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What  is  the  learning  goal  here?
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iSense D1.1: Specification of System Characteristics

Figure 12: The general MIMO system model

In a networked –possibly controlled– environment the system model can describe relationships
within a sensor-actuator augmented unit, at a cluster of units level or at the whole network level;
the particular envisaged P depends then on the application needs.

In the following we consider a general MIMO system description. As a consequence, it also implic-
itly addresses multiple-input single-output (MISO) and single-input single-output (SISO) scenarios.
We recall that continuous-time dynamic systems can be brought back to a discrete-time representa-
tion with discretization techniques such as the (explicit) forward Euler or the (implicit) backward
Euler methods.

The considered MIMO discrete-time system model can be described by means of the canonical
form as the system of equations (similar to the ones presented in (26)-(27))

x(k + 1) = f(x(k), u(k)) + η(k), (46)
y(k) = h(x(k), u(k)) + d(k) (47)

where x ∈ Rn is the state vector, y ∈ R� is the output vector, u ∈ Rm is the input vector, which
may consist of some controlled inputs as well as some uncontrolled inputs which however can be
measured, η is the i.i.d. random variable describing the uncertainty affecting the state vector; d is
an independent and identically distributed (i.i.d.) random variable describing the noise affecting
the output vector. The functions f and h are, in general, non-linear functions and unlike the models
presented in (26)-(27) they are assumed unknown.

The output equation (47) models the relationship among the output, the state and the input
variables, while the state equation (46), models the evolution of the state variables over time with
respect to the inputs and states.

The discrete-time model presented above is quite general and allows the modeling of a wide range
of applications. In the following, we specialize the system model to cover interesting application
cases, namely those where P can be described within a regression framework, the case where the
output variables coincide with the state variables (input-output description) and the general case
where the process can be specified with a state space representation.

2.2.1 Regression models

When P does not have internal states (i.e., the system has no dynamics), the output variables
depend only on the input variables at time k and, hence, (47) can be rewritten as

y(k) = h(u(k)) + d(k) (48)
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If the relationship between y(k) and u(k) is linear, the system model simplifies to

y(k) = Du(k) + d(k) (49)

where D is an �×m matrix.

2.2.2 Input-output models

Of particular interest is the case where P can be described by the input-output representation, here
considered in the SISO scenario,

y(k) = h(y(k − 1), y(k − 2), . . . , y(k − k

y

), u(k), u(k − 1), . . . , u(k − k

u

)) + d(k) (50)

and characterized by a finite time lag dependency. Linear input-output models represent a further
specific subcase of the above where the relationship between the output and the input variables is
linear. In such a case and for the MIMO scenario, the system model assumes the general canonical
form [31]:

A(z)y(k) =
mX

i=1

B

i

(z)
F

i

(z)
u

i

(k) +
C(z)
D(z)

d(k) (51)

where z is the time-shift operator, A(z), B

i

(z), C(z), D(z), and F

i

(z) represent the z-transform
functions and, u

i

is the i-th input.
From the canonical form we can specify some linear input-output models for the system which

are widely-used in system identification, e.g., the AR, ARX and OE models. If we have a priori
information about the nature of the system then we can exploit such an information to build up an
effective model. An interesting positive consequence is that, after having identified the system with
the suitable model, the bias component of the residual error vanishes and the same model satisfies
the i.i.d hypothesis, which is useful for the subsequent statistical change detection phase.

AR system model: When the system can be expressed as a linear autoregressive (AR) model, Eq.
(51) simplifies to a linear relationship between the output variable y(k) at time k and its previous
values. For instance, in the case of a scalar single output of order k

y

, the system can be expressed
as

A(z)y(k) = d(k), (52)

which can be written as:

y(k) =
k

yX

i=1

a

i

y(k − i) + d(k). (53)

ARX model: When the process can be described as an autoregressive model with an exogenous
input (ARX), the output y(k) is function of the past values of the output variables and inputs. In
case of a single-input single-output (SISO) ARX models, Eq. (51) becomes

A(z)y(k) = B(z)u(k) + d(k) (54)
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as in single vs. ensemble, sequential vs. batch, passive vs.
active.

We believe that the classification active vs. passive is the
most appropriate one since it refers to the way classifiers
adapt in response to concept drift. In the following, we mainly
focus on active classifiers [2]–[5], [8]–[20], since the proposed
approach falls in this category. Readers interested in passive
classifiers can refer to [1], [6].

Active classifiers rely on triggering mechanisms detecting
when the classifier is no more aligned with the current concept,
generally by means of a CDT.

The adaptation phase is then activated as soon as a change
is detected, and moves the learning machine into a new opera-
tional state. On the contrary, in passive solutions, the classifier
undergoes a continuous update every time new supervised
samples are made available. These latter solutions generally
rely on an ensemble of classifiers with adaptation confined in
the update of the weights of the fusion/aggregation rule and
in the creation/removal of classifiers composing the ensemble.

[19] suggests an active classifier that monitors nonstation-
arity by inspecting variations in the mean value of a sliding
window opened over raw data. Differently, [18] takes decisions
by inspecting the normalized Kolmogorov-Smirnov distance
between the cumulative density functions estimated from the
training samples and a window of the most recent ones.

[14]–[17], [20] present triggering mechanisms based on
the classification error. In more detail, [14], [16], [20] detect a
change when the classification error exceeds a fixed threshold
(which is tuned according to the sample standard deviation
of the associated Bernoulli distribution). [17] suggests an ad-
hoc statistical test on the proportion of incorrectly classified
samples for comparing two different partitions of supervised
couples. [15] introduces an active classifier for concept drift
that relies on a sequential CDT (the Bernoulli exponential
moving average chart) to assess the stationarity of the clas-
sification error over time.

