error, IEEE Transaction on Neural Networks and Learning

Systems, vol. 26,pp. 1048-1059, no. 5, 2015 119

Splitting criterion for misclassification-based split

measure function – Gaussian approximation
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Theorem 4: Let us consider two attributes 𝑎 and 𝑏, for which we

the values of split measure function based on the

misclassification error were calculated for set S. If the condition

𝑀𝑖𝑠 𝑆|𝑎 −𝑀𝑖𝑠 𝑆|𝑏 > 𝜀 is satisfied, where

𝜺 =
𝟐 𝐥𝐧𝟏/𝜹

𝑵
,

then E[𝑀𝑖𝑠(𝑆|𝑎)] is greater then 𝐸[𝑀𝑖𝑠(𝑆|𝑏)] with probability 1 − 𝛿.

Remark. Theorem 4 is based on the Hoffeding’s inequality!!!

120

Splitting criterion for misclassification-based split

measure function – Hoeffding’s inequality
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Comparison of the newest 

results 

121

Impurity

measure

Method

Information entropy Gini index
Misclassification

error

Hoeffding

bound

𝛆 =
𝐑𝟐 𝐥𝐧𝟏/𝛅

𝟐𝐧

Incorrectly obtained

Domingos and Hulten, ACM 2000 

𝛆 =
𝐑𝟐 𝐥𝐧 𝟏/𝛅

𝟐𝐧

Incorrectly obtained

Domingos and Hulten, ACM 2000

𝛆 =
𝟐 𝐥𝐧𝟏/𝛅

𝐧

McDiarmid

bound

𝛆 = 𝐂𝐆𝐚𝐢𝐧(𝐊,𝐧)
𝐥𝐧𝟏/𝛅

𝟐𝐧

𝐶𝐺𝑎𝑖𝑛 𝐾, 𝑛 = 6(K log2 𝑒𝑛+log2 2𝑛)+2log2 𝐾

Rutkowski et. al.,  IEEE Trans. on 

Knowledge and Data Engineering, 2013

𝛆 = 𝟖
𝐥𝐧𝟏/𝛅

𝟐𝐧

Rutkowski et. al., IEEE Trans. on Knowledge 

and Data Engineering, 2013

𝛆 =
𝟐 𝐥𝐧𝟏/𝛅

𝐧

Gaussian 

approximation

𝜺 = 𝐳(𝟏−𝛅)
𝟏

𝟐𝐧

Rutkowski et. al., IEEE Trans. on 

Neural Networks and Learning 

Systems,  2015

If 𝒇𝒂 𝑺 − 𝒇𝒃 𝑺 > 𝜺, 

then with probability 𝟏 − 𝜹 𝑬 𝒇𝒂 𝑺 > 𝑬[𝒇𝒃 𝑺 ]



122
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• Splitting criterion for Gini index:

𝒇𝒂𝒎𝒂𝒙
𝒁 − 𝒇𝒂𝒎𝒂𝒙𝟐

𝒁 >
𝟖 𝒍𝒏

𝟏
𝜹

𝒏(𝒁)
,

• Splitting criterion for mislcassification error:

𝒇𝒂𝒎𝒂𝒙
𝒁 − 𝒇𝒂𝒎𝒂𝒙𝟐

𝒁 > 𝒛 𝟏−𝜹

𝟏

𝟐𝒏 𝒁
,

‚Single’ Splitting Criteria
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Experimental Results

Accuracy vs numer of data elements: dataset no. 1
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Experimental Results

Accuracy vs numer of data elements: dataset no. 2
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𝑓𝑮
𝒊
𝑍 - split measure for Gini index

𝑓𝑴
𝒊
𝑍 - split measure for misclassification error

Hybrid criterion:
If:

𝑓𝑮
𝑎𝐺,𝒎𝒂𝒙

𝑍 − 𝑓𝑮
𝑎𝐺,𝒎𝒂𝒙𝟐

𝑍 >
𝟖 𝐥𝐧

𝟏
𝜹

𝒏(𝑍)
,

Choose the attribute with index 𝑎𝐺,𝒎𝒂𝒙 to split the node.

