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Overview of the research iIn the Institute

of Computational Intelligence at CUT
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Overview of the research iIn the Institute

of Computational Intelligence at CUT

Rutkowski L., New Soft Computing Techniques for System Modelling,
Pattern Classification and Image Processing, Springer, 2004,

/(1) Probabilistic neural networks tm

, solve various problems of
e ; system modelling and

Y id dawemaston of reseanh remitn

o classification in a non-stationary
et Gesaihcating -
and Image Processing enVIFOnment.

(2) Image compression methods.
i (3) RLS learning algorithms for

multilayer neural networks.
(4) Systolic architectures of

multilayer neural networks.
\__mey ),
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Overview of the research iIn the Institute

of Computational Intelligence at CUT

Rutkowski L., Flexible Neuro-Fuzzy Systems. Structures, learning and

y

//(1) New fuzzy systems which \

outperform previous approaches to

FLEXIBLE

NEURO FUZZY system modelling and classification.
(2) Framework for unification,
P—— construction and development of

neuro-fuzzy systems.

(3) Complete algorithms in a systematic
and structured fashion, easing
understanding and implementation.

\_ /
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Overview of the research iIn the Institute

of Computational Intelligence at CUT

Rutkowski L., Computational intelligence,
Springer, 2008.

/o

(2)
Leszek Rutkowski
Ci)mpijltational 3)
ntelligence
s )
(5)
(6)
(7)

K@)

Selected issues of artificial intelligencex
Methods of knowledge representation
using rough sets.

Methods of knowledge representation
using type-1 and type-2 fuzzy sets.
Neural networks and their learning
algorithms.

Evolutionary algorithms.

Data clustering methods.
Neuro-fuzzy systems of Mamdani,
logical and Takagi-Sugeno type.

Flexible neuro-fuzzy systems. %
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Overview of the research iIn the Institute

of Computational Intelligence at CUT

Rutkowski L., Duda P., Jaworski M., Pietruczuk L., Stream Data Mining:

Algorithms and Their Probabilistic Properties, Studies in Big Data,
Springer, 2017. i

.

(1)
(2)
3)
(4)

(5)

\_

This book shows methods and algorithms which are mathematically justified.

It shows how to adopt the static decision trees, like ID.3 or CART, to deal with data streams.

A new technique, based on the McDiarmid bound, is developed.

New decision trees are designed, by a proper combination of the Gini index and misclassification
error impurity measures, leading to the original concept of the hybrid decision trees.

The problem of designing ensembles and automatic choosing their sizes is described and
solved.

Nonparametric techniques based on the Parzen — kernels and orthogonal series, are adopted to
deal with concept drift in the problem of non-stationary regressions and classification in time-
varying environment. Nonparametric procedures are developed and their probabilistic properties

are investigated. /

9
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Overview of the research iIn the Institute

of Computational Intelligence at CUT

Scherer R., Multiple Fuzzy Classification Systems,
Springer, 2012.

/(1) Ensemble techniques (bagging, \

boosting, negative correlation
learning etc.).

Multiple Fuzzy (2) Relational modular fuzzy systems.
Classification Systems (3) Ensembles of the Mamdani, logical
: and Takagi-Sugeno fuzzy systems.
(4) Rough—neuro—fuzzy ensembles for

K classification with missing data. /
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Overview of the research iIn the Institute

of Computational Intelligence at CUT

Starczewski J., Fuzzy Logic and Systems
with Membership Uncertainty, Springer, 2013.

/(1) Algebraic operations on fuzzy\

valued fuzzy sets.
AR (2) Defuzzification of uncertain
Advanced Concepts fuzzy sets. Generalized
in Fuzzy Logic and Systems . .
with Membership Uncertainty uncertain fuzzy logic systems.
(3) Uncertainty generation in
uncertain fuzzy logic systems.

(4) Designing uncertain fuzzy
logic systems.
\ W,
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Overview of the research iIn the Institute

of Computational Intelligence at CUT

Cierniak R., X-Ray Computed Tomography in Biomedical Engineering,

Springer, 2011 J

Robert Cierniak /(1) Discusses X-ray CT tomography from}\

historical point of view, the design and

physical operating principles of

computed tomography apparatus, the

X-Ray Computed = algorithms AP SR

Tom_ography of image reconstruction and the quality

in Biomedical assessment criteria of tomography

'Engineering scanners.

(2) Algorithms of image reconstruction
from projections, a crucial problem in
medical imaging, are considered in

K depth. %
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Stream Data

/ % Stream of data: \

* huge volumes of continuous data,
* possibly infinite,

« multidimensional features,
 often fast changing,

&requiring fast, real-time responses. /
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Examples of data streams

-Telecommunication calling records,
- Credit card transaction flows,
- Network monitoring and traffic engineering,
- Financial market,

- Audio and video recording of various processes,

- Computer network information flow,

- Web logs and Web page click streams,
- Satelite data flow. p=ws

* 2016 Tutorial, Vancouver, July 24, 2016



Stream Data

Static data

Stream of data

Fixed number of data elements
(unlimited memory usage)

Potentially infinite number of data
clements (memory limitation problem)

Stationary distribution of data

Changing data distribution
(concept drift)

All data available at any time — multiple
passes of data

One pass of data

Unlimited processing time

Processing time depends on rate of
incoming data
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Typical problems in data mining

Xi =[x, . xfyi] =[xyl x/ € A;,y; €B
A X -+ X Ay - space of attributes values

X4, ..., Xy from probability distribution o(x, y)
Two types of supervised learning:

1) Regression - B continuous
2) Classification - B nominal
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Typical problems in data mining

- Regression

X, ..., Xy derived from o(x,y),B c R

Aim: Construct a mapping function:
f: A, XX A4z = B,
such that for any X = [¥, 7] from o(x, y):

f = argfrpin{E[L(f (X)), 7)1}

where L is a loss function, e.g.

L(f*(®),7) = (f"(®) — 7)°
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Typical problems in data mining

- Regression
Y
» e L o @ . ) f(X)
one-dimensional
regression problem

> X

19
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Typical problems in data mining

- Classification

X4, ..., Xy derived from o(x,y), B = {C4, ... Cx}
Aim: Construct a mapping function:

f: Ay XX A; = B,
such that for any X = [¥, ] from o(x, y):

f= ar%glin{E[L(f (%), )1},

where L(f*(X),¥) = {(1): ;:Eg ;=¢
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Supervised learning:

Classification

O ® sgnig(x)) =0
. - sggn((z((x)))) <0
o
. °
. two-dimensional

>x,  classification problem

21
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Stream Data

- concept drift

CONCEPT DRIFT - it i1s a phenomenon describing the
change in data distribution, character or their meaning, e.g.
assigning e-mails to the ”spam” category.
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Stream Data

- concept drift

In data streams the joint probability
distribution o(x, y) can vary over time:

Xl from Ql(xl Y);
X, from g, (x, J’);

Xy from oy (x, y)
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Stream Data

- concept drift
0;(x,y) - joint probability distribution

0i(x,y) =0; (y|x)0;(x)

Type of change: | drift:

0; (¥|x) real
0;(x) virtual
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Stream Data

- concept drift

Virtual concept drift
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Stream Data

- concept drift

Concept

Recurring
context

Irregular
phenomena

Cyclic
phenomena
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Stream Data

- concept drift

Sudden
Incremental

Concept

Recurring
context

Irregular
phenomena

Cyclic
phenomena
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Stream Data

- concept drift

y ‘ 5888888
sudden 585886 .
‘ﬁfﬂﬁ@@i".....

Concept :
Irregular
phenomena

Recurring
context

Cyclic
phenomena
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Stream Data

- concept drift

y ‘ 28988886
sudden 9898888 .
‘ﬁfﬂﬁ@@ill.....

Concept Gradual 1 @ OO0 DCDEE
: radua :

drlft Ej@ Ejfj @ time
Irregular

phenomena

Recurring
context

Cyclic G 11
phenomena ek
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Different kinds of learning

(regarding time constraints and examples availability)

‘ Batch mode learning

* V. Lemaire, Ch. Slaperwyck, A. Bondu, A Survey on Supervised Classification on Data Streams, Lecture Notes in
Business Information Processing, vol. 205, pp. 88-125, Srpinger, 2015 32
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Batch mode learning

Batch mode learning:

consists of learning a model from a representative
dataset which is fully available at the beginning of the
learning stage. This type of algorithm is not appropriate
for stream data.
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Incremental learning

Incremental learning:

consists of receiving and integrating new examples
without the need to perform a full learning phase from
scratch. For any examples X;,X,, ..., It generates the
hypotheses f;, f>, ..., such that f,,.;depends only on f,
and the current example x,,, ;.
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Online learning

Online learning:

an incremental learning for which the examples
continuously arrive from data stream. The requirements
In terms of time complexity are stronger than for the
Incremental learning. Concept drift must be managed by
algorithms of this type.
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Anytime learning

Anytime learning:

algorithm is able to maximize the quality of the learned
model (with respect to a particular evaluation criterion)

until an interruption (which may be the arrival of a new
example).
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_earning on data streams

Desired properties™

(1)[(2)](3)

incremental X | x
read dataonly once | x | x | x
memory management | X | X | X
anytime X | X|Xx

deal with concept drift X

(1) Fayyad, U.M. et al.: Advances in Knowledge Discovery and Data Mining. American Associacion for Artificial
Intelligence, Menlo Park, CA, USA (1996);

(2) Hulten, G., Spencer, L., Domingos, P.. Mining time-changing data streams. In: Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, NY, USA (2001) 97-106;
(3) Stonebraker, M. Cetintemel, U., Zdonik, S.: The 8 requrements of real-time stream processing. ACM
SIGMOD Record 34(4) (December 2005) 42-47;

* V. Lemaire, Ch. Slaperwyck, A. Bondu, A Survey on Supervised Classification on Data Streams,
Lecture Notes in Business Information Processing, vol. 205, pp. 88-125, Srpinger, 2015 37

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



Data stream mining

- content

Data streams — introduction to the topic
Concept drift
Various strategies of learning

How to deal with concept drift?

Data stream classification methods — short overview

Decision trees for data streams (including new results 2016)
Ensemble methods for data streams (including new results 2016)

Probabilistic neural networks for stream data mining (including
new results 2016)

Final remarks and challenging problems
References

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



How to process stream data?

®
« The model (classifier) is |DATA STREAM]

updated after reading every ®
single data element

« Updating must be completed
before the next data element
arrives
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How to process stream data?

« The model (classifier) is

updated after reading @ @ @ @ ® N\ /
every chunk of data
! DATA STREAM |

Chunk

» Updating must be
completed before the
next chunk of data is
collected
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How to deal with concept drift?

Sliding windows

Goal: limit the number of training examples to the most recent ones,
consequently eliminate examples coming from an old concept

Two approaches:

 window of a fixed sized

- classifier based on a small window reacts quickly to concept drifts but loses an accuracy in
periods of stationary data

- Classifier based on a large window fails to react quickly to concept drift
« window size adjusted heuristically (e.g. ADWIN)

* Alexey Tsymbal, Mykola Pechenizkiy, Padraig Cunningham, and Seppo Puuronen. Dynamic integration of classifiers
for handling concept drift. Information Fusion, vol. 9, no 1, pp. 56-68, 2008.

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016
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How to deal with concept drift?

Sliding windows

Algorithm Basic windowing algorithm

Require: S - data stream, W - window of examples
1: initialize window W
2: for all examples X; in S (i =1,2,...) do
3 W+ WU{X;}
4:  if necessary remove outdated examples from W
5. rebuild /update C' using W
6: end for
7: return a classifier built on examples in window W

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



How to deal with concept drift?

Weighted windows

The oldest examples are discarded by using a decay function assigning a
weight to each example, e.g.

Wl(t) = e_}\t; A> 0,

Wb —t= =l
t
= 1 e —

where t represents the age of an example (t = 0 for a new example and
t = |W| — 1 for the last one).

* Edith Cohen, Martin J. Strauss, Maintaining time-decaying stream aggregates, J. Algorithms, vol. 59, no. 1,
pp. 19-36, 2006. 44
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How to deal with concept drift?

Weighted windows

Algorithm Weighted windows

Require: S - data stream, d - window size, w(-) weight function
1: for all examles X; in S, (1 =1,2,...) do

2: if |W|=d then

3: remove the oldest example from W

4:  end if

5. W+ WU{X;}

6: for all examples X7 in So (7 =1,2,...,d) do
T calculate example’s weight w(X7)

8: end for

9: end for

10: return W - a window of examples

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



How to deal with concept drift?