The JIT classifiers [2] and [3], introduced the inspection
of raw data pdf without relying on supervised labels, as
these could be seldom available. More specifically, preliminary
versions of JIT classifiers [3], [13] rely on the CI-CUSUM
CDT [2], whereas most recent solutions have enforced the
ICI-based CDT [4] as a core technique. In [10] a specific
solution for gradual concept drift is presented. In some cases,
concept drift cannot be detected by solely inspecting the
distribution of raw data, e.g., when the concept drift affects the
class function without modifying the distribution of unlabeled
observations. The same problem arises when observations
contain qualitative components, a situation hardly manageable
with a CDT. To this purpose, an extension of the basic JIT
classifier to detect drifts affecting the average classification
error has been presented in [5]. A particularly convenient
solution consists in simultaneously monitoring the pdf of the
raw data and the classification error, by combining different
CDTs.

III. PROBLEM STATEMENT

Let us consider a classification problem where sequential
couples (xt, yt) are generated according to an unknown pdf. In

particular, let xt 2 Rd be the observation at time t, generated
by an unknown process X , and let yt be its class label,
belonging to a finite set ⇤. The probability of observations
at time t can be expressed as

p(x|t) =
X

y2⇤

p(y|t)p(x|y, t), such that
X

y2⇤

p(y|t) = 1,

(1)
where p(y|t) > 0, is the probability of receiving a sample
of class y 2 ⇤, while p(x|y, t) is the conditional probability
distribution of class y at time t. Both the probabilities of
classes and the conditional probabilities are unknown and,
possibly, time variant (whenever a concept drift occurs).

The training sequence is composed of the first T0 observa-
tions, assumed to be generated in stationary conditions, i.e.,
8y 2 ⇤, p(y|t) and p(x|y, t) do not change in t 2 [0, T0]. No
assumptions are made on how often supervised pairs (xt, yt)
are provided during the operational life (t > T0), as these
could be received following a regular time-pattern scheme
(e.g., one supervised sample out of m) or asynchronously.

IV. JIT CLASSIFIERS FOR RECURRENT CONCEPTS:
THE GENERAL FORMULATION

The key elements composing a JIT classifier are the set
of concept representations C = {C1, . . . , CN} and the set of
operators {U ,⌥,D, E ,K} designed to handle such represen-
tations.

The i-th concept representation is defined as the triplet
Ci =

�

Zi, Fi, Di

�

where Zi is a sequence of supervised
pairs, Fi is a sequence of features characterizing the i-th
concept (to be used to assess the equivalence between two
concept representations), and Di is a sequence of features
used by the CDTs to detect a drift in the i-th concept. Not
rarely, Di contains also the same features of Fi. Examples of
Di are the cumulative statistics in CUSUM-like CDT [21];
examples of Fi are the sample statistics from non-overlapping
subsequences of observations.

The operators are defined as follows
• the update operator U(Ci, R) ! Ci. The operator U

receives concept Ci and a sequence of supervised or un-
supervised observations R. The operator U modifies the
concept representation Ci by appending recent supervised
samples Zi or features extracted from R to Fi.

• the split operator ⌥ (Ci) ! (Cj , Ck). The operator ⌥
divides a concept representation Ci into two disjoint
concept representations Cj and Ck. Elements that cannot
be safely associated either to Cj or Ck are discarded.

• the concept-drift detection operator D(Ci) ! {0, 1}: D
sequentially assesses the stationarity of concept Ci by
monitoring features in Di. When D(Ci) = 0 all observa-
tions yielding Ci are generated from the same concept,
i.e., “no concept drift” has occurred. When D(Ci) = 1,
the representation Ci has not been obtained from a single
concept, i.e., “concept drift has been detected”.

• the equivalence operator E(Ci, Cj) ! {0, 1}. E checks
if Ci and Cj are equivalent: E(Ci, Cj) = 1 means that
Ci and Cj are two representations coming from the same

We will come  back  to  the  learning mechanism later
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From (3.6), each perturbation introduces an increase in E[dy] if we consider the
quadratic form expansion (a first order approximation, obtained by solely maintain-
ing the linear term, provides a null value). In order to compute Var(dy), we consider
only the first term of the expansion (the quadratic term does not allow us to advance
the mathematics), which means that we only keep the linear approximation for func-
tion f (x). Under the above assumptions and by taking expectation w.r.t. x and dx,
the variance of the perturbed output becomes

Var(dy) = E
h
J(x)T

dxdxT J(x)
i

= trace
⇣

E
h
J(x)J(x)T

i
C

dx

⌘
.

Obviously, if f (x) = q

T x the derivation reduces to that of the linear function
case.

3.4 Learning from data and uncertainty at the model level

This section studies the case where parameterized models are built from a series
of noisy data. The use of a limited number of data to estimate the model, i.e., to
determine an estimate of the optimal parameter configuration, introduces an extra
source of uncertainty on the estimated parameters in addition to the noise (in previ-
ous sections, the parameters were given). In fact, given a different data set with the
same cardinality, we will obtain a different parameter configuration with probabil-
ity one, also in the linear model case. What happens when we select a non-optimal
(”wrong”) model to describe the data? Which is the relationship between the optimal
parameter configuration, constrained by the selected model family, and the current
one configured on a limited data set? Since the estimated parameter vector is a re-
alization of a random variable centered on the optimal one, the model we obtain
from the available data can be seen as a perturbed model induced by perturbations
affecting the parameter vector. Which are then the effects of this perturbation on the
performance of the model? This section aims at addressing the above aspects.

3.4.1 Basics of Learning: inherent, approximation and estimation
risks

Let ZN = {(x1,y1), ...,(xN ,yN)} be the set composed of N (input-output) couples.
The goal of machine learning is to build the simplest approximating model able to
explain past ZN data and future instances that will be provided by the data generating
process.