Else, if:

𝑓𝑴
𝑎𝑀,𝒎𝒂𝒙

𝑍 − 𝑓𝑴
𝑎𝑀,𝒎𝒂𝒙𝟐

𝑍 > 𝒛 𝟏−𝜹

𝟏

𝟐𝒏 𝑍
,

Choose the attribute with index 𝑎𝑀,𝒎𝒂𝒙 to split the node.

Hybrid Splitting Criterion

Part 1

Part 2
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Online Decision Tree with hybrid splitting criterion
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Experimental Results

Accuracy vs numer of data elements: dataset no. 1
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Experimental Results

Accuracy vs numer of data elements: dataset no. 2
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Experimental Results

Number of leaves vs numer of data elements: dataset no. 1
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Experimental Results

Number of leaves vs numer of data elements: dataset no. 2
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Experimental Results

Processing time vs numer of data elements: dataset no. 2
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Experimental Results

Processing time vs numer of data elements: dataset no. 2
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• Misclassification error + Hoeffiding’s inequality:

𝒇𝒂𝒎𝒂𝒙
𝒁 − 𝒇𝒂𝒎𝒂𝒙𝟐

𝒁 >
𝟐 𝒍𝒏

𝟏
𝜹

𝒏(𝒁)

• Gini index + McDiarmid’s bound + bias ([1])

𝒇𝒂𝒎𝒂𝒙
𝒁 − 𝒇𝒂𝒎𝒂𝒙𝟐

𝒁 >
𝟖 𝒍𝒏

𝟏
𝜹

𝒏 𝒁
+

𝟖

𝒏(𝒁)

More ‚single’ splitting criteria

[1] R. De Rosa and N. Cesa-Bianchi Splitting with confidence in decision trees with application to 

stream data, Proceedings of the International Joint Conference on Neural Networks, 2015. 
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Online decision trees algorithms notations

Misclassification error + Hoeffiding’s inequality

Gini index + McDiarmid’s inequality

Gini index + McDiarmid’s inequality + bias

Hybrid: 1 + 2

Hybrid: 1 + 3

ODTm

OTDG1

ODTG2

ODTh1

ODTh2

1

2

3

4

5

No.                Notation Splitting criterion
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Experimental Results

Accuracy vs numer of data elements: dataset no. 1
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Experimental Results

Accuracy vs numer of data elements: dataset no. 2
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Experimental Results

Number of leaves vs number data elements: dataset no. 1
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Experimental Results

Number of leaves vs number data elements: dataset no. 2
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Experimental Results

Accuracy vs numer of leaves: dataset no. 1
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Experimental Results

Accuracy vs numer of leaves: dataset no. 2
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142

Comparison with ‚Hoeffding Trees’

• HDT:

𝒇𝒂𝒎𝒂𝒙
𝒁 − 𝒇𝒂𝒎𝒂𝒙𝟐

𝒁 >
𝑹𝒍𝒏

𝟏
𝜹

𝟐𝒏 𝒁

(for Gini index R = 1)

• 1/2HDT:

𝒇𝒂𝒎𝒂𝒙
𝒁 − 𝒇𝒂𝒎𝒂𝒙𝟐

𝒁 > 𝟎. 𝟓
𝑹𝒍𝒏

𝟏
𝜹

𝟐𝒏 𝒁
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Accuracy vs numer of data elements

Experimental Results
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Data stream mining
- content

 Data streams – introduction to the topic

 Concept drift

 Various strategies of learning

 How to deal with concept drift?

 Data stream classification methods – short overview 

 Decision trees for data streams (including new results 2016) 

 Ensemble methods for data streams (including new 

results 2016)

 Probabilistic neural networks for stream data mining (including 

new results 2016)

 Final remarks and challenging problems 

 References 144
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Stream Data
- Ensemble methods

145
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Stream Data
- Ensemble methods

Main steps of ensemble methods:

– Divide the data stream into equal sized chunks

– Train a new classifier based on current data chunk

– Keep the best L classifiers in the ensemble, e.g. L= 5

146
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Stream Data
- Ensemble methods

• Which components to use?

• How to train the components?

• How big the ensemble should be?

• How to establish the usefulness of component to 
the ensemble?