(a family of algorithms called FISH)

The FISH* algorithms are family of methods that take advantage of
similarities between data elements both in time and space. Based on
distances in space d®; and in time d®; we calculate the distance between
X; and X; as follows:

Dij:ald(s)ij - aZd(S)ij

where a, and a, are the weight coefficients.
* Indre Zliobaite, Combining time and space similarity for small size learning under concept drift, In Foundations of

Intelligent Systems, volume 5722 of Lecture Notes in Computer Science, pp.412-421, Springer Berlin Heidelberg, 2009.
** Indre Zliobaite, Adaptive Training Set Formation, PhD thesis, Vilnius University, Lithuania, 2010. 46

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



How to deal with concept drift?

(a family of algorithms called FISH)

In the first version of the algorithm, the number of data instances in the
created training sample is determined by the user, while in FISH2** this
number is not fixed. Moreover, FISH* builds separate data sets for each
class, while the second version takes data from all classes based only on
the closeness of the data elements. In the third version of this algorithm
(FISH3**), a search for the best weight coefficients a, and a, is being
conducted. In this case, the size of the data window Is established
dynamically.

* Indre Zliobaite, Combining time and space similarity for small size learning under concept drift, In Foundations of
Intelligent Systems, volume 5722 of Lecture Notes in Computer Science, pp.412-421, Springer Berlin Heidelberg, 2009.
** Indre Zliobaite, Adaptive Training Set Formation, PhD thesis, Vilnius University, Lithuania, 2010. 47
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How to deal with concept drift?

(a family of algorithms called FISH)

Algorithm The Instance Selection Algorithm (FISH2)

Require: S - setof data elements X, Xo, ..., Xy, target observation x4 with unknown
label, neighbourhood size k, time/space similarity weight A
for j € {1,...,t} do
calculate distance Dy 1 ;
end for
sort the distances from minimum to maximum: D1 441 < Dy 41 < ... < Dy gy
for s =k : step:tdo
select s instances having the smallest distance D
using cross-validation™ build a classifier 75 using the instances indexed {i1, ..., %5}
and test it on the k& nearest neighbours indexed {41, ..., i }, record testing error e
end for
9: find the minimum error classifier C,, where L = argmin’, _, (ey,)
10: output the instances {41, ..., 71}

A U i S e

@0

*when test on the instance X, this data is excluded from the validation set

Indre Zliobaite, Adaptive Training Set Formation, PhD thesis, Vilnius University, Lithuania, 2010. 48
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How to deal with concept drift?

(a family of algorithms called FISH)

Algorithm The Instance Selection Algorithm (FISH3)

Require: S - set of data elements X1, Xo, ..., X}, target observation x4 1 with unknown
label, neighbourhood size &
I: for J =0: step1,a; = j, ag = 1 — a; every time and space proportion do

2:  calculate distance ij’tJrl =aid; g + a2d§,t+1 fori=1,...,t

. : L SN j
3: sort the distances from minimum to maximum: D-zl’tJrl < Djz?.,t+1 < ... <

_ J
J
Djzt,t—l—l
for N =k : step2 : 1t select the training set size do
5: pick NN instances having the smallest distances 1)’

JN

using cross-validation” build a classifier T using the instances

(X521, Xj22, ..., Xjzn) and the training set

7: test 72" on the k nearest neighbours (X1, Xj.2, ..., Xj.i), record testing er-
ror ¢’

8:  end for

9: end for

: o - JIN* ; _ 1 it J
10: find the minimum error classifier 757, where jNx = arg min;_q miny_, (e3y)

11: output the indexes {jz1, ..., jzNx*}

Twhen test on the instance X j=k, this data is excluded from the validation set

* Indre Zliobaite, Adaptive Training Set Formation, PhD thesis, Vilnius University, Lithuania, 2010. 49
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How to deal with concept drift?

- the ADWIN

This algorithm was obtained to regulate the size of data elements windows. It uses
hypothesis that is based on differences of mean value of windows W, and W;
compared with the threshold value «a. If we assume that |W,| and |W;| denote the
number of data elements in windows W, and W, respectively, then we have to find
€. SUCh that |uW, — uW, | < €.y The value of e, is determined as follows:

1 4
Ecut = %mg

95 o
—_— 6’:
e Wol + w4
|W0| |W1|

In this method we compare every possible split of entire window into windows W,
and W;.

* Bifet A., Avalda R., Kalman filters and adaptive windows for learning in data streams. In Proc. of the 9th int. conf. on
Discovery science, DS. 29-40, 2006. 50
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How to deal with concept drift?

- the ADWIN

Algorithm ADWIN: Adaptive Windowing Algorithm

1: initialize window W

2: for all t > 0 do

3: W<« WUuU{X;} (ie., add X; to the head of W)
4 repeat

5 drop elements from the tail of W

6: until |aw, — fiw, | > €cut holds
7

8

for every split of W into W = Wy U W7 output iy
: end for

* Bifet A., Avalda R., Kalman filters and adaptive windows for learning in data streams. In Proc. of the 9th int. conf. on
Discovery science, DS. 29-40, 2006. 51
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How to deal with concept drift?

- the Drift Detection Method (DDM)

In the DDM algorithm the authors noticed that the class assigned by a classifier can
be either true or false. Therefore they model the number of classification errors with
a binomial distribution. Let p; denote the probability of a false prediction, then the
standard deviation is calculated as follows:

_\/Pi(l—Pi)
S; = E

For a sufficiently large number of examples (n > 30), the binomial distribution can
be approximated by a Gaussian distribution with the same mean and variance. The
error rate is monitored by updating two registers: p,,;» and s,,iy.

2 pi+5i2pmin+a'5min

« alarm level Pi +S; = Pmin T B © Smin

Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues, Learning with drift detection, In AnaL.C. Bazzan and Sofiane
Labidi, editors, Advances in Artificial Intelligence — SBIA 2004, vol. 3171 of Lecture Notes in Computer Science, pp. 286—295,
Springer Berlin Heidelberg, 2004. 52
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How to deal with concept drift?

- the Drift Detection Method (DDM)

Algorithm DDM: Drift Detection Method

Require: S, - stream of data elements X, X, X3, ..., valuer of parameters o and (3
1: initialize p;, S;, Pmins Smins Pmins Smins Pmin + Smin, W < 0, W' 0,
2: for all new data elements X; do
3: W+ Wu {X@}

4 update the value of p; and s; for W
5 if 2 > 30 then

6: if Pi + Si < Pmin + Smin then

7 update pnin and spin

8 end if

9 if Di + S; > Pmin T QSmin then
10: W W u{X;}

11 if p; + 8i 2 Pmin + BSmin then
12: W« W'
13: W0

14: end if

15: end if

16:  end if

17: end for

Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues, Learning with drift detection, In AnaL.C. Bazzan and Sofiane
Labidi, editors, Advances in Artificial Intelligence — SBIA 2004, vol. 3171 of Lecture Notes in Computer Science, pp. 286—295,
Springer Berlin Heidelberg, 2004. 53
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How to deal with concept drift?

- the Early Drift Detection Method (EDDM)

The main difference between DDM" and EDDM™ is the definition of parameter
that is being investigated. In this method p’; defines the distance between two
errors and s’; is its standard deviation. It is expected that with increasing
accuracy of the system this distance will increase.

plit2sr;

<a

P'maxt2S'max

I:42S/7;
e alarm level LB

<p

P'maxt28'max

In the article authors proposed to set values of ¢ and f to 2 and 3,
respectively, which represents 95% and 90% of the distribution.

*Jodo Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues, Learning with drift detection, In AnaL.C. Bazzan and
Sofiane Labidi, editors, Advances in Artificial Intelligence — SBIA 2004, volume 3171 of Lecture Notes in Computer
Science, pp. 286—295, Springer Berlin Heidelberg, 2004.

** Manuel Baena-Garcia, José del Campo-Avila, Raul Fidalgo, Albert Bifet, Ricard Gavalda, and Rafael Morales-Bueno.

Early drift detection method, In Fourth International Workshop on Knowledge Discovery from Data Streams, 2006. 54

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



How to deal with concept drift?

- the Early Drift Detection Method (EDDM)

Algorithm EDDM: Early Drift Detection Method

Require: S - stream of data elements X, Xo, X3, ..., valuer of parameters «
and [
1 initialize piv Sg? p;nzni S:rn'énﬂ p;nzni 'S;ninv p;nzn + S;ninﬂ W «— (D? W’ — (2)7
2: for all new data elements X; do
3 W+ Wu{X;}

4:  update the value of p; and s} for W

5:  if more than 30 errors are spotted then
6: if pl + s, < plin + Sinin then

7 update pin and Spin

8: end if

9: if (pl + 2s,) /(D) 0w + 28),4.) < @ then
10: W« W u{X;}

1 if (9] + 25,)/ (Puas + 2500) < @ then
12: W« W'

13: W'«

14: end if

15: end if

16: end if

17: end for

* Manuel Baena-Garcia, José del Campo—Avila, Raul Fidalgo, Albert Bifet, Ricard Gavalda, and Rafael Morales-Bueno.
Early drift detection method, In Fourth International Workshop on Knowledge Discovery from Data Streams, 2006. 55
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How to deal with concept drift?

- the Page-Hinkley test

The Page-Hinkley test was originally used as a sequential analysis technigue for change
detection in signal processing. Recently it has been proposed as a drift detector*. It allows
to efficiently detect changes in the normal behavior of a process established by a model.
The cumulative variable U of this test is defined as the cumulative difference between the
observed values X; and their mean up to the current moment in time:

7K

Ur = z(Xi _)?T —6)

=1

where X; = 1/t Y.i_, X; and & corresponds to the magnitude of changes that are allowed.
In the drift detection we treat the classifier’s error rate as the observed value.

* Jodo Gama, Raquel Sebastido, Pedro P. Rodrigues, On evaluating stream learning algorithms, Machine Learning, vol. 90, no. 3,
pp. 317-346, 2013 56
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How to deal with concept drift?

- the Page-Hinkley test

The minimal Uy is defined as
A S
The PH test calculates the difference between UZ*" and Uy
PH = U, — U2
If this difference is higher than a user specified threshold A, a change is flagged. The
threshold A depends on the admissible false alarm rate. Increasing its value will entail

fewer false alarms, but might miss or delay some changes. Controlling this detection
threshold parameter makes it possible to establish a trade-off between the false alarms and

the miss detections.
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How to deal with concept drift?

- the Welch’s t-test

This test applies on two samples of size n; and n, and is an adaptation of the Student’s t
test. This test is used to statistically test the null hypothesis that the means of two
populations X; and X,, with unequel variances (s; and s3), are equal. The formula of this
test is:

X1—X;

1 2
DY
ni np

The null hypothesis can be rejected depending on the p-value.

p-value =
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How to deal with concept drift?

- the Kolmogorov-Smirnov test

The Kolmogorov—Smirnov statistic determines a distance between the empirical
distribution function of the sample and the reference distribution or between the empirical
distribution functions of two samples. In the latter case we calculate

Dn,n/ = Sup |F1,n(x) = Fz,n/(x)l )

X

where F; ,(x)and F,,,(x) are the empirical distribution functions of the first and the
second sample respectively, and sup is the supremum function.

The null hypothesis that the samples are drawn from the same distribution is rejected with
a confidence o if

n+n
Bl

nn’

The value of c(a) can be found in the Kolmogorov-Smirnov table.
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Data stream classification

methods

@ cvainewors
(]

) Decisiontrees

) Ensemble methods

’ Neural networks

Decision trees

Ensemble methods
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‘ Neural networks

Data stream classification

methods

Joao Gama, Pedro P. Rodrigues, Stream-based electricity load forecast, In
Proceedings of the 11th European Conference on Principles and Practice of
Knowledge Discovery in Databases, vol. 4702, Lecture Notes in Computer
Science, pp 446-453, Springer, 2007.

Daniel Leite, Pyramo Costa Jr., Fernando Gomide, Evolving granular neural
network for semi-supervised data stream classification, In Proceedings of the
2010 International Joint Conference on Neural Networks, pp. 1-8, IEEE, 2010.

Daniel Leite, Pyramo Costa Jr., Fernando Gomide, Evolving granular neural
networks from fuzzy data streams, Neural Networks, vol. 38, pp. 1-16, 2013.