Consider then the situation where the process generating the data (system model)
is ruled by

y = g(x)+h , (3.7)
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where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is
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• Up  to  now we assumed the  system model  to  
be  time  invariant…



But everything and  everybody changes over  time  ...

Be  aware  of  Gradual Concept  drift…



Ageing  effects  …  



…  changes   in  the  system  or  the  environment



Learning  in  Nonstationary Environments:
the  effect  of  the  non-­stationarity

P
Data  generating  

process

(x,y)

Estimate  
a  model

Application

Ø Faults
Ø Ageing effects
Ø Changes in  the  environment

Perturbed,  incorrect  and  missing  data  
can  hence  heavily  affect  the  subsequent  processing  phase  

so  as  to  possibly  induce  wrong  decisions  or  on-­the-­field  
reactions.
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Figure 12: The general MIMO system model

In a networked –possibly controlled– environment the system model can describe relationships
within a sensor-actuator augmented unit, at a cluster of units level or at the whole network level;
the particular envisaged P depends then on the application needs.

In the following we consider a general MIMO system description. As a consequence, it also implic-
itly addresses multiple-input single-output (MISO) and single-input single-output (SISO) scenarios.
We recall that continuous-time dynamic systems can be brought back to a discrete-time representa-
tion with discretization techniques such as the (explicit) forward Euler or the (implicit) backward
Euler methods.

The considered MIMO discrete-time system model can be described by means of the canonical
form as the system of equations (similar to the ones presented in (26)-(27))

x(k + 1) = f(x(k), u(k)) + η(k), (46)
y(k) = h(x(k), u(k)) + d(k) (47)

where x ∈ Rn is the state vector, y ∈ R� is the output vector, u ∈ Rm is the input vector, which
may consist of some controlled inputs as well as some uncontrolled inputs which however can be
measured, η is the i.i.d. random variable describing the uncertainty affecting the state vector; d is
an independent and identically distributed (i.i.d.) random variable describing the noise affecting
the output vector. The functions f and h are, in general, non-linear functions and unlike the models
presented in (26)-(27) they are assumed unknown.

The output equation (47) models the relationship among the output, the state and the input
variables, while the state equation (46), models the evolution of the state variables over time with
respect to the inputs and states.

The discrete-time model presented above is quite general and allows the modeling of a wide range
of applications. In the following, we specialize the system model to cover interesting application
cases, namely those where P can be described within a regression framework, the case where the
output variables coincide with the state variables (input-output description) and the general case
where the process can be specified with a state space representation.

2.2.1 Regression models

When P does not have internal states (i.e., the system has no dynamics), the output variables
depend only on the input variables at time k and, hence, (47) can be rewritten as

y(k) = h(u(k)) + d(k) (48)
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If the relationship between y(k) and u(k) is linear, the system model simplifies to

y(k) = Du(k) + d(k) (49)

where D is an �×m matrix.

2.2.2 Input-output models

Of particular interest is the case where P can be described by the input-output representation, here
considered in the SISO scenario,

y(k) = h(y(k − 1), y(k − 2), . . . , y(k − k

y

), u(k), u(k − 1), . . . , u(k − k

u

)) + d(k) (50)

and characterized by a finite time lag dependency. Linear input-output models represent a further
specific subcase of the above where the relationship between the output and the input variables is
linear. In such a case and for the MIMO scenario, the system model assumes the general canonical
form [31]:

A(z)y(k) =
mX

i=1

B

i

(z)
F

i

(z)
u

i

(k) +
C(z)
D(z)

d(k) (51)

where z is the time-shift operator, A(z), B

i

(z), C(z), D(z), and F

i

(z) represent the z-transform
functions and, u

i

is the i-th input.
From the canonical form we can specify some linear input-output models for the system which

are widely-used in system identification, e.g., the AR, ARX and OE models. If we have a priori
information about the nature of the system then we can exploit such an information to build up an
effective model. An interesting positive consequence is that, after having identified the system with
the suitable model, the bias component of the residual error vanishes and the same model satisfies
the i.i.d hypothesis, which is useful for the subsequent statistical change detection phase.

AR system model: When the system can be expressed as a linear autoregressive (AR) model, Eq.
(51) simplifies to a linear relationship between the output variable y(k) at time k and its previous
values. For instance, in the case of a scalar single output of order k

y

, the system can be expressed
as

A(z)y(k) = d(k), (52)

which can be written as:

y(k) =
k

yX

i=1

a

i

y(k − i) + d(k). (53)

ARX model: When the process can be described as an autoregressive model with an exogenous
input (ARX), the output y(k) is function of the past values of the output variables and inputs. In
case of a single-input single-output (SISO) ARX models, Eq. (51) becomes

A(z)y(k) = B(z)u(k) + d(k) (54)
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as in single vs. ensemble, sequential vs. batch, passive vs.
active.

We believe that the classification active vs. passive is the
most appropriate one since it refers to the way classifiers
adapt in response to concept drift. In the following, we mainly
focus on active classifiers [2]–[5], [8]–[20], since the proposed
approach falls in this category. Readers interested in passive
classifiers can refer to [1], [6].

Active classifiers rely on triggering mechanisms detecting
when the classifier is no more aligned with the current concept,
generally by means of a CDT.

The adaptation phase is then activated as soon as a change
is detected, and moves the learning machine into a new opera-
tional state. On the contrary, in passive solutions, the classifier
undergoes a continuous update every time new supervised
samples are made available. These latter solutions generally
rely on an ensemble of classifiers with adaptation confined in
the update of the weights of the fusion/aggregation rule and
in the creation/removal of classifiers composing the ensemble.

[19] suggests an active classifier that monitors nonstation-
arity by inspecting variations in the mean value of a sliding
window opened over raw data. Differently, [18] takes decisions
by inspecting the normalized Kolmogorov-Smirnov distance
between the cumulative density functions estimated from the
training samples and a window of the most recent ones.