• How to assign weights to the components?

• How to reduce the ensemble size?

Main questions with designing ensemble 
system for data stream mining:

147
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Stream Data
- Ensemble methods (the Adaboost)

148
* Yoav Freund and Robert E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of 

Computer and System Sciences, vol. 55, no. 1, pp. 119 –139, 1997.
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Stream 

Data
- Ensemble 

methods

the Adabost

149

* Yoav Freund and Robert E. Schapire, A 

decision-theoretic generalization of on-line 

learning and an application to boosting,

Journal of Computer and System 

Sciences, vol. 55, no. 1, pp. 119 –139, 

1997.
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Stream Data
- Ensemble methods (the SEA)

𝑃1 denotes the percentage of votes for the most often occurring class, 

𝑃2 denotes the percentage of votes obtained by the second most

frequently occurring class, 

𝑃𝐶 denotes the percentage obtained by the class of the correct class

𝑃𝑇 denotes the percentage of the prediction of the new classifier. 

• the ensemble and the new tree give correct answers: the quality

measure is increased by 1 − 𝑃1 − 𝑃2
• the new tree gives correct answer but the ensemble is wrong: the

quality measure is increased by 1 − 𝑃1 − 𝑃𝐶
• the tree gives wrong answer: the quality measure is decreased by

1 − 𝑃𝐶 − 𝑃𝑇
The obtained values of weights are used to determine if the newly

created classifier should replace the least efficiently performing

algorithm in the ensemble.

150

* W. Nick Street and Yong Seog Kim, A streaming ensemble algorithm (sea) for large-scale classification, In Proceedings of the 

Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01, pp. 377–382, New York, NY, 

USA, 2001, ACM. 
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Stream Data
- Ensemble methods (the AWE)

Accuracy Weighted Ensemble (AWE)

to each component in the ensemble the weight is assigned

𝒲 𝜏𝑗 = 𝑀𝑆𝐸𝑟 −𝑀𝑆𝐸𝑗 where

𝑀𝑆𝐸𝑗 =
1

𝑆 𝑗
 

𝑋𝑘∈𝑆
𝑗

1 − 𝜔(𝜏𝑗, 𝐶)
2
,

𝑀𝑆𝐸𝑟 =  

𝐶

𝜔 𝐶 1 − 𝜔 𝐶
2
,

where 𝑆 𝑗 denotes the number of data in the 𝑗-th chunk,

𝜔(𝜏𝑗 , 𝐶) denotes the probability that classifier 𝑖 will assign a

correct class to data element and 𝜔 𝐶 denotes the probability

of class 𝐶. In this case, 𝑀𝑆𝐸𝑟 is the mean square error of

randomly predicting classifier which defined the boundary for

assessment of the minimal accuracy that the components in the

ensemble should have. The members with lower accuracy are

proven to decrease the performance of the whole ensemble

method.

151

* Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting data streams using ensemble classifiers. In 

Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pp. 226–235, 

New York, NY, USA, 2003. ACM.
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Stream 

Data
- Ensemble 

methods

the Rotation

Forest

152

The main idea is to obtain different

classifiers based on the sets of data

that are transformed by the PCA

algorithm. For construction of each

decision tree a different mixture of

features is taken into account and

the principal component analysis

(PCA) is applied on those sets. A

new classifier is then trained based

on data elements transformed

linearly into new feature space. The

diversity is obtained through the use

of various extracted features which

are the result of choosing different

mixtures of feature components.

* Juan J. Rodriguez, Ludmila I. Kuncheva, and Carlos J. Alonso. Rotation forest: A new classifier

ensemble method, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 10, 

pp. 1619–1630, Oct 2006.
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Stream 

Data
- Ensemble 

methods

the 

Learn++.NSE

153
* Ryan Elwell and Robi Polikar, Incremental learning of concept drift in nonstationary environments, IEEE 

Transactions on Neural Networks, vol. 22, no. 10, pp. 1517–1531, Oct 2011.
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Stream Data
- Ensemble methods (the Adaptive Ensemble Classifier)

154

* Dewan Md. Farid, Li Zhang, Alamgir Hossain, Chowdhury Mofizur Rahman, Rebecca Strachan, Graham Sexton, and Keshav

Dahal, An adaptive ensemble classifier for mining concept drifting data streams, Expert Systems with Applications, vol. 40, no. 15, 

pp. 5895 – 5906, 2013. 
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Stream Data
- Ensemble methods (the AUE)

𝒲𝑗 =
1

𝑀𝑆𝐸𝑗+𝜖

where 𝜖 is a very small

constant value which is used

to avoid the problem of

division by zero.