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016




Data stream classification

methods

« Domeniconi C., Gunopulos D., Incremental support vector machine
construction, In ICDM, pp. 589-592, 2001.

« Syed N., Liu H., Sung K., Handling concept drifts in incremental learning with
supportvector machines, Proceedings of the fitth ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM New York, NY, USA
pp. 317-321, 1999.

« Fung G., Mangasarian O., Incremental support vector machine classification,
Proceed-ings of the Second SIAM International Conference on Data Mining,
Arlington, Virginia, pp. 247-260, 2002.

« Bordes A., Bottou L., The Huller: a simple and efficient online SVM,
Proceedings of thel6th European Conference on Machine Learning
(ECML2005), 2005.

 Bordes A., Ertekin, S., Weston J., Bottou L., Fast kernel classiffiers with online
and activelearning, Journal of Machine Learning Research 6, pp. 1579-1619,

2005.
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Data stream classification

methods

Remco R. Bouckaert, Voting massive collections of bayesian network
classifiers for data streams. In Proceedings of the 19th Australian Joint
Conference on Artificial Intelligence, vol. 4304, Lecture Notes in Computer
Science, pp. 243-252, Springer, 2006.

Jodao Gama, Ricardo Rocha, Pedro Medas, Accurate decision trees for mining
high-speed data streams, In Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 523-528, ACM,
2003.

Jodo Gama, Pedro P. Rodrigues, Stream-based electricity load forecast, In
Proceedings of the 11th European Conference on Principles and Practice of
Knowledge Discovery in Databases, vol. 4702, Lecture Notes in Computer
Science, pp. 446-453, Springer, 2007.

Richard Kirkby, Improving Hoeffding Trees, PhD thesis, Department of
Computer Science, University of Waikato, 2007.
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Data stream classification

methods

Magdalena Deckert, Jerzy Stefanowski, RILL: algorithm for learning rules from streaming
data with concept drift, In Proceedings of the 21st ISMIS International Symposium on
Foundations of Intelligent Systems, vol. 8502, Lecture Notes in Computer Science, pp. 20—
29, Springer, 2014.

Francisco J. Ferrer-Troyano, Jesus S. Aguilar-Ruiz, José Cristobal Riquelme Santos,
Discovering decision rules from numerical data streams, In Proceedings of the 2004 ACM
Symposium on Applied Computing, pp. 649-653, ACM, 2004.

Petr Kosina, Jodo Gama, Handling time changing data with adaptive very fast decision
rules, In Proceedings of the 2012 European Conference on Machine Learning and
Knowledge Discovery in Databases, vol. 7523, Lecture Notes in Computer Science, pp.
827-842, Springer, 2012.

Petr Kosina, Joao Gama, Very fast decision rules for classification in data streams, Data
Min. Knowl. Discov., vol. 29, no. 1, pp. 168-202, 2015.

Gerhard Widmer, M. Kubat, Learning in the presence of concept drift and hidden contexts,
In Machine Learning, pp. 69-101, 1996.
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Data stream classification

methods

Law Y., Zaniolo C., An adaptive nearest neighbor classification algorithm for
data streams, Lecture notes in computer science, vol. 3721, pp. 108-120,
2005

Beringer, J., Hullermeier, E., Efficient instance-based learning on data streams,
IntelligentData Analysis, vol. 11, no 6, pp. 627—650, 2007

Shaker, A., Hullermeier, E., Iblstreams: a system for instance-based
classification and re-gression on data streams, Evolving Systems, vol. 3, no. 4,
pp. 235-249, 2012

Yan-Nei Law, Carlo Zaniolo, An adaptive nearest neighbor classification
algorithm for data streams, In Proceedings of the 9th European Conference on
Principles and Practice of Knowledge Discovery in Databases, vol. 3721,
Lecture Notes in Computer Science, pp. 108-120, Springer, 2005.
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Data stream classification

methods

‘ Decision trees

P. Domingos and G. Hulten, Mining high-speed data streams, Proc. 6th ACM
SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining, pp. 71-80,
2000.

G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, In
Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD '01), ACM, New York, NY, USA, pp.
97-106, 2001

Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, Piotr Duda, A new method
for data stream mining based on the misclassification error, IEEE Transaction on
Neural Networks and Learning Systems, vol. 26, pp. 1048-1059, no. 5, 2015.
Leszek Rutkowski, Lena Pietruczuk, Piotr Duda, Maciej Jaworski, Decision trees
for mining data streams based on the McDiarmid’s bound, IEEE Transactions on
Knowledge and Data Engineering, vol. 25, no. 6, pp. 1272-1279, June 2013.
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Data stream classification

methods

‘ Ensemble methods

* Brzezinski D., Stefanowski J., Combining block-based and online methods in
learning ensembles from concept drifting data streams, Information Sciences,
vol. 265, pp. 50-67, 2014.

« Dewan Md. Farid, Li Zhang, Alamgir Hossain, Chowdhury Mofizur Rahman,
Rebecca Strachan, Graham Sexton, Keshav Dahal, An adaptive ensemble
classifier for mining concept drifting data streams, Expert Systems with
Applications, vol. 40, no. 15, pp. 5895-5906, 2013.

« Ryan Elwell, Robi Polikar, Incremental learning of concept drift in
nonstationary environments, IEEE Transactions on Neural Networks, vol. 22,
no. 10, pp. 1517-1531, Oct 2011.
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Data stream classification

methods

‘ Neural networks

Q

Decision trees

Ensemble methods
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DECISION TREES

I
I
I
| X>Xg X<Xg
I
X
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DECISION TREES

Commonly known decision tree algorithms:
+C4.5 algorithm - J. R. Quinlan, ,,C4.5: Programs for
Machine Learning,” Morgan Kaufmann Publishers, 1993

+CART algorithm — L. Breiman, J. H. Friedman,R. A.
Olshen, & C. J. Stone, ,,Classification and regression
trees.” Monterey, CA: Wadsworth & Brooks/Cole, 1984.

Advanced Books & Software.
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DECISION TREES

The most critical
point Is the choice of

a splitting attribute
In each node;

X>Xo X<Xg

. In ID3, C4.5, CART
— the choice based

on an Impurity
measure.
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Impurity Measure

|_owest possible (0) impurity
measure — maximally ,,pure” set

Highest possible impurity

Mmeasure

Highest possible impurity
measure
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Impurity measure —

iInformation entropy

The entropy of S is defined as follows

H(S) = — Xi=1 pi log(p),

S—training set (X4, ..., Xy)
K — number of classes
— probability that element belongs to the I-th class

(proportion of elements in S belonging to the i-th
class)

76
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Impurity measure —

iInformation entropy

H(S) = — Xi=1 pi log(py),

o |fp; = % i =1,...,K,then H(S) = log, K - maximal value
1,

* Ifp; =1,p;x; = 0, then H(S) = 0 - minimal value
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Split measure function

For each attribute the quality of potential split Is
measured by the SPLIT MEASURE FUNCTION

Split measure function — a reduction of an
Impurity measure
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Split measure function

Split measure:

_ 1S4 S|
f(8) =g(S) S| S|

Example

S — high impurity measure g(§)
- low Impurity measure
- low Impurity measure
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Split measure — information gain

H(S|a) = H(S) — 212 w;H(S)),

where
a — an attribute with values in set {ay, ..., ajq}

la| — number of different values of attribute a
w; - fraction of elements with value aq;
(probability that elements in S take value a; for attribute a)

S; - subset of set S, with data elements for which the value of
attribute a is equal a;
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Information entropy and information gain —

an example

married age uses computer at work buy computer
Yes young Yes Yes
Yes young Yes Yes
No young Yes Yes
Yes middle Yes Yes
No middle Yes Yes
No old Yes Yes
Yes old No No
Yes old No No
Yes young No Yes
Yes middle No No

3
H(S) = - 75 o (7/10) + —log, Chol 0,88129
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Partition according te ,,uses computer at work”

SYes
Is married age  uses computer at work by computer

Yes young Yes Yes

Yes young Yes Yes

No young Yes Yes

Yes middle Yes Yes

No middle Yes Yes

No old Yes Yes

SNo
IS married age uses computer at work by computer

Yes old No No
Yes old No No
Yes young No Yes
Yes middle No No

82
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Information gain: H(S|use computer at work)

Sves o
is married age uses computer at work [ by computer

Yes young Vs Yes is married age uses computer at work by computer
Yes young Yes Yes Yes old No No

No young Yes Yes - old i o

Yes middle Yes Yes

No middle Yes Yes VEE young L S

No old Yes Yes Yes middle No No

P(a =Yes) = 6/10 — W1 H(Syes) =0
P(a = No) = 4/10 = W, H(Sy,) = 0,81128

H(S|a) = H(S) — 6/10 «0— 4/,0%0,81128
= 0,55678 3
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Obtained decision tree

attribute a H(S|a)
IS married 0,191631
age 0,330313

uses computer at work  0,55678

uses_computer_at_work

Yes No 1
( Yes > age
‘HOUNE old
middle

() () (s
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Other impurity measures

Gini index:

Gini(S) =1 — XX, (»,)?,

Misclassification error:

Mis(S) =1 — ie?ll,e.l..),(l{} D;
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Decision Trees for data mining

(non-stream data)

Non stream data impurity measures

b

A 4

Entropy Gini index
H(S) = —Zpi logp; Gini(§) =1— Zpiz
e.g. ID3, C4.5 e.g. CART

Y

Misclassification
error

Mis(S)=1-max p,

Y

A 4

Split measures

l

H (Sai) f,(S)=Gini(S

&

Glnl( ) f,(S)=Mis(S)- le| |‘G|n|(s )

i

i

Among d attributes choose one such that
b=arg max f,(S)

ae[l,. . .,d]
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Decision tree for data stream

In the case of data streams data arrive continuously
to the considered node

Decision tree for static data:
1) Which attribute to choose?

Decision tree for stream data:
1) Which attribute to choose?
2) When to make a split?
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Decision tree for data stream

The aim Is to design a decision tree learning
system, applied to data streams, which provides an
output nearly Iidentical to that induced by a
conventional learner.
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Decision tree for data stream

Hoeffding trees

P. Domingos and G. Hulten, ”Mining high-speed data streams”, Proc. 6th ACM SIGKDD
Internat. Conf. on Knowledge Discovery and Data Mining, pp. 71-80, 2000.

G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, In Proceedings
of the seventh ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD '01), ACM, New York, NY, USA, pp. 97-106, 2001

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



Hoeffding Tree Algorithm - 2000

Main Ideas applied In the Hoeffding tree
algorithm:

1) Sufficient statistics
2) Splitting criterion
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Hoeffding tree algorithm: sufficient statistics

In each node iInformation collected in a form of _sufficient
statistics™:

Nijk - numer of data elements from the k-th class
which take the J-th value of the I-th attribute

Required memory per node: M = K Y& . v;.
For two-class binary problem: M = 4d.
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Hoeffding tree algorithm: splitting criterion

1) Compute the split measure function f;(S) for each
attribute i = 1, ...,d based on the currently collected data

sample § = X4, ... Xy

2)  Find two attributes with the highest values of f:
famaxl (S)’ famaxz (S)
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Hoeffding tree algorithm: splitting criterion

), ) e =i o)
then with probability 1 — 6
Blf, ) B,
and choose a,,,;,1 as a splitting attribute

Else, wait for more data elements in this node
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Online Decision Tree — general algorithm

START
v

Initialize a new tree with @max1 — index of the attribute with the

only one leaf — the root, highest value of split measure
with sufficient statistics set @max2 — index of the attribute with the
to zero second highest value of split measure

B

Y

Splitting criterion:
Read new data element s
from the stream

f Qmaxy f Amaxy > €

] <«—False Splitting criterion

Sort s through the tree to \

an appropriate leaf L,

l True
Update sufficient l
statistics in the leaf L, For chosen partition of attribute
v A, INitialize new leaves with
Compute the split sufficient statistics set to zero

measure for all attributes

(a=1,..D)
I 95
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Hoeffding tree algorithm: splitting criterion

Splitting criterion:

famaxl (S) — famaxz () > e =¢€(N, ),

Challenge: How to find formula for (N, §)???
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Hoeffding’s inequality - 1963

The commonly known algorithm called ‘Hoeffdings Tree’ was introduced
by P. Domingos and G. Hulten in [1]. The main mathematical tool used in
this algorithm was the Hoeffding’s inequality [2]:

Theorem: If X;, X,,..., Xy are independent random variables and
a, <X;<b;(i=1,2,..,N),thenfore >0

P{X — E[X] = €} < e~ 2N*¢*/Ziza(bi=ap)’
where

X = %Z{‘lei and E[X] is expected value of X.
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Hoeffding’s inequality - 1963

Assuming that P{X — E[X] > €} < §
and bi —a; = R =1 N
the Hoeffding’s inequality Is equivalent to:

_ _ R%?In1/6
PY\X — E[X] < >1-6
\ 2N
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Hoeffding’s trees

P. Domingos and G. Hulten claimed that owing to the
Hoeffding’s inequality the form of € is given by:

e=¢(N,8) = \/RZ ln(l/a),

2N

where R I1s a range of values of the applied split
measure, e.g. R = log, K for information gain
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Algorithms based on

the Hoeffding’s bound - 2000

Very Fast Decision Tree (VFDT)

The VFEDT (Very Fast Decision Tree) algorithm makes several
modifications to the Hoeffding tree algorithm to improve both speed and
memory utilization. The modifications include:

breaking near-ties during attribute selection more aggressively,
computing function f, after a number of training examples,

deactivating the least promising leaves whenever memory running
low,

dropping poor splitting attributes,
iImproving the initialization method.