[14]–[17], [20] present triggering mechanisms based on
the classification error. In more detail, [14], [16], [20] detect a
change when the classification error exceeds a fixed threshold
(which is tuned according to the sample standard deviation
of the associated Bernoulli distribution). [17] suggests an ad-
hoc statistical test on the proportion of incorrectly classified
samples for comparing two different partitions of supervised
couples. [15] introduces an active classifier for concept drift
that relies on a sequential CDT (the Bernoulli exponential
moving average chart) to assess the stationarity of the clas-
sification error over time.

The JIT classifiers [2] and [3], introduced the inspection
of raw data pdf without relying on supervised labels, as
these could be seldom available. More specifically, preliminary
versions of JIT classifiers [3], [13] rely on the CI-CUSUM
CDT [2], whereas most recent solutions have enforced the
ICI-based CDT [4] as a core technique. In [10] a specific
solution for gradual concept drift is presented. In some cases,
concept drift cannot be detected by solely inspecting the
distribution of raw data, e.g., when the concept drift affects the
class function without modifying the distribution of unlabeled
observations. The same problem arises when observations
contain qualitative components, a situation hardly manageable
with a CDT. To this purpose, an extension of the basic JIT
classifier to detect drifts affecting the average classification
error has been presented in [5]. A particularly convenient
solution consists in simultaneously monitoring the pdf of the
raw data and the classification error, by combining different
CDTs.

III. PROBLEM STATEMENT

Let us consider a classification problem where sequential
couples (xt, yt) are generated according to an unknown pdf. In

particular, let xt 2 Rd be the observation at time t, generated
by an unknown process X , and let yt be its class label,
belonging to a finite set ⇤. The probability of observations
at time t can be expressed as

p(x|t) =
X

y2⇤

p(y|t)p(x|y, t), such that
X

y2⇤

p(y|t) = 1,

(1)
where p(y|t) > 0, is the probability of receiving a sample
of class y 2 ⇤, while p(x|y, t) is the conditional probability
distribution of class y at time t. Both the probabilities of
classes and the conditional probabilities are unknown and,
possibly, time variant (whenever a concept drift occurs).

The training sequence is composed of the first T0 observa-
tions, assumed to be generated in stationary conditions, i.e.,
8y 2 ⇤, p(y|t) and p(x|y, t) do not change in t 2 [0, T0]. No
assumptions are made on how often supervised pairs (xt, yt)
are provided during the operational life (t > T0), as these
could be received following a regular time-pattern scheme
(e.g., one supervised sample out of m) or asynchronously.

IV. JIT CLASSIFIERS FOR RECURRENT CONCEPTS:
THE GENERAL FORMULATION

The key elements composing a JIT classifier are the set
of concept representations C = {C1, . . . , CN} and the set of
operators {U ,⌥,D, E ,K} designed to handle such represen-
tations.

The i-th concept representation is defined as the triplet
Ci =

�

Zi, Fi, Di

�

where Zi is a sequence of supervised
pairs, Fi is a sequence of features characterizing the i-th
concept (to be used to assess the equivalence between two
concept representations), and Di is a sequence of features
used by the CDTs to detect a drift in the i-th concept. Not
rarely, Di contains also the same features of Fi. Examples of
Di are the cumulative statistics in CUSUM-like CDT [21];
examples of Fi are the sample statistics from non-overlapping
subsequences of observations.

The operators are defined as follows
• the update operator U(Ci, R) ! Ci. The operator U

receives concept Ci and a sequence of supervised or un-
supervised observations R. The operator U modifies the
concept representation Ci by appending recent supervised
samples Zi or features extracted from R to Fi.

• the split operator ⌥ (Ci) ! (Cj , Ck). The operator ⌥
divides a concept representation Ci into two disjoint
concept representations Cj and Ck. Elements that cannot
be safely associated either to Cj or Ck are discarded.

• the concept-drift detection operator D(Ci) ! {0, 1}: D
sequentially assesses the stationarity of concept Ci by
monitoring features in Di. When D(Ci) = 0 all observa-
tions yielding Ci are generated from the same concept,
i.e., “no concept drift” has occurred. When D(Ci) = 1,
the representation Ci has not been obtained from a single
concept, i.e., “concept drift has been detected”.

• the equivalence operator E(Ci, Cj) ! {0, 1}. E checks
if Ci and Cj are equivalent: E(Ci, Cj) = 1 means that
Ci and Cj are two representations coming from the same

Obsolete  
model



Stationarity and  time  invariance

§ Stationarity

• We say that a  data  generating process is stationary
when generated data  are  i.i.d.  realizations of  a  unique
random  variable whose distribution does not change
with  time

§ Time  invariance

• We say that a  process is time  invariant when its
outputs do  not explicitely depend on  time



Searching  for  adaptation

q Traditional assumption:  stationarity hypothesis

q Adaptive  solutions   in  a  non-­stationary  framework:

q A  comprehensive  methodology  addressing  this  problem  is  
not  available  

instance  
selection

instance  
weighting

Multiple
Models

Passive
solution

Active  
solution



WHAT:  Instance Selection

§ The  idea:  identifying  the  samples  of  the  training  set  that  are  relevant  
to  the  current  state  of  the  process.  

§ The  adaptive  systems  generally  rely  on  a  window  over  the  most  
recent  training  samples  to  process  the  upcoming  data

• fixed  window  approach:  the  length  of  the  window  is  fixed  a-­priori  
by  the  user

• heuristic  approaches:  adapt  the  window  length over  the  latest  
samples  to  maximize  the  accuracy

Time  tTime  t

Time  t+1Time  t+1

Removed  knowledge  baseRemoved  knowledge  base

A  change  
is  detected
A  change  
is  detected

Training  set  of  the  systemat time  tTraining  set  of  the  systemat time  t

Training  set  of  the  systemat time  t+1Training  set  of  the  systemat time  t+1



WHAT:  Instance Weighting

§ The  idea:  training  samples  are  not  removed  from  the  training  set  
of  the  system  but  all  the  training  samples  (suitably  weighted)  are  
considered.  