155
* Dariusz Brzezinski and Jerzy Stefanowski, Reacting to different types of concept drift: The accuracy updated ensemble 

algorithm, IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 1, pp. 81–94, Jan 2014.
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Stream 

Data
- Ensemble 

methods

the OAUE
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Stream Data
- Ensemble methods (the OAUE)
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Stream 

Data
- Ensemble 

methods

the OAUE

Brzezinski D., Stefanowski J., „Combining 

block-based and online methods in learning 

ensembles from concept drifting data 

streams”, Information Sciences, Vol. 265, 

pp. 50-67, 2014 158
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Stream Data
- Ensemble methods
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Data

- General 

Ensemble 

Strategies
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Ensemble 

Strategies
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Stream Data

- Ensemble methods
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Stream Data
- The Automatically Adjusting Size of Ensemble Algorithm (ASE)
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Stream Data

- Ensemble methods
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Stream Data
- The Automatically Adjusting Size of Ensemble Algorithm (ASE)
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Stream Data
- The Automatically Adjusting Size of Ensemble Algorithm (ASE)
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Stream Data
- The Automatically Adjusting Size of Ensemble Algorithm (ASE)

Bayes AUE AWE Bagging
Bagging

Adwin
Boosting WMA

Hoefding

Adapive

Tree

Hoeffding 

Opt.Tree

Hoeffding 

Tree

AASE 

η=20

AASE 

η=40

GEN1 80.86% 95.55% 96.86% 96.19% 96.19% 95.90% 95.23% 94.13% 95.62% 92.17% 90.68% 90.23%

GEN2 50.00% 87.18% 86.33% 89.69% 88.71% 87.80% 89.35% 86.91% 89.16% 89.35% 92.42% 92.30%

GEN3 86.85% 70.94% 69.27% 79.72% 70.02% 70.26% 80.19% 71.93% 80.08% 80.08% 91.31% 91.06%

GEN4 74.88% 73.61% 73.87% 74.45% 73.63% 73.91% 73.73% 73.12% 73.81% 73.73% 90.46% 90.30%
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Stream Data
- The Automatically Adjusting Size of Ensemble Algorithm (ASE)

GEN1 GEN2 GEN3 GEN4

𝛾1
max tree 

number

end tree 

number

max tree 

number

end tree 

number

max tree 

number

end tree 

number

max tree 

number

end tree

number

0.01 7 5 5 2 6 3 9 2

0.05 9 6 7 2 7 5 14 5

0.10 14 9 10 4 11 7 21 7

0.15 17 11 14 4 13 9 19 9

0.20 22 13 18 6 18 10 29 12

Accuracy

0.01 91.89% 92.45% 91.91% 87.84%

0.05 92.37% 93.19% 92.62% 88.97%

0.10 93.08% 93.96% 93.16% 89.93%

0.15 93.24% 94.19% 93.41% 90.27%

0.20 93.43% 94.38% 93.67% 90.47%
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Stream Data
- The Automatically Adjusting Size of Ensemble Algorithm (ASE)

GEN1 GEN2 GEN3 GEN4

𝛾2
max tree

number

end tree 

number

max tree

number

end tree

number

max tree

number

end tree

number

max tree

number

end tree 

number

0.01 21 13 18 6 18 10 26 11

0.05 22 13 18 6 18 10 29 12

0.10 24 15 17 6 17 11 31 11

0.15 23 15 17 5 17 10 27 11

0.20 23 15 17 7 17 12 26 11

Accuracy

0.01 93.43% 94.33% 93.68% 90.48%

0.05 93.43% 94.38% 93.67% 90.47%

0.10 93.30% 94.33% 93.65% 90.46%

0.15 93.28% 94.26% 93.53% 90.56%

0.20 93.27% 94.29% 93.64% 90.47%
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Stream Data
- The Automatically Adjusting Size of Ensemble Algorithm (ASE)