100
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Algorithms based on

the Hoeffding’s bound - 2001

Concept-adapting Very Fast Decision Tree (CVFDT)
for handling concept drift

CVFDT uses a sliding window approach, the main features are the following:
it does not construct a new model from scratch each time,
it updates statistics at the modes by incrementing the counts associated
with new examples and decrementing the counts associated with old

ones,

101
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Algorithms based on

the Hoeffding’s bound - 2001

Concept-adapting Very Fast Decision Tree (CVFDT)
for handling concept drift

If there is a concept drift, some nodes may no longer pass the Hoeffding
bound. When this happens, an alternate subtree will be grown, with the
new best splitting attribute at the root. As new examples stream in, the
alternate subtree will continue to develop, without yet being used for
classification. Once the alternate subtree becomes more accurate than
the existing one, the old subtree is replaced.

102
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The Hoeffding's bound

The Hoeffding's bound Is a wrong
tool to solve the problem of
choosing the best attribute to make
a split in the node!!!

103
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The Hoeffding's bound

Hoeffding's inequaity is applicable only for sums (or
arithmetic averages) of random variables.

Nonlinear impurity measures, like information entropy
K
H(S) = - ) pi(S)10g, Pi(S)
i=1
or Gini index
K
Gini(s) =1- ) (pS)%,
i=1

can not be presented as a sum of elements.
104
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The Hoeffding's bound

The idea presented in [1] violates the assumptions of

the Hoeffding's theorem (see [2]) and the concept of

Hoeffding Trees has no theoretical justification.

105
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Challenge in Stream Data Mining

Find an appropriate, mathematically
justified, form of the bound & = &(N, 8)
In the general splitting criterion:

famaxl (5) famaxz ($) > e = €(N, o)

106
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What will be shown on the next slides???

a) We will study split measures based on the
following impurity measures:

- Information entropy,

- Ginl Iindex,

- misclassification error.
b) We will propose two different techniques to
solve the problem:

- the McDiarmid’s inequality,

- the Gaussian approximation.

107
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What will be shown on the next slides???

We will propose the decision trees algorithms such
that if

f Amaxq = f Amaxy > S(N’ 6)
then

E |Fomasy | > E |Fomas

with probability (1 — 6 )*~1, where dis the number of
attributes.

WHAT IS THE VALUE OF & ???

108

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



Papers concerning the issue

Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, Piotr Duda, Decision trees for
mining data streams based on the Gaussian approximation, IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 1, pp. 108-119, Jan. 2014.

Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, Piotr Duda, The CART
decision tree for mining data streams, Information Sciences, vol. 266, pp. 1 — 15, 2014.

Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, Piotr Duda, A new method for
data stream mining based on the misclassification error, IEEE Transaction on Neural
Networks and Learning Systems, vol. 26,PP 1048-1059, no. 5, 2015.
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How to Split measures for non stream data
deal
D3 CART DT based on

With v N v v Misclas.
Stream

o o
£,(S) = H(S) ZTH(S W A0S = Gmi(s) ZlTGlnl(S Y AEG) = Mis(s) - Z||S||MLS(S )
data? ! ! !

Among d attributes choose one such that

arg max

b=geq,..,afa®

McDiarmid theorem or Gaussian approximation

v v !

Split criteria for stream data

Choose an attribute such that
) frax, (S) = fuax,(S) > € (*)

Under condition (*)
E [f aMAXl] > E [f aMAle
with probability (1 — & )21
HOW TO DETERMINE THE VALUE OF € ??? 110




McDiarmid’s inequality

Let S = {X4, ..., Xy} be the set of i.i.d. random variables, X; € U;
Suppose that the (measurable) function

f:T1U; - R satisfies

sup

\ XX If(Xl,... oL XXy, X Xy 6,

for some constants ¢;,1 = 1, ..., N. Then

Pr(f(S)-E|f(S)| = &) < exp (z _f(i)z)

111
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Application of the McDiarmid’s inequality to

stream data mining

The main result of our research Is the
following theorem stating that if the difference
between the Information gain estimates
obtained for two attributes Is greater than a
specific value &(N,6), then with a fixed
probability 1 — § there is, roughly speaking, a
statistical difference between the expected
values of information gain.

112
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McDiarmid’s inequality - information gain

Theorem 1: Let S = {X;, ..., Xy} be the set of independent
random variables, with each of them taking values in the set
Aix..xAz XY . Then, for any fixed § and any pair of
attributes a and b, where H(S|a) — H(S|b) > 0, if

€ = CGain(K» N)

where

\

In1/6
2N

Ceain(K,N) = 6(Klog, eN + log, 2N) + 2log, K

then

E[H(S|a)] > E[H(S|b)], with prob. 1 — 6.
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McDiarmid’s inequality - Gini gain

Theorem 2: Let S={X;,..., Xy} be the set of independent
random variables, with each of them taking values in the
set A;x..xAz; XY. Then, for any fixed § and any pair of
attributes a and b, where Gini(S|a) — Gini(S|b) > 0, if

8lnl1/6
2N

ea—
\

then
E[Gini(S|a)] > E[Gini(S|b)], with prob. 1 — 4.

114
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McDiarmid’s inequality - Gini gain

Conclusion: If the number of data elements N
satisfies the condition

In1/6
|Gini(S|a) — Gini(S|b)]

N > 64
2

then the number of data elements is sufficient
enough to say that attribute a Is ,better” (with
probability 1 — § to make a split than attribute b.

115
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Misclassification error

Mis(S) =1 — max {p;}

or equivalently

n a?l(({N‘}
N

Mis(S) =1 — =L

where

p; — probability that element belongs to the i-th class
(proportion of elements in S belonging to the i-th class)

N! - the number of data elements in S from the i-th class

116
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impurity measume
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Misclassification error

infarmation ertropy
_ _ E|_|n| index
misclassification erraor

K
H(S) = - ) pilog: b
i

K
Gini(s) =1- ) ()’

Mis(S) =1 — max {p;}

0.2

0.4 0.6
fraction of the first class, pq(3]

0.B

Comparison for two-class problem
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Split measure function based on the

misclassification error

la]
S.
Mis(S|a) = Mis(S) — S| Mis(S;)

) S|

Analogously to the information gain:

H(S|a) = H(S) - Ti, PR H(S)),
And Gini gain:
Gini(S|a) = Gini(s) — Z'iill%Gini(Si).

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016
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Splitting criterion for misclassification-based split

measure function — Gaussian approximation

Theorem 3: Let us consider two attributes a and b, for which the
values of split measure function based on the misclassification
error were calculated for set S. If the condition Mis(S|a) —
Mis(S|b) > € is satisfied, where

1
€ =Z1-p) \/ﬁ
Z(1-¢5) IS the (1 — §) —th quantile of the standard normal distribution

N(0,1), then E[Mis(S|a)] is greater then E[Mis(S|b)] with
probability 1 — 6.
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Splitting criterion for misclassification-based split

measure function — Hoeffding’s inequality

Theorem 4: Let us consider two attributes a and b, for which we
the values of split measure function based on the
misclassification error were calculated for set S. If the condition
Mis(S|a) — Mis(S|b) > € is satisfied, where

2In1/6
€= ,
\ N

then E[Mis(S|a)] Is greater then E[Mis(S|b)] with probability 1 — 6.

Remark. Theorem 4 is based on the Hoffeding’s inequality!!!
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Comparison of the newest

results

Impurit ) e L.
P y Misclassification

error

: R2In1/5 /RZ In1/5
Hoeffding e= |—- e= |~ _ e
bound Incorrectly obtained Incorrectly obtained B n
,’ n

Information entropy Gini index

Domingos and Hulten, ACM 2000 Domingos and Hulten, ACM 2000

In1/8

. . = Ceain(K, In1/8
McDiarmid €= Coam(®m) 50 £=8 |—= 2In1/5

Ceain(K,n) = 6(Klog, en+log, 2n)+2log, K
Rutkowski et. al., IEEE Trans. on
Knowledge and Data Engineering, 2013

bound

Rutkowski et. al., IEEE Trans. on Knowledge
and Data Engineering, 2013

. 1
Gaussian £ z<1-6>j;
apprOXimation Rutkowski et. al., IEEE Trans. on

Neural Networks and Learning
Systems, 2015

1ffa(S) — fp(S) > &,

then with probability 1 — 8 E[f,(S)] > E[f,(S)] e
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New result
2016

,Single’ Splitting Criteria

 Splitting criterion for Gini index:

8 In (%)

nz) '

f Amax (Z) = f Amax2 (Z) >

\

 Splitting criterion for mislcassification error:

1
2n(Z)’

famax (Z) = famaxz (Z) > Z(1_5)

123
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Experimental Results VoW result

20716

Accuracy vs numer of data elements: dataset no. 1

0.52

Gini index
misclassification error

08 r

078 r

0.76 F

074 e S

072 ¢
07 r

0.68 |

accuracy

066 ¢

064 - - - - -
100 1000 10000 100000  1e+006  1e+007  1e+008

number of data elements
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Experimental Results New resull

20716

Accuracy vs numer of data elements: dataset no. 2

09 ——r —
Gini index
misclassification error
085
T
08
)
(i}
= 075 ¢
[
[
4]
o7 F
0.65 —_l—
DE . . 1 . . L . . 1 . . Ll . . 1 . . .
100 1000 10000 100000 Te+006 Te+007 1e+008

number of data elements
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. - o New result
Hybrid Splitting Criterion 2046

f¢.(Z) - split measure for Gini index
fMl.(Z) - split measure for misclassification error

Hybrid criterion:

If:
1
ey O

Part 1 f6

Choose the attribute with index ag ;nq t0 split the node.

aGmax

Else, if:

Part 2 1
fMaM,max(Z) 2= fMaM,maxZ (Z) = Z(I—S) Zn(Z) :

Choose the attribute with index ay; ;mqax t0 split the node.