§ The  training  samples  might  be  weighted  according  to  

• the  age

• the  relevancy  to  the  current  state  of  the  process  in  term  of  
accuracy  of  the  last  batch  of  supervised  data

Weigth  
at  time  t
Weigth  
at  time  t

A  change  
is  detected
A  change  
is  detected

Training  set  of  the  systemat time  tTraining  set  of  the  systemat time  t

Training  set  of  the  systemat time  t+1Training  set  of  the  systemat time  t+1

Weigth  
at  time  t
Weigth  
at  time  t

Training  samples  are  
equally  important

Training  samples  are  
equally  important

Last  training  samples  are  
more  influent

Last  training  samples  are  
more  influent



WHAT:  Multiple  Models

§ The  idea:  the  outputs  of  an  ensemble  of  models  are  combined  by  means  of  
voting  or  weighted  mechanisms  to  form  the  final  output

§ All  these  systems  includes  techniques  for  dynamically  including  new  
models  in  the  system  or  deleting  obsolete  ones  (i.e.,  pruning  techniques  
aiming  at  removing  the  oldest  model  or  the  one  with  the  lowest  accuracy).  

Model  1

Model  2

Model  N

...

In
pu
t O

utput

Ensamble  of  classifiers  
working  at  time  t

Ensamble  of  classifiers  
working  at  time  t

Model  1

Model  2

Model  N+1

...In
pu
t O

utput

Ensamble  of  classifiers  
working  at  time  t+1

Ensamble  of  classifiers  
working  at  time  t+1

A  change  
is  detected  
at  time  t

A  change  
is  detected  
at  time  t

Model  N



Critical  analysis  of  the  considered  approaches

§ Instance  selection
é:  low  computational-­complexity
reduced  training  set

ê:  fixed  windows  or  heuristics  to  adapt  the  window  size
forgetting  mechanisms

§ Instance  weighting
é:  low  computational-­complexity
availability  of  all  the  training  samples  for  recurrent models

ê:  heuristics  to  define  the  sample  weights
full training  set

§ Multiple  models
é:  availability  of  a  model  for  “each bunch of  data”

ê:  high  computational-­complexity



WHEN:  passive  vs  active  approach

§ Passive  solutions  continuously   adapt  the  model  without  
the  need  to  detect  the  change  
• Ensembles  of  models  with  the  adaptation  phase  consisting  in  a  
continuous  update  of  the  weights  of  the  fusion/aggregation  rule  
and  creation/removal  of  models

§ Active  solutions  rely  on  triggering  mechanisms  to  
identify  changes  in  the  process  and  react  by  updating  the  
model
• The  most  popular  triggering  mechanism  is  the  change  detection  



Passive  approach:  the  general  idea

§ The  underlying  data  distributions  may  (or  may  not)  change  
at  any  time  with  any  rate  of  change.  

§ A  continuous  adaptation  of  the  model  parameters  every  
time  new  data  arrive

§ Maintain  an  up-­to-­date  model  at  all  times  
• Avoid the  potential  pitfall  associated  with  false  alarms
in  active  solutions



Passive  learning

Environment

Sensors

Adaptation

Application  /  Service

User

Online  (incremental)  learning

Batch  learning

Ensemble  learning



Ensemble-­based  mechanisms

§ Ensemble-­based  approaches  provide  a  natural  fit  to  the  
problem  of  learning  in  nonstationary environments:
a) more  accurate  than  single  classifier-­based   systems

b) easily  incorporate  new  data  into  a  classification  model  
(a  new  item  into  the  ensemble)  

c) provide  a  natural  mechanism  to  forget  irrelevant  
knowledge   (removing  an  item  from  the  ensemble)



Incremental  learning  ensembles  
in  nonstationary environments



Incremental  learning  ensembles  
in  nonstationary environments:  SEA

§ The  streaming  ensemble  algorithm  (SEA)  was  one  of  
the  earliest  ensemble  approaches:

• New  classifiers  are  added  as  new  batches  of  data  
arrive

• Classifiers  are  removed  as  the  ensemble  reaches  a  
predetermined   size  

• Which  classifier  must  be  removed?
− evaluation  of  classifier’s  predictions
− age  of  the  classifier  
− remove  the  least  contributing  member



Incremental  learning  ensembles  
in  nonstationary environments:  other  solutions

§ Several  popular  extensions  to  online  bagging/boosting   for  
nonstationary environments

• Online  bagging  &  boosting  form  the  basis  of  online  
nonstationary boosting  algorithm  (e.g.,  ONSBoost)

§ Dynamic  weighted  majority  (DWM)  extends weighted  
majority  algorithm  to  data  streams  with  concept  drift,  and  
uses  an  updated  period  to  add/remove  classifiers

§ Other  approaches:  

• accuracy  updated  ensemble  (AUE)
• random  forest  algorithm  has  also  been  extended  to  
learning  nonstationary data  streams



Learn++.NSE

§ Maintain  an  ensemble  
that  applies  a  time-­
adjusted  loss  function  
to  favor  classifiers  that  
have  been  performing  
well  in  recent  times  (not  
just  the  most  recent  
ones)

§ A  classifier  that  
performed  poorly  a  long  
time  ago  can  be  
reactivated  (e.g.,  
recurring  or  cyclic  drift)



Active  learning

Environment

Sensors

Detection

Adaptation

Application  /  Service

User

The  Oracle  provides information  
about an  event,  e.g.,  the  
occurrence of  concept drift