GEN1 GEN2 GEN3 GEN4

0.01 539 458 484 613

0.05 539 432 472 620

0.10 517 410 475 615

0.15 521 399 454 605

0.20 509 397 438 569

difference 30 61 46 44
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Stream Data
- The Dynamically Expanded Ensemble Algorithm (DEEA)

173

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



Stream Data
- The Dynamically Expanded Ensemble Algorithm (DEEA)
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Stream Data

-

The 

Dynamically 

Expanded 

Ensemble 

Algorithm 

(DEEA)
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Data stream mining
- content

 Data streams – introduction to the topic

 Concept drift

 Various strategies of learning

 How to deal with concept drift?

 Data stream classification methods – short overview 

 Decision trees for data streams (including new results 2016) 

 Ensemble methods for data streams (including new results 2016)

 Probabilistic neural networks for stream data mining 

(including new results 2016)

 Final remarks and challenging problems 

 References 
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PNN for stream data mining

Histograms

178
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Let 𝑋1, … , 𝑋𝑛 be a sequence of independent, identically

distributed random variables taking values in 𝐴 ⊂ ℝ𝑝 and

having a probability density function 𝑓. The general estimator of

the probability density function 𝑓 is given by the following

formula

   



n

i

inn XxK
n

xf
1

,
1ˆ

where

179

   i
n

in XxK
h

XxK ,
1

, 
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Parzen (1962):

Cacullous (1965):

   np

n

n

n nhhnh ,0,0

  











 


n

i n

i

n

n
h

Xx
K

nh
xf

1

1ˆ

  











 


n

i n

i

p

n

n
h

Xx
K

nh
xf

1

1ˆ

ACIIDS 2014 (Bangkok, April 7-9, 

2014)
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Parzen (1962):
  











 


n

i n

i

n

n
h

Xx
K

nh
xf

1

1ˆ
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Example (Gaussian kernel)

  








 
 

n

p

nn
h

ux
KhuxK ,

    j
p

j

xHxK 



1

 
   










 
 





n

jjp

j

p

nn
h

ux
HhuxK

1

,
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   
2

2

1

2

1

2





 eH

   
   






















 
 





2

1 2

1
exp2, 2

1

n

jjp

j

p

nn
h

ux
huxK 

 
 

   


 






















 


n

i n

j

i
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j
p

n

n
h

Xx

nh
xf

1

2

1 2

1
exp

2

1ˆ
2

1


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)( px

1

1



 2
nh

2
nh

exp

exp


 xfn

ˆ

(2)x

 1
1X

(1)x

  p
n

p
hn  12

2

 2
1X

 pX1

 1
nX

 2
nX

 p
nX

Probabilistic neural network for density estimation 

based on the Parzen kernel
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       



n

i

iin

n

i

inn XxK
n

xfXxK
n

xf
11

,
1ˆ,

1ˆ

Let us modify estimator as follows 
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        

  0ˆ

ˆ,
1

1ˆˆ

0

111






 

xf

xfXxK
n

xfxf nnnnn

Observe that estimator is computationally equivalent 

to the recursive procedure

nX  xfn
ˆ



1z

n

n 1

n

1
 nn XxK ,

Recursive probabilistic neural network for density estimation 187
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2

nh exp

 2x

 1x 1

n

n 1

 1
nX

 2
nX

 p
nX

1z

 px

  p

n

p
hn  12

2

 xfn 1
ˆ


 xfn
ˆ

Recursive probabilistic neural network for estimation based on  the 

Parzen kernel
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   xfpxd jjj 

Let 𝑋, 𝑌 , 𝑋1, 𝑌1 , … , 𝑋𝑛, 𝑌𝑛 be a sequence of i.i.d. pairs of

random variables, 𝑌 takes values in the set of classes S =
1,… ,𝑀 , whereas 𝑥 takes values in 𝐴 ⊂ ℝ𝑝. The problem is