126
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Online Decision Tree with hybrid splitting criterion

Neywiresiil
s max = @rgmaxge1, ol f (S}

¢ = = argmaxyi—1, D, i=iG.mail T ilSa)}

Initialize new tree
with the root Ly

S ‘L Tramax = argmax1i=1J___JD}{&gM-{Sp}}
et sufficient R ¥

i = argmax= =i My NS
istics in — A mMEN 2 = fi=1, D, ==|r‘-.-1,mac}{ = S

I
v

Read new data
element sfrom the
stream

.L G G

T iG_,max{Sp}_ T iG_.maxZ{Sp}}
Sort s down to an
appropriate leaf Lg

l TRUE
Aad =to S Lo W TP o the
Update sufficient Gmax N o
.. . child-nodes with sufficient
statistics in L o
statistics set to O

w
Compute values of

Gini gain EaLSE
F5:4S), i=1,...,D

Hybrid criterion, p.2

iM_,max{Sp} - f ™ iM_,maxE{Sp}}

w

Compute values of
accuracy gain
£™i5,), i=1,....D

| TRUE
Split Ly with respect to the
ingmax—th attribute into to

child-nodes with sufficient
statistics set to O

; 127
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Experimental Results New resull
2016

Accuracy vs numer of data elements: dataset no. 1

0.54

" Giniindex —
i misclassification error
082 hybrid criterion
08 |
078 r
076 r
)
S 074t ,
S I
T oo072 }
07
068 t
066 r
100 1000 10000 100000 1e+006 1e+007 1e+008

number of data elemants
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Experimental Results New resull
2016

Accuracy vs numer of data elements: dataset no. 2

" Giniindex —
misclassification error
095 ¢ hybrid criterion
09
085 |
o
i)
= 08 ¢
(]
L]
0
075
o7
065
100 1000 10000 100000 1e+006 1e+007 1e+008

number of data elemants
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Experimental Results New resull

20716

Number of leaves vs humer of data elements: dataset no. 1

g0 —— —

Gini index
misclassification error
hybrid criterion

number of leaves

100 1000 10000 100000 1e+006 1e+007 1e+008

number of data elemants
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Experimental Results New resull

20716

Number of leaves vs humer of data elements: dataset no. 2

120 — —
Gini index
misclassification error
hybrid criterion
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©
&
5 60
T
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Experimental Results New resull
2016

Processing time vs numer of data elements: dataset no. 2

1.6e+0086

Gini index
misclassification error
14e+006 F hybrid criterion
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Experimental Results New resull

20716

Processing time vs numer of data elements: dataset no. 2
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New result
More ,single’ splitting criteria 2046

* Misclassification error + Hoeffiding’s inequality:

famax (Z) == famaxz (Z) >

* Gini index + McDiarmid’s bound + bias ([1])

1

n@ | In@)

f Amax (Z) = f Amax2 (Z) =

[1] R. De Rosa and N. Cesa-Bianchi Splitting with confidence in decision trees with application to
stream data, Proceedings of the International Joint Conference on Neural Networks, 2015. 134
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Online decision trees algorithms notations

New result

Notation

Splitting criterion

Misclassification error + Hoeffiding’s inequality

2 Gini index + McDiarmid’s inequality

3 Gini index + McDiarmid’s inequality + bias
4 Hybrid: 1 + 2

5 Hybrid: 1 + 3

135
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Experimental Results New resull
2016

Accuracy vs numer of data elements: dataset no. 1

oDTGL ——
T e p—
0DTh
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Experimental Results New resull
2016

Accuracy vs numer of data elements: dataset no. 2

00TGlL —
onTG2 ——
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accuracy
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9.55 1 1 P | 1 1 P | 1 1 P | 1 1 P | 1 1 1
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Experimental Results New resull
2016

Number of leaves vs number data elements: dataset no. 1
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Experimental Results New resull
2016

Number of leaves vs number data elements: dataset no. 2

1A00 - —T
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|
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Experimental Results

Nienvairesitilit
2016

Accuracy vs numer of leaves: dataset no. 1
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0DTG2 —— el

0DTh —— -
| ODThL —— A

0DTh2 e

e
4|_|:I;j/
18 100
b of 1

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016

1808

140




Experimental Results New resull

20716

Accuracy vs numer of leaves: dataset no. 2
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Comparison with ,Hoeffding Trees’

New resull

 HDT:

f Amax (Z) = f Amax2 (Z) >

(for GiniindexR=1)

\

- 1/2HDT:

. 2, (1) 05

2n(Z)

\

2n(Z)

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016

142




Experimental Results New resull

20716

Accuracy vs numer of data elements
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Data stream mining

- content

Data streams — introduction to the topic

Concept drift

Various strategies of learning

How to deal with concept drift?

Data stream classification methods — short overview
Decision trees for data streams (including new results 2016)

Ensemble methods for data streams (including new
results 2016)

Probabilistic neural networks for stream data mining (including
new results 2016)

Final remarks and challenging problems
References Lo
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Stream Data

- Ensemble methods

=
E3
ES
ﬁé

| — | — | N—
| — | - | -
g a & E e e
1 B ® @ - ®
T o n "
» o sy s ©
o o o
T Ll
object output
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Stream Data

- Ensemble methods

Main steps of ensemble methods:

— Divide the data stream into equal sized chunks
— Train a new classifier based on current data chunk

— Keep the best L classifiers in the ensemble, e.g. L=5

Ensemble of
classifiers

e (a) {c7-::cs: (c11)
. Ensemble of
classifiers
. .jj.. =
element i
Time line ] ] ] /
Data chunk . Classifier \ Classifier _/. / / /

in ensamble

146
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Stream Data

- Ensemble methods

Main questions with designing ensemble
system for data stream mining:

* Which components to use?
* How to train the components?
« How big the ensemble should be?

« How to establish the usefulness of component to
the ensemble?

« How to assign weights to the components?
« How to reduce the ensemble size?

147
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Stream Data

- Ensemble methods (the Adaboost)

Algorithm The Adaboost algorithm for multiclass problem

Require: S - set of N data elements X1, Xo, ..., Xy, |I'| - number of components in
the ensemble
1: set the initial values of weights w(X;) = 1'?
2: foreachie {1,....|I'|} do
3:  create a new training dataset S'")
4:  draw with replacement N data elements from S into S'*) with probability equal
to the value of it’s weights
5. create and train new classifier on S'*)
6:  calculate the classification error Err; = Z;’zl Licix;)#n(x;) yw(X;)
7 if Err; < ’IV then
8 add this classifier to the ensemble T’

. 'I'_U'(X'} Err; ]fC‘[XJ ZT(X}
9: update weights w(X ;) = J1=Erry -] e
pate weights w(Xs) =1 w(x;) if C(X;) # 73(X;)
10: foreach j £ 1,....N do
. vy wiXG)
11: w(Xj) = —V—J—E}=I (0]
12: end for each
13:  end if

14: end for each
15: for each unclassified data element X do
16:  classify X according to the equation
¢ . ) N 1-Err;
Ler(X) = argmaxge, 3 505 1 [ (X)=C(X)} log ( s j)
17: end for

* Yoav Freund and Robert E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of
Computer and System Sciences, vol. 55, no. 1, pp. 119 —139, 1997. 148
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START

Stream |
Dat a. Sf:t initial equal
- Ensemble e
methods {
=1
the AdabOSt l YES Is i<| " |[+1? N(ﬁ)—l
Create new training [ sTOP

set S;

l

Draw elements from
S to S; based on their
weights

l

Create and train new
classifier on S;

l

Calculate the
classification error
Err;

YES @ NO .

Add this clissificr to * Yoav Freund and Robert E. Schapire, A
I decision-theoretic generalization of on-line
learning and an application to boosting,
Journal of Computer and System

Update and Sciences, vol. 55, no. 1, pp. 119 —139,
normalize weights sce
w(X;) fori=1, . N | .

T
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Stream Data

- Ensemble methods (the SEA)

START

I P; denotes the percentage of votes for the most often occurring class,
P, denotes the percentage of votes obtained by the second most
frequently occurring class,
P denotes the percentage obtained by the class of the correct class
P denotes the percentage of the prediction of the new classifier.

Get data chunk -«

v
Create new classifier
o

+ the ensemble and the new tree give correct answers: the quality
measure is increased by 1 — |P; — P,|

+ the new tree gives correct answer but the ensemble is wrong: the
quality measure is increased by 1 — |P; — P¢|

» the tree gives wrong answer: the quality measure is decreased by
1—|P¢ — Pyl

The obtained values of weights are used to determine if the newly

— O created classifier should replace the least efficiently performing
J § algorithm in the ensemble.

A

v
Test all classifiers
and C7 on current
data chunk

Replace the weakest Replace the weakest
component by Cr component by Cr

*W. Nick Street and Yong Seog Kim, A streaming ensemble algorithm (sea) for large-scale classification, In Proceedings of the
Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01, pp. 377-382, New York, NY,
USA, 2001, ACM. 150
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Stream Data

- Ensemble methods (the AWE)

START
=

Get data chunk S,

i

Create new classifier
Cr

l

Obtain weight end

error rate for Cron S;

Keep [I'] components
in the ensemble ith
greatest value of
weights

i

Choose one
component

§ the component th

NO .
last one in /7

Baged on §; compute
error rate and weight

for choosen component
i

T

Replace the weakest
component by Cr

YES

Accuracy Weighted Ensemble (AWE)

to each component in the ensemble the weight is assigned
W(z;) = MSE, — MSE; where

2
MSE; = 5] | (1-w(,0)",
X, es)
MSE, = > w(©)(1 - 0(©)’,
@

where |SU)| denotes the number of data in the j-th chunk,
w(tj, C) denotes the probability that classifier i will assign a
correct class to data element and w(C) denotes the probability
of class C. In this case, MSE, is the mean square error of
randomly predicting classifier which defined the boundary for
assessment of the minimal accuracy that the components in the
ensemble should have. The members with lower accuracy are
proven to decrease the performance of the whole ensemble
method.

* Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting data streams using ensemble classifiers. In
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pp. 226—235,

New York, NY, USA, 2003. ACM.
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Stream

Data

- Ensemble
methods

the Rotation

Forest NO

Select columns of X
from choosen subset to
compose new matrix .\’

|

Choos bootstrap sample
X trom Y5

|

Apply PCA on 17, to
obtain matrix D;;

|

Choose another subset ‘
Fi;

START
T

Randomly split feature

space F into K subspaces

R A K
Choose first subset

the choosen subs L
YES
last one?

Arrange the matrices
D;; into a block
diagonal matrix R;

l

Construct the rotation matrix
R% by rearranging the rows
of 1;to match the order of
atributes in F*

[ STOP

The main idea is to obtain different
classifiers based on the sets of data
that are transformed by the PCA
algorithm. For construction of each
decision tree a different mixture of
features is taken into account and
the principal component analysis
(PCA) is applied on those sets. A
new classifier is then trained based
on data elements transformed
linearly into new feature space. The
diversity is obtained through the use
of various extracted features which
are the result of choosing different
mixtures of feature components.

* Juan J. Rodriguez, Ludmila I. Kuncheva, and Carlos J. Alonso. Rotation forest: A new classifier
ensemble method, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 10,
pp. 1619-1630, Oct 2006.
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St ream Algorithm The Learn++.NSE algorithm
Require: S, = {X;, Xy, ...} - dataset representing a new environment, S; - sequence
of dataelements X! € { X X! .. Xt} from S, supervised learning algorithm
i 142 N
BaseClassifier
= Ensemble I: forall 5;.t=1,2,...do
2. if t=1 then
methods 3: initialize D!(i) = w'(i) = 1/m". Vi, skip to line nr 8
4. end if
5 compute error of existing ensemble on new data
t F
the E' =30 (1/m)MH(Xs) = C(X0)]
Learn++.NSE 6:  normalize error B* = E'/(1 — EY)

7:  update instance weights
ﬁZ%X{H,W%m=ax)
toom 1, otherwise
st DP =t/ _1 w! so that D¥ is a distribution
9:  call BaseClassifier with D, obtainr : X — C'
10:  evaluate all existing classifiers on new dataset [,

t .

Ei‘ = Z:il Dt(i')[Tk(Xi} % C(Xl}]‘ for k = 1: ot
11:  ifel_, > 1/2 then
12: generate a new ;.
13:  endif
14: ifej_, > 1/2 then
15: et =1/2
16: B =ei/(1—¢€ fork=1,...t
17:  end if

18:  compute a weighted sum of all normalized errors for k lh c]dasiﬁer Ti

19: wk=1/(1—|—exp —a(t—k—0)), w,=w/ = E; —owi?

00 A= ZJZO wi BT fork =1, ...,

21:  calculate classifier voting weights W}, = loc,(l/’,ﬂ ), fork=1,.