WHEN:  Triggering  mechanisms

é:  monitoring  the  distribution  
of  unlabeled  observation  

ê:  this  solution  does  not  allow  
us  for  detecting  changes  that  
do  not  affect  the  distribution  of  
observations

é:  reacting  to  changes  when  
these  directly  influence  its  
accuracy

ê: the  need  of  supervised  
samples  

Change  detection  on  the  classification  error  

Change  detection  on  the  pdf of  the  inputs:  
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Features (1)

Features  must  be  i.i.d (but  data  are  generally  signals)

§ Data  space

ü Raw data  are  used (e.g.,  the  minimum  of  the  water  consumption
of  a  day @  district metered area)

Water  flow at the  DMA
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Features (2)

§ Feature space

ü Any  i.i.d.  feature  (e.g.,  residual,  measurements  in  a  quality  
analysis  applications)



Features (3)

§ Model  space

ü LTI  models  are  used  to  approximate  the  signal  

y1(t) y2(t)f1,2
✓

y1(t)

y2(t)

Estimate  model  parameters     ✓̂t1 , . . . , ✓̂tn



Active  learning

Identification of  the  new  
state

Concept Drift Detection

Retrain the  application

Change detection tests CDT
CPM  Change point methods

Determination of  consistent
data  instances

Online,  batch  or  full  learning

Phase How



Concept drift detection

Ad  hoc  triggers  designed  to  detect  changes  by  inspecting  
sequences  of  data  or  derived  features

§ Data-­based  methods

• Limit  checking

• Binary  threshold

§ Statistical-­basedmethods

• Statistical  Hypothesis tests

• Change-­Point  Methods

• Change detection tests



Limit  checking  

§ Testing  if  a  given  (measured)  variable  exceeds  (indicating  
a  change)  or  not  a  known  absolute  limit.  

§ Variants:

• Two  limits,  associated  to  different  levels  of  safety.  

• Use  of  superior  and  inferior  limits.  

§ Easy  to  implement.  
§ Too  conservative  (low  change  sensitivity).  



§ Estimation  of  mean  and  variance

• The  monitored  variables  are  usually  stochastic  
variables  Yi(t)  with  a  certain  pdf in  nominal  condition

§ Changes  are  then  expressed  by

Change  detection  with  binary  thresholds

If  the  pdfs do  not  
significantly  overlap,
one  could  use  a  fixed  
threshold  based  on  σ,
e.g.,  γ=2σ

Ratio  between
the  detection  of  
small  changes  
and  false  
alarms



More  powerful  techniques  need  to  be  considered

§ Statistical  tests

• off-­line:  fixed  length  sequence  (after  storing  all  data)

• on-­line:  at  each  time  instant

§ Statistical  hypothesis  tests:
• Off-­line

• Control  of  FPs

§ Change  detection  tests
• On-­line

• No  control  of  FPs



Statistical  hypothesis  tests

§ Theory  of  statistics

§ Testing  one  hypothesis  (H0)  against  one  or  more  
alternative  hypotheses  H1  ,.., HN
• H0:  null  hypothesis  (no  change)  è Y  in  Y0
• H1  ,..,  HN:  change  hypothesis  è Y  in  Y1

§ Decision:  Based  on  the  assumption  that  the  null  
hypothesis   is  true  if  no  fault  occurs,  the  null  hypothesis  is  
rejected  and  the  alternate  hypothesis   is  accepted  if  the  
sample  of  the  random  variable  Y  falls  outside  the  region  of  
acceptance.  Otherwise,  H0  is  accepted  and  H1  rejected



Regions  of  rejection  and  acceptance  for  a  HT



How  to  set  the  regions?



Hypothesis  tests:  the  literature

 Test family Type 
(P/NP) 

Change 
(Ab/Dr) 

Entity 
under 

test 

1D/
ND 

On-line/ 
Off-line 

Training Set 
/A priori 

information 
Notes 

Z-test  
Statistical 

Hypothesis 
testing 

Parameteric Abrupt Mean 1D Off-line Parameters Assume normality and 
known variance  

t-test   
Statistical 

Hypothesis 
testing 

Parameteric Abrupt Mean 1D  Off-line None Assume normality  

Mann-
Whitney U 

test  

Statistical 
Hypothesis 

testing 

Non 
Parameteric 

Abrupt Median 1D Off-line None Rank Test 

Kolmogorov-
Smirnov test 

Statistical 
Hypothesis 

testing 

Non 
Parameteric 

Abrupt Pdf 1D Off-line None Also goodness of fit test  

Kruskal-
Wallis test 

Statistical 
Hypothesis 

testing 

Non 
Parameteric 

Abrupt Median 1D Off-line None 
Mann-Whitney based, 

Multiple subsets 

 



Change point methods

CPMs inspect a  sequence of  data  and  check for  concept drift

Given sequence

Produce  a  generic partitioning

and

In  practice



Change point methods

Example

With  hypothesis test

For  instance consider the  Student t  statistics for  the  means



Change point methods

Threshold e.g.,                                                                        provided by  the  CPM  package



Change-­detection tests

§ Change  detection  tests  are  methods  designed  to  detect  variations  
in  the  pdf of  the  process  generating  the  data  

§ Parametric approach:  knowledge  of  the  pdf before  and  after  the  
change  
• CUSUM  test
• Shiryaev-­Robert  test

§ Nonparametric approach:
• CI-­CUSUM  test,  NPCUSUM   test
• ICI-­based  change  detection  test

§ Semi-­parametric approach:  

• Semiparametric log-­likelihood  criterion  (SPLL)
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The  CUSUM  test

§

§ The  change at t0 modeled as a  transition from  θ0  to  θ1  (Hp:  
we keep the  pdf  structure)  

§ Measure a  discrepancy at time  time  t:  