to estimate 𝑌 from 𝑥 and 𝑤𝑛, where 𝑤𝑛 = 𝑋1, 𝑌1 , … , 𝑋𝑛, 𝑌𝑛
is a learning sequence. Suppose that 𝑝𝑚 and 𝑓𝑚 , 𝑚 =
1,… ,𝑀 are the prior class probabilities and class conditional

densities, respectively. We define a discriminant function of

class 𝑗:
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      



A

j

M

j

j dxxfjxLpR ,
1



Let 𝐿 𝑖, 𝑗 be the loss incurred in taking action 𝑖 ∈ 𝑆 when the class is 𝑗.
We assume 0 − 1 loss function. For a decision function 𝜑: 𝐴 → 𝑆 the

expected loss is

190

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016

PNN for stream data mining
for pattern classification



       



 
A

j

M

j

j dxxfjxLpRR ,
1



A decision function 𝝋∗ which classifies every as coming

from any class 𝑚 for which

is a Bayes decision function and

is the minimal Bayes risk. The function 𝒅𝒎 𝒙 is called the

Bayes discriminant function.
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A decision function 
  which classifies every Ax  as coming from any class m 

for which 

 

     xdxfpxfp j
j

jj
j

mm maxmax 
 

 

is a Bayes decision function and 

 

       



 
A

j

M

j

j dxxfjxLpRR ,
1

  

 

is the minimal Bayes risk. The function  xdm  is called the Bayes discriminant 

function. 
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Generalized regression neural network 

for pattern classification
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2
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


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

2
nh

2
nh



exp

exp

nT2

12T



exp

exp

nT1

11T



Generalized regression neural 

network based on the Parzen

kernel for pattern classification 

(M=2)
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Recursive generalized regression neural network for pattern classification195
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Recursive generalized regression neural network based on the Parzen kernel 

for pattern classification (M=2)
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𝐾 – number of classes

Concept Drift:

𝑓𝑚𝑛 𝑥 – time-varying probability density of 

class m (𝒎 = 𝟏, . . , 𝑲) 

at the instant n (𝒏 = 𝟏, 𝟐,…)

𝑝𝑚𝑛 – time-varying a priori probabilities
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Find estimate  𝒅𝒎𝒏 of 𝒅𝒎𝒏 such that

   ,xfpxd mnmnmn  ,,...,1 Km  ,...,2,1n

We want to estimate

in probability

(with probability one) 
0)()(ˆ  n

mnmn xdxd
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 xd n2
ˆ

Mn
T

 2
na

n
T

2

1-z

1-z

n
T

1 

1-z

max

 xd n1
ˆ

 xdMn
ˆ





nX Class m

 M
na1

 21 na

 1
1 na

 m
na

  nn Xx,K 1

  nn Xx,K 2

  n
M

n Xx,K

 1
na
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Example

Consider a two-category classification problem with 𝑝1𝑛 = 𝑝2𝑛 =
1

2

and

𝑓1𝑛 𝑥 = 𝑓1 𝑥 − 𝑛𝑡 , 𝑓2𝑛 𝑥 = 𝑓2 𝑥 − 𝑛𝑡

where

𝑓1 𝑥 = 𝒩 0,1 , 𝑓2 𝑥 = 𝒩 2,1

In this case the minimum probability of error is given by 

𝑃𝑒 =
1

2𝜋
 

1

∞

𝑒−𝑢
2/2

𝑑𝑢 = 0.159
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n Error

1000 0.1559

2000 0.1602

3000 0.1573

4000 0.1691

5000 0.1566

6000 0.1598

7000 0.1562

8000 0.1607

9000 0.1561

10000 0.1572

a)

876543210-1

0,4

0,3

0,2

0,1

0

Empirical probability of misclassification

for t=0.1, a=0.7, H=0.5 201
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n Error

1000 0.1639

2000 0.1648

3000 0.1687

4000 0.1649

5000 0.1564

6000 0.1611

7000 0.1558

8000 0.1586

9000 0.1569

10000 0.1562

b)

212019181716151413

0,35

0,3

0,25

0,2

0,15

0,1

0,05

0

Empirical probability of misclassification

for t=0.3, a=0.4, H=0.3
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   xXYEx 