22: obtain the composite hypothesis as the current ﬁ]]d] hypothesis

I'(X;) = argmaxycy > Wi kk(X;) = CT
23: end for

* Ryan Elwell and Robi Polikar, Incremental learning of concept drift in nonstationary environments, IEEE
Transactions on Neural Networks, vol. 22, no. 10, pp. 1517-1531, Oct 2011. 153
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Stream Data

- Ensemble methods (the Adaptive Ensemble Classifier)

Algorithm The Adaptive Ensemble Classifier

Require: S = {X, Xo,..., Xn} - training dataset
1: for all data element X; € S, do
2 initialize the weight, w; — X; € S using Instance_Weighting procedure
3: end for

4 for N € {1,2,3} do

3

6

if N=1 then
oenerate a new dataset, Sy pw . form S using a selection and replacement tech-
nique

else

: generate a new dataset, Sy pw . form S with X; of higher weights

9. end if

10:  build a decision tree, 7, from S, ew

11:  for all leaf node in T" do

po o

12: cluster the data instances of S,.,, using Similarity_Based Clustering

13: calculate the threshold value based on the ratio of percentage of instances in
this leaf node and instances in Speq

14:  end for

15:  initialize the weight, w; — 7, basedd on its classification accuracy rate for the
categorization of the instances, X; € S

16:  update the weight, w;, of each X; € S

17: end for

* Dewan Md. Farid, Li Zhang, Alamgir Hossain, Chowdhury Mofizur Rahman, Rebecca Strachan, Graham Sexton, and Keshav
Dahal, An adaptive ensemble classifier for mining concept drifting data streams, Expert Systems with Applications, vol. 40, no. 15,
pp. 5895 — 5906, 2013. 154
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Stream Data

- Ensemble methods (the AUE)

| Algorithm The AUE algorithm

Require: S - stream of data elements X, Xo, ...,, size of chunks of data, I" - ensemble
of algorithms, [ - set of the top best classifiers in the ensemble, |I'374 x| - maximal
number of components in the ensemble, 1
1: D0 e —
2. for all chunks of data S) do . _ MSEjt+e
3. create new classifier 77 based on S(7) where € is a very small
4. compute error M.SE of 7p via cross validation on S constant value which is used
5. obtain weight for 7 using (1) to avoid the problem of
6:  for all classiﬁe_rs 7; in the ensemble I' do division by zero.
7 test 7; on SY) to obtain M SE; value
8: compute weight of classifier 7; based on (1)
9:  end for

10:  assigned top weighted classifiers in [ U {7p} to T
1: T'«Tu{rr}
12:  for all classifiers 7; in I do

13: if Wi > griz- and 7; # 7 then
14: update classifier 7; with S)
15: end if

16:  end for
17: end for

* Dariusz Brzezinski and Jerzy Stefanowski, Reacting to different types of concept drift: The accuracy updated ensemble
algorithm, IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 1, pp. 81-94, Jan 2014. 155
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Algorithm The OAUE algorithm

r
SEeam Require: S__ - stream of data elements X* where ¢ denotes the point in time, window
ata size, I' - ensemble of algorithms, |I'js 4 x| - maximal number of algorithms in the
- Ensemble ensemble, 7 - memory limit
methods I 0
2. create new classifier 7
3: for all data examples «* € S, do
the OAUE 4:  calculate the prediction error of all classifiers 7; on «*
5 ift >0andt mod d = 0 then
6: if |I'| < |I'arax| then
7: LT uU{rr}
8: else
0: weight all classifiers 7; € I" and 77 using (1)
10: substitute least accurate classifier in I' with 7
11: end ifrr + new candidate classifier
12: if memory_usage(I') > m then
13: prune (decrease size of) component classifiers
14: end if
15:  else
16: incrementally train classifier 7p with X*
17: weight all classifiers 7; € T using (1)
18:  end if
19:  for all classifiers ; € I' do
20 incrementally train classifier 7; with X
21:  end for
22: end for

Brzezinski D., Stefanowski J., ,Combining block-based and online methods in learning ensembles from
concept drifting data streams”, Information Sciences, Vol. 265, pp. 50-67, 2014. 156
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Stream Data

- Ensemble methods (the OAUE)

The authors calculate and update the weight w! for the i-th classifier in the
ensemble in time ¢ by using d latest examples in the following way

i t—d
MSE '+ S+ 5 t-1>d
MSE! = %ﬂ.{g&?—l +8-, 1<t—7;<d
0, t—71=0

VSRt { MSEY —pt=1(0t) — =1 (O 17O + 7t (Ct D), t>d

Z It C t=d
c
rH(C) = p'(O)(1 = p'(C))?,

1
Wi = — )
* MSEt+MSE! + ¢

where ff~(X?") denotes the probability given by classifier 7; that data element
Xt co]loctod in time ¢ is from class C*. To overcome the problem of division by
zero, a very small value was added in the form of e.

Brzezinski D., Stefanowski J., ,Combining block-based and online methods in learning ensembles from concept drifting
§ data streams”, Information Sciences, Vol. 265, pp. 50-67, 2014. 157
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Stream

Data
- Ensemble
methods

the OAUE

START

Get new data
clement x*

v
Calculate the prediction
CE
error on x for every
classifier in the ensemble ¢

x

s - Is £>0 and .
— S ~ tmodd=0? _~

Yes < Ll<k? >

Weight all classifiers

AddC'toe in&and C’

Replace the weekest
classifier in £ by C’

Train new
classifier C’

Is memory limit
. cxceeded ? _~

Decrease size of
component
classifiers

Incrementaly train all
T T
classifier in & with x’

Brzezinski D., Stefanowski J., ,Combining
block-based and online methods in learning
ensembles from concept drifting data
streams”, Information Sciences, Vol. 265,
pp. 50-67, 2014 158
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Stream Data

- Ensemble methods

General strategies for
adaptation of algorithms for
mining data streams based

on ensemble methods.

Brzezinski D., Stefanowski J., ,Combining block-based and online methods in learning ensembles from concept drifting
data streams”, Information Sciences, Vol. 265, pp. 50-67, 2014. 159
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SicEil Generic block ensemble training scheme
Data

START
< General . ._Getnewil;tachunk
Ensemble
Strategies l

Create a new classifier C€? and
calculate it’s weight

l

Calculate weights of all
classifiers in the ensemble

Replace the weekest

'y
AddCtoe classifier in £ by C’

160
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Stream
Data

- General
Ensemble
Strategies

Yes

AddC’toe

START

. Get new data
element x*

Yes No—

L 2

Replace olsedst

¢ >
Addx"to W example in " with X

l

Calculate weights of all
classifiers i the
ensemble

Is £>0 and

e tmodd=10"?

3
Build and weight
classifier C’using W

Replace the weekest
classifier m € by C’

v
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Windowing
strategy
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Stream Additional

v

Get new data

Data st | incremental

v

Incrementally

learner strategy

Add x"to B and

- General i o
Ensemble .
Strategies o<

Build and weight

classifier C'using B

Calculate weights of
all classifiers in the

ensemble
Yes < Isle<k? > No
AddC'toe Yes = “IS-«Q(C.) .Q(C,.)z? No

Replace the weekest
classifier in £ by C’

Reinitialize Cp with
B

Remove all data
elements from B

162
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Stream
Data

- General
Ensemble
Strategies

START

Get new data
!
element x

Incrementally
train D with x*

Addx'to B

4

Is |B|=d or drift _
~_  detected?

'
Build and weight
classifier C'using B

'

Calculate weights of

all classifiers in the
ensemble

Yes < Islg<k? > No

AddC'toe Yes <B QC'PQEC) T>—No

Replace the weekest
classifier in £ by C’

v

Reinitialize D

Remove all data
elements from B

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016

Drift detector
strategy
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Stream Data

- Ensemble methods

How to decide if a new
component should be added to
the ensemble?

164
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New resul
070 otream Data

- The Automatically Adjusting Size of Ensemble Algorithm (ASE)

Theorem 1 Let S, denote the data stream and S,, C S~ is a set of n indepen-

dent random variables S,, = { X, Xo, ..., X,,}. Moreover, let T' and I'" denote

two ensembles of components where I' = {11, 72, ..7jp|} and I'" =T U {741}
If the following inequality is true

1

where z1_~, is the (1 — 1) quantile of the standard normal distribution N(0,1)

and Pp+(S) (Pr(S)) denote the accuracy of ensemble I't (I'), then with proba-
bility 1 — v,

P (S) = Po(S) > 21,

Pr+ (S.x,) — PF(SD@) > (.

165
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Stream Data

- Ensemble methods

How to decide if we should to
remove a component from the
ensemble?

166
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New resul
070 otream Data

- The Automatically Adjusting Size of Ensemble Algorithm (ASE)

Theorem 2 Let So denote the data stream and S,, C S~ is a set of n indepen-
dent random variables S,, = {X1, Xo,.... X,,}. Moreover, let I' and I'™ denote
two  ensembles of algorithms where T = {11, 72,..7r|} and

I ={7m,7,,Tt—1, Tt41,--.T0| }- If the following inequality is true
Pr(S) — Pr-(S) > !

— I~ 21—y ——

“ VN

where function Pp(S) (Pp-(S)) denote the accuracy of ensemble I' (I'"), then
with probability 1 — ~2

I)I_‘(SDQ) — Pp— (Sm) > ().

Therefore, if the above conditions are true, then the removal of classifier T, will
decrease the accuracy of the ensemble.

167
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New resul
209 otream Data

- The Automatically Adjusting Size of Ensemble Algorithm (ASE)

Algorithm The Automatically Sized Ensemble Algorithm

Require: S, - stream of data elements, value of parameters
N » V1, Y2, 1]

1: while not the end of the stream do

2 obtain new k-th chunk of N data elements S

3 create new component Tiey,, and

4:  calculate tree weights

5: F+ =Tu {Ttemp}

6: fori=1,....N do

7 obtain value of Gr(X;) and Gr+(X;)

8: end for

9:  calculate Pr(S) and P[‘+( ) using (2)

10:  if Pr(S)— Pr+(5) — \/_”’ > 0 then
11: I'=1ru Ttemp

12:  else

13: Iemove Tiemp

14:  end if

15  if £ mod n = 0 then

16: fori=1,...|'| do

17: r—=r\{n}

18: calculate Pr(S) and Pr-(S)

19: if Pr(S) — Pr-(S) < =2 then
20 remove 7; from I

21: end if

22: end for

23:  end if

24: end while
168
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New resul
2016 Stream Data

- The Automatically Adjusting Size of Ensemble Algorithm (ASE)

GEN1

GEN2

GEN3

GEN4

Bayes

80.86%

50.00%

86.85%

74.88%

Hoefding
Boosting WMA Adapive
Tree

Bagging

AUE AWE Bagging Adwin

95.55% 96.86% 96.19% 96.19% 95.90% 95.23% 94.13%

87.18% 86.33% 89.69% 88.71% 87.80% 89.35% 86.91%

70.94% 69.27% 79.72% 70.02% 70.26% 80.19% 71.93%

73.61% 73.87% 74.45% 73.63% 73.91% 73.73% 73.12%

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016

HoeffdingHoeffding AASE

Opt.Tree

95.62%

89.16%

80.08%

73.81%

Tree

92.17%

89.35%

80.08%

73.73%

n=20

90.68%

92.42%

91.31%

90.46%

AASE
n=40

90.23%

92.30%

91.06%

90.30%
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Niewvare sl

20716

Stream Data

- The Automatically Adjusting Size of Ensemble Algorithm (ASE)

0.01
0.05
0.10
0.15
0.20

0.01
0.05
0.10
0.15
0.20

GEN1
max tree
number
7
9
14
17
22

91.89%
92.37%
93.08%
93.24%
93.43%

end tree
number

5
6
9
11
13

GEN2
max tree end tree
number number
5 2
7 2
10 4
14 4
18 6
Accuracy
92.45%
93.19%
93.96%
94.19%
94.38%

GENS3
max tree end tree
number number
6 3
7 5
11 7

91.91%
92.62%
93.16%
93.41%
93.67%
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max tree
number

9
14
21
19
29

GEN4

87.84%
88.97%
89.93%
90.27%
90.47%

end tree
number

2
5
7
9
12

170




New resul
209 otream Data

- The Automatically Adjusting Size of Ensemble Algorithm (ASE)

GEN1 GEN2 GEN3 GEN4
5 max tree end tree max tree end tree max tree end tree max tree end tree
14 number number number number number number number number
0.01 21 13 18 6 18 10 26 11
0.05 22 13 18 6 18 10 29 12
0.10 24 15 17 6 17 11 31 11
0.15 23 15 17 5 17 10 27 11
0.20 23 15 17 7 17 12 26 11
Accuracy
0.01 93.43% 94.33% 93.68% 90.48%
0.05 93.43% 94.38% 93.67% 90.47%
0.10 93.30% 94.33% 93.65% 90.46%
0.15 93.28% 94.26% 93.53% 90.56%
0.20 93.27% 94.29% 93.64% 90.47%

171

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



New resul
209 otream Data

- The Automatically Adjusting Size of Ensemble Algorithm (ASE)

GEN1 GEN2 GEN3 GEN4
0.01 539 458 484 613
0.05 539 432 472 620
0.10 517 410 475 615
0.15 521 399 454 605
0.20 509 397 438 569
difference 30 61 46 44
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New resul
o0 otream Data

- The Dynamically Expanded Ensemble Algorithm (DEEA)

Algorithm The Dynamically Expanded Ensemble Algorithm
Require: S, ¥V >0

1: get first data chunk and create (learn) 7

2: get next data chunk and create (learn) Tiemyp
3: add 7 to I and I'", and 74 to I'T

4: while not the end of stream do

5. get new data chunk S = X1, Xo,.... X,

6: fori=1,2,....,ndo

7: obtain value of Gr(X;) and Gpr+(X;)

8: end for

9:  calculate Pr(S) and Pr+(S)
10:  if Ppe(S) = Pr(S) — =72 > U then
11: I' =T'U Ttemp
12: else
13: remove Ttemp
14: end if
15:  calculate weights (learn) for all components in I’
16:  create (learn) new component Tiepm,p

17 add Tyemp to T'T
18: end while 173

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016



New resul
o0 otream Data

- The Dynamically Expanded Ensemble Algorithm (DEEA)

It is the procedure of making a decision whether a particular classifier should
be added to the ensemble.