§ Evaluate the  cumulative  sum

§ CUSUM  identifies a  change at time    
when
with
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The  CI-­CUSUM  test

1. Observations
2. Partitions of          into disjoint intervals
3. Extract the  average feature vector (e.g.,  mean,  var.,  kur.,  skew.)  

from  each subsequence
4. The  pdf  is gaussian from  the  central limit theorem
5. Estimate  the  null hypothesis from    
6. Define alternative  hypotheses as “not being in            “

7. Measure the  discrepancy at time          as

8. CI-­CUSUM  identifies a  change
at time        if
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The  ICI-­based  change  detection  test

§ The  test  relies  on  a  set  of  functions   that  transform  the  
observations   into  Gaussian  distributed   features

§ ICI  rule:  a  method  for  developing  adaptive  estimates  for  
regression of  functions  from  noisy  observations  (signal  and  
image  denoising)

§ The  ICI  rule,  combined  with  a  polynomial  regression  
technique,  assesses  the  stationary  of  the  features  (and  
hence  of  the  process)

Feature  
Extraction

X(t) ICI  rule
test  

outcome
Polynomial  
Regression



Particularly  effective  in  detecting  changes  but  ....

How  to  increase promptness in  detection still
maintaining robustness w.r.t  false  positives?

False  Positives

D
et
ec
tio
n  
de
la
y

False  positives  rate

Confidence  level



The  answer  to  the  
question  “what  
happened?”  
is  not  enough  ...  

...  Tell me:
“when  did  it  
happen?”



What  and  when  ...

§ Not  only  detection  of  the  change,  but  also  estimation  of  
the  time  instant the  process  becomes  non  stationary

0TO

0T *T T̂

After  the  detection,  we  want  an  estimate  Tref of  T*
by  means  of  a  refinement  procedure

The  change  
is  detected

The  change  
started

Tref



Feature  
Extracti
on

ICI  rulePolynomial  
Regression

Second-­Level  CDT

Process
X(t) Detection

Estimation  
about  the  
change

Confirmed
Detection  /
Restart  
the  test

First-­Level  CDT

refT

Error
e(t)

Second  level  change-­
detection  test  aiming  at  
confirming  (or  not)  the  change  
hypothesis:
• Multivariate  hypothesis  test
• Change-­point  methods

A  multivariate   hypothesis  test  based  on  
the  Hotelling T-­square  statistics

Change-­point  methods:  statistical tests
able to  assess whether a  given data-­
sequence contains (or  not)  a  change point

Compute

Hierarchical CDT



Which data  are  consistent with  the  current status?  

§ Instances:  between and  *T T̂

0TO

0T
*T T̂refT

T*  is  unknown:  use  estimates                  and        

The  change  
is  detected

The  change  
happened

T̂refT



§ If concet drift is
detected the  whole
framework is
retrained

Retrain  the  application

Application

Detection trigger

Reference  
concept

0TO

0T
*T T̂refT



An  example:
Just-­in-­Time  Adaptive Classifiers



Nominal
Concept
Nominal
ConceptNominal
ConceptNominal
Concept

Just-­in-­Time  Adaptive  Classifiers

φ

Adaptation

Hierarchical
Concept Drift Detection

Feature Extraction

JIT  Classifiers

Sample  Statistical  
moments,

Classification error

Statistical  
Moments

• ICI-­based CDT on  
the  observations
and  the  errors

• Hypothesis tests,  
Change-­Point  
Methods

• Dynamic knowledge
base  management

• Estimate  of  change
time

• K-­NN
• SVMs
• Neural networks  

Recurrent
Concepts



Asymptotic  optimality  with  JIT  classifiers
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JIT  adaptive classifiers grant asymptotic optimality when the  process
generating the  data  is affected by  a  sequence of  abrupt concept drift

Gaussian
classes



Dealing  with  concept  drift    …

θ1

θ2

Concept  #1

xxxxx
x x
xx xx xxxxx
x x
xx xx xxxxx
x x
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Concept  #NRecurrent  Concept

according to the estimated accuracy [10], [11] or reactivate
previously trained classifiers [12]. Also in these cases, the
main drawback is the need of a sufficient amount of supervised
samples to reliably assess the classification error. Once again,
the unlabeled observations could be considered to identify
within the most recent observations, those that are up-to-
date with the current state of the data-generating process,
thus representing an ideal candidate for constituting the new
knowledge base [8]. However, since analyzing the unlabeled
observations does not allow one to perceive changes that do
not affect the distribution of observations (e.g., the swap of
the classes), it is necessary to consider additional information
to successfully deal with recurrent concepts.

In this paper we present an effective solution for exploiting
the classification error within the JIT framework. This novel
solution allows us to increase the effectiveness of the change-
detection phase by monitoring both the distribution of the
observations and the classification error. Thus, the JIT clas-
sifier exploits both supervised and unsupervised samples to
adapt to changes in the data-generating process and, de facto,
the proposed solution extends the JIT framework to deal with
recurrent concepts. Every time a concept drift is detected, the
previously trained classifiers are tested to identify if the current
concept has been already envisaged or not. If the concept is
recurrent, the previous classifier is re-activated (together with
the new knowledge); otherwise a new classifier is introduced.

The experiments allow us to investigate in practice how
the amount of supervised information influences the classifier
accuracy in nonstationary data-generating processes. Results
are coherent with the intuitive idea that exploiting unsuper-
vised data and handling recurrent concepts become essential
elements for learning in non stationary environments when the
amount of supervised samples is scarce.