Let 𝑋, 𝑌 be a pair of random variables 𝑋 takes values in a

Borel 𝐴, 𝐴 ⊂ ℝ𝑝, whereas 𝑌 takes values in ℝ. Let 𝑓 be the

marginal Lebesgue density of 𝑋 . Based on a sample

𝑋1, 𝑌1 , … , 𝑋𝑛, 𝑌𝑛 of independent observations of 𝑋, 𝑌 we

wish to estimate the regression function
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To estimate function 𝜙 we propose the following formula

 
 

 xf

xR
x

n

n

n ˆ

ˆ
ˆ 

where

   



n

i

iiin XxKY
n

xR
1

,
1ˆ

and

   



n

i

iin XxK
n

xf
1

,
1ˆ
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

 1x

 px

1Y

nY



 1, XxKn

 nn XxK ,

 xn̂

Scheme of generalized regression neural network
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Example (Nadaraya and Watson ). Applying the Parzen kernel we get

 


















 










 


n

i
n

i

n

i
n

i
i

n

h

Xx
K

h

Xx
KY

x

1

1

̂
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exp

exp

 x
n

̂

n
Y

1
Y



)( px

1

1

2

n
h

2

n
h

(2)x

 1

1
X

(1)x
 2

1
X

 pX
1

 1

n
X

 2

n
X

 p

n
X







Generalized regression neural network based on the Parzen kernel 207
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The recursive version of procedure is given as follows

 
 

 xf

xR
x

n

n

n ˆ

ˆ
ˆ 

where

       



n

i

iin

n

i

iiin XxK
n

xfXxKY
n

xR
11

,
1ˆ                  ,

1ˆ
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        xRXxKY
n

xRxR nnnnnn
ˆ,

1

1ˆˆ
1111 


 

        

  0ˆ

ˆ,
1

1ˆˆ

0

111






 

xf

xfXxK
n

xfxf nnnnn

where  𝑅0 𝑥 = 0 and  𝑓0 𝑥 = 0
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1z

1z



nY

nX

1

1n

n

1


1

1n

 nn XxK ,

 xRn
ˆ

 xfn
ˆ

 xn̂

Recursive generalized regression neural network
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

1z

1z

exp

 2x

 1x
1 1

nX

 2
nX

 p
nX  px

nY

2
nh   p

n
p

hn  12
2



n

n1

n

n1

 xn̂

Recursive generalized regression neural network 

based on the Parzen kernel
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  2nnn YXE 

    ,...,2,1,  nxXYEx nnn

In the non-stationary regression we consider a sequence of

random variables 𝑋𝑛, 𝑌𝑛 , 𝑛 = 1,2,… , having time-varying

cumulative probability density functions 𝑓𝑛 𝑥, 𝑦 . The problem

is to find a measurable function 𝜙𝑛: ℝ
𝑝 → ℝ such that the 𝐿2

risk

attains minimum. The solution is the regression function

changing with time. 212
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For the illustration of the capability of our GRNN we may 

consider an application to modelling of non-stationary plants 

described by

  nnnn ZXY  

where concept drift 𝜙𝑛
∗

is given by:

(i)

(ii)

(iii)

(iv)

   xx nn  

    nn xx  

   nn xx  

   nn xx  
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The problem of non-parametric regression boils down to finding an

adaptive algorithm that could follow the changes of optimal characteristics

expressed by formula. This algorithm should be constructed on the basis

of a learning sequence, i.e. observations of the following random variables

𝑋1, 𝑌1 , 𝑋2, 𝑌2 , …
We assume that pairs of the above random variables are independent.