First, an ensemble I'" is created by combining classifiers from I' and tempo-
rary classifier 7¢emp created on the last data chunk. Next, a new chunk of data
elements is collected. Based on the new data chunk the values of Pr and Pr+
are calculated using:

Pr(S,) = > i1 Gr(Xi)

n

Then, if the condition

Pr+(S) — Pr(S) — % >

is satisfied, the classifier 7¢cy,, is added to the ensemble. However, if this con-
dition is not fulfilled, then the investigated classifier is discarded. Next a new
classifier is created based on the investigated data chunk and is labeled by T¢emp.

174
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Stream Data

The
Dynamically
Expanded
Ensemble
Algorithm
(DEEA)

START

I

Get the first data
chunk

}

Create (learn)
classifier T on the
first chunk

l

AddttoINand I'Y,
Tremp = NI

I

Get a new data

<

chunk .§

I

Calculate the

accuracy of
Iand I'"

!

IES P_(S)-P.(9)- 2 > Nol
Add Temp to
ensemble I

v

Create (learn) new
classifiers Teemp
based on chunk §

Calculate weights
Add Tempto I | » (learn) for all
components in I, I'"*

Zl'h

Remove Tiemp
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Data stream mining

- content

Data streams — introduction to the topic

Concept drift

Various strategies of learning

How to deal with concept drift?

Data stream classification methods — short overview

Decision trees for data streams (including new results 2016)
Ensemble methods for data streams (including new results 2016)
Probabilistic neural networks for stream data mining
(including new results 2016)

Final remarks and challenging problems

References
176
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PNN for stream data mining

Histograms
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PNN for stream data mining

Non-recursive procedures

Let X,,..,X, be a sequence of iIndependent, identically
distributed random variables taking values in A c RP and
having a probability density function f. The general estimator of
the probability density function f is given by the following

formula

L (0=2Y K, (x X,)

where

179
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PNN for stream data mining

Non-recursive procedures

Parzen (1962):  f,(x)= izn: K(X_ X, j

Cacullous (1965): fn(x):%z K[X—Xij
n n i=1

h(n)>0, h —50, nh?—">wo

ACIIDS 2014 (Bangkok, April 7-9, 180
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PNN for stream data mining

Non-recursive procedures

0.16 T T
0.14
0.12 - .'/ /‘\

|

\
01 fF ,f i‘u fff \
/ \
0.08 | f \ ."|II \

f / "n
0.06 | / \/ H /\ ]
o o\ PR
0.04 | ;._. \\/ K ]
0 s - _. .o T . e —
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PNN for stream data mining

Example of kernels

182
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PNN for stream data mining

Non-recursive procedures

Example (Gaussian kernel)
K. (x,u)= hnpK[X_uj
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PNN for stream data mining

Non-recursive procedures

f i p E y (i) X_(J')j2
exp| —— '
(272') nhp |—111 P hn

184
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PNN for stream data mining

Recursive procedures

Probabilistic neural network for density estimation

based on the Parzen kernel -
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PNN for stream data mining

Non-recursive procedures

Let us modify estimator as follows

186
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PNN for stream data mining

Recursive procedures

Observe that estimator is computationally equivalent
to the recursive procedure

n-1 |
n

Recursive probabilistic neural network for density estimation

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016
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PNN for stream data mining

Recursive procedures

exp > (272')_p/2n_1hn_p

Recursive probabilistic neural network for estimation based on the
Parzen kernel

188
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PNN for stream data mining

for pattern classification

Let (X,Y), (X, Y1), ..., (X, Y,) be a sequence of i.i.d. pairs of
random variables, Y takes values in the set of classes S =
{1, ..., M}, whereas x takes values in A c RP. The problem is
to estimate Y from x and w,,, where w,, = (X1, Y1), ..., (X;,, ¥3,)
IS a learning sequence. Suppose that p,, and f,,, m=
1,..., M are the prior class probabilities and class conditional

densities, respectively. We define a discriminant function of
class j:

dj(X)z pjfj(x)

189
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PNN for stream data mining

for pattern classification

Let L(i,j) be the loss incurred in taking action i € S when the class is j.
We assume 0 — 1 loss function. For a decision function ¢: A4 — S the
expected loss Is

190
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PNN for stream data mining

for pattern classification

A decision function ¢* which classifies every as coming
from any class m for which

bt () =M 1, (x) = max d, ()
J J

IS a Bayes decision function and

R =Rl )= 2, [ Ll (x), 1), (x)ox

=1 A

Is the minimal Bayes risk. The function d,,(x) is called the

Bayes discriminant function.
191
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PNN for stream data mining

for pattern classification

A decision function @~ which classifies every xe A as coming from any class m
for which

5o (x)=max p ,(x)=max d(x
J J

is a Bayes decision function and

is the minimal Bayes risk. The function d,(x) is called the Bayes discriminant
function.

192
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PNN for stream data mining

for pattern classification

Generalized regression neural network

for pattern classification e

ouver, July 24, 2016



PNN for stream data mining

for pattern classification

Generalized regression neural
network based on the Parzen
kernel for pattern classification

bl 194
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PNN for stream data mining

for pattern classification

1 r Y

6}M i (JC )

Recursive generalized regression neural network for pattern classificationigs
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PNN for stream data mining

for pattern classification

AIZ
(DP( e pl o) 7, P
. A

Recursive generalized regression neural network based on the Parzen kernel
for pattern classification (M=2)

196
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PNN for stream data mining

for pattern classification in a time-varying environment

K — number of classes
Concept Drift:
fmn(x) — time-varying probability density of
classm (m = 1,..,K)

at the instantn (n = 1,2,..)

pmn — time-varying a priori probabilities

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016
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PNN for stream data mining

for pattern classification in a time-varying environment

We want to estimate
dmn(x): pmn fmn(x)’ m:]'""’K’ n:1121"'1

Find estimate d,,,, of d,,, such that

in probability

Gy (X) = Ay (X)) ——0 (with probability one)

198
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PNN for stream data mining

for pattern classification in a time-varying environment

A\

O

1—ar(]2) b CTMn (X)

1-aM) lg 199
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PNN for stream data mining

for pattern classification in a time-varying environment

Example
Consider a two-category classification problem with py,, = p, = %
and
fin(x) = fi(x — nt);on(x) = fo(x — n")
where

fi(x) =N(0,1), f,(x) =N(2,1)
In this case the minimum probability of error is given by

P, w2 4y = 0.159

1 (0.0]
— =
\/Zn!

200
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PNN for stream data mining

for pattern classification in a time-varying environment

n Error
1000 | 0.1559
2000 | 0.1602
3000 | 0.1573
4000 | 0.1691
5000 | 0.1566
6000 | 0.1598
7000 | 0.1562
8000 | 0.1607
9000 | 0.1561
10000 | 0.1572

Empirical probability of misclassification
for t=0.1, a=0.7, H=0.5 201
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PNN for stream data mining

for pattern classification in a time-varying environment

n Error
1000 | 0.1639
2000 | 0.1648
3000 | 0.1687
4000 | 0.1649
5000 | 0.1564
6000 | 0.1611
7000 | 0.1558
8000 | 0.1586
9000 | 0.1569
10000 | 0.1562

b) |
0,35]

03
0,255
0
015
0

0,05]

Empirical probability of misclassification
for t=0.3, a=0.4, H=0.3
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PNN for stream data mining

Generalized regression neural networks

Let (X,Y) be a pair of random variables X takes values in a
Borel A,A c RP, whereas Y takes values in R. Let f be the
marginal Lebesgue density of X. Based on a sample
(X, 1), ..., (X, Y;,) of independent observations of (X,Y) we
wish to estimate the regression function

#(x)=E[Y[X = x]

203
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PNN for stream data mining

Generalized regression neural networks

To estimate function ¢ we propose the following formula

where

and

204
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PNN for stream data mining

Generalized regression neural networks

Scheme of generalized regression neural network

205
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PNN for stream data mining

Generalized regression neural networks

Example (Nadaraya and Watson ). Applying the Parzen kernel we get

e
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PNN for stream data mining

Generalized regression neural networks

Generalized regression neural network based on the Parzen kernel 57
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PNN for stream data mining

Generalized regression neural networks

The recursive version of procedure is given as follows

where

WCCI’ 2016 Tutorial, Vancouver, July 24, 2016
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PNN for stream data mining

Generalized regression neural networks

. . 1 .
R, (0= R, (0)+ n+1[vn+1r<n+l<x,xn+l>—Rn<x>]

Fa0)= 0+ K0 X,0)- £, (0)
f,(x)=0

where Ry(x) = 0 and f,(x) = 0

209
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PNN for stream data mining

Generalized regression neural networks

n-1

Recursive generalized regression neural network

n-1 I
1

210
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PNN for stream data mining

Generalized regression neural networks

1-n 1
T Z
A
R & O~
S @ 8, (x)
o
\ 4
T

Recursive generalized regression neural network

based on the Parzen kernel i
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PNN for stream data mining

Generalized regression neural networks in time-varying environment

In the non-stationary regression we consider a sequence of
random variables (X,,Y,),n=1,2,..., having time-varying
cumulative probability density functions f,,(x,y). The problem
IS to find a measurable function ¢,,: RP - R such that the L,

risk
E[4,(X,)-Y. [

attains minimum. The solution is the regression function

6. (x)=E[Y,|IX, =x|, n=12..,

changing with time. 212
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PNN for stream data mining

Generalized regression neural networks in time-varying environment

For the illustration of the capability of our GRNN we may
consider an application to modelling of non-stationary plants
described by

Y, =¢:(X,)+Z

where concept drift ¢,, "is given by:
M 4(x)=a,4(x)

(i) 4,(x)=9(x)+ S
i) (= (xo,)
(V) 4, (x)=¢(x-2,)
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PNN for stream data mining

Generalized regression neural networks in time-varying environment

The problem of non-parametric regression boils down to finding an
adaptive algorithm that could follow the changes of optimal characteristics
expressed by formula. This algorithm should be constructed on the basis
of a learning sequence, i.e. observations of the following random variables
(Xlr Y1)1 (er YZ))

We assume that pairs of the above random variables are independent.

In points x, where f(x) # 0, the characteristics of the best model can be
expressed as

# (x)=R (x)/f(x), n=12,..,

where Ry, (x) = ¢n(x)f (x).

214
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PNN for stream data mining

Generalized regression neural networks in time-varying environment

The algorithm has the form

where R, "(x)=0 and Tt "(x)=0

215
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PNN for stream data mining

Generalized regression neural networks in time-varying environment

Let
a, >0, a,—>0, ) a, =

n=1

Under specific conditions imposed on parameters a, and h, and
the rate of change of function ¢,, the following holds

e " In probability
¢, (x)-4, (X)(—) (with probability one)

216
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PNN for stream data mining

Generalized regression neural networks in time-varying environment

* » Non-stationary plant I >

. |
;-1
X_' L 1-a, !