The novel contributions of the paper can be summarizes as:
1) We introduce a novel JIT classifier that exploits both

the supervised and unsupervised samples to effectively
adapt to concept drift. The proposed adaptive classifier
relies on two different change-detection tests (CDTs) to
assess the stationarity of the data-generating process: the
former CDT is meant for monitoring the stationarity of
the observations disregarding their label (CDTX ), while
the latter assesses the change if the classification error
(computed on supervised samples) is stationary (CDT✏).
This approach is particularly promising in case of low
supervised-sample rates as it exploits the promptness of
CDTX , while maintaining the detection ability also in
non-stationarity cases that do not affect the distribution
of the observations.

2) A specific solution for CDT✏ designed for assessing if
the classification error is stationary: CDT✏ operates on
Bernoulli sequences, which reliably model the classifica-
tion error measured at supervised samples. The proposed
CDT is based on the ICI-based CDT [8], [13].

3) A procedure to handle recurrent concepts within an
ensemble of classifiers framework. The classifier is
retrained using the knowledge base previously acquired

that is coherent with the current concept. This proce-
dure allows the classifier to compensate the shortage
of supervised samples by reactivating the knowledge
base already acquired whenever this is coherent with
the current state of the process.

The paper is organized as follows: Section II states the
problem and introduces the formalism used; Section III gives
an outline of the proposed JIT adaptive classifier and discusses
in details the core techniques such as the change-detection test
on classification error and the procedure to handle recurrent
concepts. Section IV details the complete algorithm, while
experimental results are presented in Section V.

II. PROBLEM STATEMENT

Let us consider the concept drift framework in which the
input samples (observations) are scalar entities generated from
process X according to an unknown distribution. Denote by
xt 2 R the observation at time t, and by yt the class
label associated with xt. In what follows, without loss of
generality, we consider a two-class classification problem, i.e.,
yt 2 {!1,!2}. The probability density function of the inputs
at time t can thus be defined as

p(x|t) = p(!1|t)p(x|!1, t) + p(!2|t)p(x|!2, t), (1)

where p(!1|t), p(!2|t) = 1 � p(!1|t) are the probabilities
of getting a sample of class !1 and !2, respectively, while
p(x|!1, t), p(x|!2, t) are the conditional probability distribu-
tions at time t. Both the probabilities of the classes and the
conditional pdfs are assumed to be unknown and may evolve
over time, whenever a non-stationarity occurs.

The training sequence consists in the first T0 observations
that are assumed to be generated in stationary conditions,
i.e., p(!1|t), p(!2|t), and p(x|!1, t), p(x|!2, t) do not change
within the time interval [0, T0]. Supervised pairs (xt, yt) are
provided both within the training sequence and during the
operational life (i.e., t > T0). However, no assumption is
made on how often these supervised pairs are provided, as
these could be received following a regular time-pattern (e.g.,
one supervised sample out of m) or even intermittently.

III. THE PROPOSED SOLUTION

The main characteristic of the proposed JIT classifier is the
integration of a CDT on the classification error for monitoring
the stationary of a data-generating process. This improves the
change-detection abilities of JIT adaptive classifiers suggested
in [6], [8], [14]–[16] relying on a single CDT to monitor the
stationarity of the distribution of X , disregarding the existence
of supervised labels.

The key elements of the proposed solution are:
CDTX : the CDT that analyzes the raw observations to

monitor the stationarity of xt, disregarding their
labels;

CDT✏: the CDT for assessing if the average classification
error changes over time (CDT✏ operates only on
supervised samples);

K: the classifier used to classify input samples;



The  novel  idea:  extending  the  JIT  classifier

Application

CDT

Reactivate
previous
classifier

KB

Supervised/Unsupervised data

Recurrent

Yes

Identify current
concept

No

stationary
Non

stationary

Two CDTs  are  to  asses  if:
• The  pdf of  the  input  is  stationary  
• the  classification  error  is  
stationary

Adaptation  phase  consists  in:
• Isolation  of  the  current  concept
• Identification  of    recurrent
concepts

• Training  the  classifier  by  exploiting  
all  the  available  supervised  
information

Define the  new  
KB  (Adaptation)



Some  relevant remarks …

üBeing acquainted with  learning techniques is a  
plus  in  everybody’s background  

üMost of  time  the  we can  assume  that the  process
generating the  data  is time  invariant.  When it is
not we need to  pay attention…  

ü Learning  in  a  chaging environment must  be  
considered and  represents a  key property
intelligent systems should possess



Open  Source  Software  and  Available  Benchmarks

§ Many  authors  have  made  the  code  and  data  used  in  their  
publications  available   to  the  public

§ Code:
• Hierarchical  ICI-­based  Change-­Detection  Tests  
• Learn++.NSE
• (Scalable  Advance)  Massive  Online  Analysis
• Online  Nonstationary Boosting  

§ Dataset (generator):
• Minku &  Yao’s  /  Kuncheva’s Concept  Drift  Generator  
• Kuncheva’s Concept  Drift  Generator  
• Airlines  Flight  Delay  Prediction,  Spam  Classification,  Chess.com
• KDD  Cup  1999:  Collection  of  network  intrusion  detection  data.  
• POLIMI  Rock  Collapse  and  Landslide  Forecasting

Ditzler,  G.,  Roveri,  M.,  Alippi,  C.,  &  Polikar,  R.  (2015).  Learning  in  nonstationary
environments:  a  survey.  IEEE  Computational  Intelligence  Magazine,  10(4),  12-­25.



Topics  of  Future  Interest

§ Theoretical   frameworks  for  learning

§ Unstructured  and  heterogeneous  data  streams  

§ Transient  concept  drift  and  limited  data  

§ Concept  drift  and  Big  Data

Ditzler,  G.,  Roveri,  M.,  Alippi,  C.,  &  Polikar,  R.  (2015).  Learning  in  nonstationary
environments:  a  survey.  IEEE  Computational  Intelligence  Magazine,  10(4),  12-­25.



Let’s  play  with  MATLAB

§ Download   the  examples  related  to  Active  and  Passive  
solutions  ….
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