In points 𝑥, where 𝑓 𝑥 ≠ 0 , the characteristics of the best model can be

expressed as

      ,...,2,1,  nxfxRx nn

where 𝑅𝑛 𝑥 = 𝜙𝑛
∗ 𝑥 𝑓 𝑥 .
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The algorithm has the form

     xfxRx nnn
ˆˆˆ 

        xRXxKYaxRxR nnnnnnn
ˆ,ˆˆ

11111  

        xfXxK
n

xfxf nnnnn
ˆ,

1

1ˆˆ
111 


 

where  𝑅0

∗
𝑥 =0 and  𝑓0

∗
𝑥 =0 
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





1

,0,0
n

n

n

nn aaa

in probability 

(with probability one)
    0ˆ  n

nn xx 

Under specific conditions imposed on parameters 𝑎𝑛 and ℎ𝑛 and

the rate of change of function 𝜙𝑛 the following holds

Let
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Non-stationary plant
nY

x



1
z

1
z

na1

na





n

n 1

 xn̂

nK '

nK"

nX

n

1

Block diagram of the GRNN applied to modelling of non-stationary plant 217
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Block diagram of the GRNN based on the Parzen kernel

exp

 1x
1

 1
nX

 2
nX

 p
nX

 px

  2' 

nh     p

n
p

h
 '2

2

exp

 2x

 1x
1

 1
nX

 2
nX

 p
nX

 px

  2" 

nh     p

n
p

hn
 "12

2

1z

1z

na1

n
n 1

na




 xn̂

 2x

nY
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where 𝑡 > 0 is an unknown parameter and 𝜙 is an unknown

function, it is possible to use algorithm if

Example

In order to track changes of the system described by

    nn

t

n zxcncncy  321 log

0 < 𝑡 <
1

3
for week convergence

0 < 𝑡 <
1

6
for strong convergence

a)

b)
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0
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𝜙𝑛
∗
𝑥𝑛 =10 cos 𝑥𝑛 + 𝒏𝟎.𝟏 + 𝒛𝒏

c) x=0.6
GRNN for modeling regressions with additive non-

stationarity

a) n=1000 b) x=0.2

Example
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0,80,60,40,2
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GRNN for modeling regressions with non-stationarity of 

the type “scale change”

a) n=1000

Example

c) x=0.8b) x=0.2

𝜙𝑛
∗
𝑥𝑛 =10 cos 𝑥𝑛𝒏

𝟎.𝟏 + 𝒛𝒏
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Three types of non-stationarities

222
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2) 𝑌𝑛 = 𝜙 𝑛 𝑋𝑛 + 𝑍𝑛1) 𝑌𝑛 = 𝜙 𝑋𝑛 + 𝑍𝑛
where variance of 𝑍𝑛 is changing

over time

3) 𝑌𝑛 = 𝜙 𝑛 𝑋𝑛 + 𝑍𝑛 with changing variance of 𝑍𝑛



Forgetting mechanism
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Sliding window
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Experimental results
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Experimental results
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Data stream mining
- content

 Data streams – introduction to the topic

 Concept drift

 Various strategies of learning

 How to deal with concept drift?

 Data stream classification methods – short overview 

 Decision trees for data streams (including new results 2016) 

 Ensemble methods for data streams (including new results 2016)

 Probabilistic neural networks for stream data mining (including 

new results 2016)

 Final remarks and challenging problems 

 References 
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Data stream mining
- Final remarks and challenging problems 

To be presented at the end of the tutorial.
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Data stream mining
- content

 Data streams – introduction to the topic

 Concept drift

 Various strategies of learning

 How to deal with concept drift?

 Data stream classification methods – short overview 

 Decision trees for data streams (including new results 2016) 

 Ensemble methods for data streams (including new results 2016)

 Probabilistic neural networks for stream data mining (including 

new results 2016)

 Final remarks and challenging problems 

 References 
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Rutkowski L., Duda P., Jaworski M., Pietruczuk L., Stream Data Mining: 

Algorithms and Their Probabilistic Properties, Studies in Big Data, 

Springer, 2017.

This book shows methods and algorithms which are mathematically justified.

(1) It shows how to adopt the static decision trees, like ID.3 or CART, to deal with data streams.

(2) A new technique, based on the McDiarmid bound, is developed.

(3) New decision trees are designed, by a proper combination of the Gini index and misclassification

error impurity measures, leading to the original concept of the hybrid decision trees.

(4) The problem of designing ensembles and automatic choosing their sizes is described and

solved.

(5) Nonparametric techniques based on the Parzen – kernels and orthogonal series, are adopted to

deal with concept drift in the problem of non-stationary regressions and classification in time-

varying environment. Nonparametric procedures are developed and their probabilistic properties

are investigated.
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