K%, 2 i

n-1 I
<
n

Block diagram of the GRNN applied to modelling of non-stationary plant 217
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PNN for stream data mining

Generalized regression neural networks in time-varying environment

: —>®
k] R

o0 [ (o) ) )
\ 4
n-l e |
n

Block diagram of the GRNN based on the Parzen kernel 218




PNN for stream data mining

Generalized regression neural networks in time-varying environment

Example

In order to track changes of the system described by

y,. = ((:1nt +C, Iogn+c3)¢(xn)+ Z
where t > 0 Is an unknown parameter and ¢ is an unknown

function, it is possible to use algorithm if

1
ap -t = for week convergence

1
b) 0<t< 5 for strong convergence
219
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PNN for stream data mining

Generalized regression neural networks in time-varying environment

Example

b *(xn)=10 cos(x,) + n’t + z,

Z 10_:,/& vl \\/\,_W\/,\,—‘»fa L~ 105#\,[\,\\”\“‘\ NI e SN
a) n=1000 b) x=0.2 ~ C)x=0.6

GRNN for modeling regressions with additive non-

stationarity S
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PNN for stream data mining

Generalized regression neural networks in time-varying environment

Example

b, (x,)=10 cos(x,n%1) + z,

30 ~ 30 30

s Ay

a) n=1000 b) x=0.2 c) x=0.8
GRNN for modeling regressions with non-stationarity of
the type “scale change” -
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New result 2096

Three types of non-stationarities

1) Y, =¢(X,)+2Z, )Y, =¢ n(Xn) + Zy
where variance of Z,, is changing 1=100
over time

data points i

100 25 | function  se—
n=

data points +
function

20 ¢
10 ¢

15 ¢

10 ¢

0 05 1 15 2

3) 1, = ¢ (X,) + Z, with changing variance of Z, o
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New result 2096

Forgetting mechanism

223
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New result 2096

Sliding window

n 1 r—X;
~ Zi:'ﬂ-—I’i‘;—Fl Y;h I ( hv )
n r—X;
Zz_n—ﬂ +1 h’ﬁ‘ I ( f1.;ﬁra)
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Newwaie'siiliE208H6
Experimental results
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Newwaie'siiliE208H6
Experimental results

18
| 6n(x)
._1'}“{_5:,
d',lr]l.il'i.ni.ilf.li',lrx}
li{,,ﬁ-]-][llillr”m:I _
H 1 1 1 1 1 1 1 1 1
a 16808 28006 38006 48888 haliia]i] G6BBaa Fopog 888008 98808 10688
nunber of data elenents 226
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Data stream mining

- content

Data streams — introduction to the topic

Concept drift

Various strategies of learning

How to deal with concept drift?

Data stream classification methods — short overview

Decision trees for data streams (including new results 2016)
Ensemble methods for data streams (including new results 2016)

Probabilistic neural networks for stream data mining (including
new results 2016)

Final remarks and challenging problems

References
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Data stream mining

- Final remarks and challenging problems

To be presented at the end of the tutorial.

228
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Data stream mining

- content

Data streams — introduction to the topic

Concept drift

Various strategies of learning

How to deal with concept drift?

Data stream classification methods — short overview

Decision trees for data streams (including new results 2016)
Ensemble methods for data streams (including new results 2016)

Probabilistic neural networks for stream data mining (including
new results 2016)

Final remarks and challenging problems

References
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Stream data mining algorithms (concept drift)

Rutkowski L., Duda P., Jaworski M., Pietruczuk L., Stream Data Mining:

Algorithms and Their Probabilistic Properties, Studies in Big Data,
Springer, 2017. i

/

(1)
(2)
3)
(4)

(5)

\_

This book shows methods and algorithms which are mathematically justified.

It shows how to adopt the static decision trees, like ID.3 or CART, to deal with data streams.
A new technique, based on the McDiarmid bound, is developed.

New decision trees are designed, by a proper combination of the Gini index and misclassification
error impurity measures, leading to the original concept of the hybrid decision trees.

The problem of designing ensembles and automatic choosing their sizes is described and
solved.

Nonparametric techniques based on the Parzen — kernels and orthogonal series, are adopted to
deal with concept drift in the problem of non-stationary regressions and classification in time-
varying environment. Nonparametric procedures are developed and their probabilistic properties
are investigated.
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lized Regression Neural Networks in
IEEE TRANSACTIONS ON Time-Varying Environment

N EU RAL V ETVVO RK S Leszek Rutkowski, Senior Member, IEEE

te of knowledge regarding non- where X is RP—valued and Y is [i—valued. The problem is to

antly poorer then in the case of  find a (measurable) function ¢: R¥ — R such that the Ly risk
lications, signals are treated as sta-

A PUBLICATION OF THE IEEE NEURAL NETWORKS SOCIETY

it is easier to analyze them; in fact, . 19
Brv . Yy |~| ! E[“f’()\) Y]- (h
tionary processes are undoubtedly {
eir diversity makes application of
® 5 paper we propose a new class of  attains minimum. The solution is the regression function
- networks working in nonstationary
T -

environment. The generalized regession neural networks (GRNN)
studied in this paper are able to follow changes of the best model,
i.e., time-varying regression functions. The novelty is summarized
as follows: 1) We present adaptive GRNN tracking time-varying Nonparametric procedures and GRNN approach the best solu-
regression functions. 2) We prove convergence of the GRNN based  (jon (2) as the sample size grows large.

- manea 0l gepegal learning theorems preseptedinSectiondV. 3) e desion o o | s o b st st assdl ™ B it i [

() =E[Y | X =z]. (2)
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Theorem 2: 1t the following conditions are satistied:

(s )
>l / var [Yo, K, (2, X, ) dx < o0 (37)
n=1

IEEE TRANSACTIONS ON
NEURAL NETWORKS

A PUBLICATION OF THE IEEE NEURAL NETWORKS SOCIETY

St [ (ra(z) — Ru(z))de << (38)
n=1 b

3 ot j (Rusr() - Ru(a)ide <00 (39)
n=1

ession neural network based on the Parzen I, 2.0 with pr. 1. (40)

= 2).
X Theorem 3: 11 the following conditions are satisfied:
® Fislrihulinns of the above random
nown.

/mr VoKn(r, Xp)]dz = 0(n), A>0 (41)

Let us define the following function: > B
(Ryps1(z) — Rp(z))"de =0(n~ "), B>0 (42)

Ro(@) L fu(@)EYp| X, =2l n=1,2,.... (28 [ ) )
st s . g Bl iy, g s 8t L Bl T ) 5 AR D D 2 O R e

|
S S A A AN S A e by,
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el N 1 \ — 11(,g: \ -1 Corollary 1. Suppose a and b are attributes for which the values of ]
L N N- l\_"};l« information gain, calculated from the data sample Z, satisfy
IEEE TrRAN SACTIONS ON ) 0 Gaing(Z) > Gainy(Z). For any fixed 6 and e given by (29), if

1]00_‘, N-1 +iln‘f-; i} (24) [(Z) > €, then with probability 1 — 6 attribute a is better to
KNO ‘ ‘ LEDGE AND [ N N TN split than attribute b, according to whole data stream. Moreover,
N-1 1 if o and bare attributes with the highest and the second highest

) log, v —loggT . - < <

values of information gain, then with probability 1 — 6, a is the
A publication of the IEEE Computer Society best attribute to split according to the whole stream.

Indexed in ISI et
....... — Proof. For this particular choice of attributes o and b the
““““““ 11(Z) - /(Z')] = V- 11”“7 N log N (25 assumptions of Theorem 1 are satisfied. Therefore,
’ ’ | N !N -1 N | B inequality (30) holds and can be transformed to the form
It is easy to prove that PE[f(Z)] = f(Z)—€) = 1=0. (31)
oz, [ 1y logye (26) Notice that if f(Z) > ¢, then E[f(Z)] > 0 with probability
%82\, =T i 1 —6. The inequality E[f(Z)] >0 is equivalent to

E[Gain,(Z)] > E|Gain,(Z)] what means that the attri-
bute « is better than attribute b to split, according to the
1 log, N whole data stream, with probability 1 — é.

In view of (26), for N = 2, we can bound (25) as follows:

—=< — Let us consider ; the case. where X
. et us consider now the case, where a and b are
U SRR . e N R S N S Sy S G- S ALt L tse A S e ol
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Algorithm 1: The dsCART

Inputs: S is a sequence of examples,
SCIENCES A is a set of discrete attributes, of the one class

Snbwmarics and Compater Scbmie a is one minus the desired probability of choosing the correct
Ieteligeat Syitears attribute at any given node,
m ELSEVIER . 2 ‘ .
At A 0 is the tie breaking parameter.
AN INTERNATIONAL JOURNAL Output: dsCART is a decision tree.

Procedure dsCART(S. %, «)
Let dsC ART be a tree with a single leaf Ly (the root).
Let g =21
For each attribute o' € 2

For each value a} of attribute o'

For each class &
ni‘" ro=0

For cach example s in S

Sort s into a leaf L, using the current tree.

AN SN AR L W, TNy e T 0‘-‘ -
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RUTKOWSKI ET AL.. DECISION TREES FOR MINING DATA STREAMS BASED ON THE GAUSSIAN APPROXIMATION

@

be emphasized that for Gini index (CART decision tree)

MeDiarmid’s method gives much better result (see [29]). TABLE 1

The GDT Algorithm

GAUsSIAN DEcISION TREE ALGORITHM Inputs: § s a sequence of examples,

. o is a set of discrete attributes,
1 allows us to propose an algorithm called the

'EEE TRANSACTIONS ON decision tree. This algorithm is a modification of th lsla mlmmal }imc‘[mn ;)f‘?lemems
g tree algorithm proposed in [7]. For clarity of the . l’,m onging to the one class,
KNOWLEDGE AND e (see Table 1) the following notation will be é 15 0nc s t_he desired proba-
! bility of choosing the correct at-
DATA ENGINEERING

= i is the information gain computed for the Qutput: GDT is a decision tree.
A publication of the IEEE Campute,r'SoL"ng’ ibute o' in the leaf L,.
e Lo 18 the number of elements from the kth class in Procedure GDT(S, </, th, )
........ = the leaf L,, for which the value of attribute o' is equal 01. Let GDT be a tree with a hing]e leaf Ly (the root).

to af. 02. Let oy = o/

. u:' is the number of elements from the /th class in the 03. Let €' = %, last =0
leaf L,. 04. For each attribute a* € &

At the beginning, the algorithm starts with a single leaf 05. For each value a), of attribute a’

(the root) and initializes the input parameters (in particular 06. nlio=0,n,,=0

A M LA A a4 S ety g a4 Y

» the parameterlost. dengting the index,of zecentlv.cregteg... . 0Z.Forcachwexample 500 §u o s o csssmine_p
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A New Method for Data Stream Mining Based
on the Misclassification Error

Leszek Rutkowski, Fellow, IEEE, Maciej Jaworski, Lena Pietruczuk, and Piotr Duda

method for constructing
posed. First a new split-
cation error is derived.
best attribute computed
available data sample is
. as the attribute derived
his result is combined
dex. It is shown
ighest accuracy among all

studied algorithms.

Index  Terms— CI;
impurity measure, sp

., data stream, decision frees,

I. INTRODUCTION
A. Motivation and Results

In recent years, the amount of data that needs to be analyzed

ie arowsing vary fact Patantially anlimitad mumhar of data ic
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One of the most important techniques used in data mining is
the data classification. Let us assume that the data elements are
described by D attributes. Each attribute can be either nominal
or numerical. If the fth attribute is nominal then the number of
possible values is finite and equal to v;. Moreover, to each data
element, a class is assigned. The number of different classes
is denoted by K. The aim of the classification is to construct
a function called the classifier, based on the training data set
of elements. The classifier maps the set of values of attributes
into the set of classes. It is further used to classify unlabeled
data elements. There exists a wide variety of methods used for
data classification. The most popular are neural networks [25],
k-nearest neighbors [26] and decision trees [27]-[29]. The
last one is the main subject of this paper. Decision tree
consists of nodes and leaves. Each node is split according to
some attribute into its children (nodes or leaves). Each child
corresponds to one value of the attribute (in case of nonbinary
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The 16th International Conference on Artificial Intelligence and Soft Computing ICAISC 2017 will be held in
Zakopane (situated in the High Tatra mountains), Poland on June 11-15, 2017 in Mercure Zakopane
Kasprowy Hotel. The conference will provide an excellent opportunity for scientists and engineers to present
and discuss the latest scientific results and methods. The conference will include keynote addresses
contributed papers, and numerous lectures and tutorials on a wide range of topics
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The working language of the conference is English. Only original, unpublished papers in the aforementioned
fields are invited. Authors should submit an electronic version of papers by the conference web page. The
papers should be organized in accordance with a common scientific structure (abstract, state of the art in the
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Thank you for your
attention
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