
Learning in Nonstationary
Environments

A
dv

an
ce

d
R

es
ea

rc
h Intelligent

Embedded
Systems

Prof. C. Alippi and Prof. M. Roveri
Politecnico di Milano, DEIB, Italy

IEEE WCCI 2016 TUTORIAL
Vancouver, CANADA, Jul. 24, 2016

Summary

§ Learning in nonstationary environments

§ Searching for adaptation:

• Instance selection

• Instance weighting

• Model ensemble
§ Passive solutions

§ Active solutions

§ Comments, resources and future trends

§ Let’s play with Matlab…

A “toy” example
Physical model ?
I did not completed
my PhD in Physics
yet

???
A very tough
classification
problem

Data-driven might
be a good solution
(brute-force as well)

Pass

NO Pass

NO Pass

Pass
Pass

What is the learning goal here?

Data-processing and applications

P
Data	 generating	

process

Application
Model	
of	 the	
system

Learning the system model

P
Data	 generating	

process

(x,y)

Estimate	
a	 model

Application

iSense D1.1: Specification of System Characteristics

Figure 12: The general MIMO system model

In a networked –possibly controlled– environment the system model can describe relationships
within a sensor-actuator augmented unit, at a cluster of units level or at the whole network level;
the particular envisaged P depends then on the application needs.

In the following we consider a general MIMO system description. As a consequence, it also implic-
itly addresses multiple-input single-output (MISO) and single-input single-output (SISO) scenarios.
We recall that continuous-time dynamic systems can be brought back to a discrete-time representa-
tion with discretization techniques such as the (explicit) forward Euler or the (implicit) backward
Euler methods.

The considered MIMO discrete-time system model can be described by means of the canonical
form as the system of equations (similar to the ones presented in (26)-(27))

x(k + 1) = f(x(k), u(k)) + η(k), (46)
y(k) = h(x(k), u(k)) + d(k) (47)

where x ∈ Rn is the state vector, y ∈ R� is the output vector, u ∈ Rm is the input vector, which
may consist of some controlled inputs as well as some uncontrolled inputs which however can be
measured, η is the i.i.d. random variable describing the uncertainty affecting the state vector; d is
an independent and identically distributed (i.i.d.) random variable describing the noise affecting
the output vector. The functions f and h are, in general, non-linear functions and unlike the models
presented in (26)-(27) they are assumed unknown.

The output equation (47) models the relationship among the output, the state and the input
variables, while the state equation (46), models the evolution of the state variables over time with
respect to the inputs and states.

The discrete-time model presented above is quite general and allows the modeling of a wide range
of applications. In the following, we specialize the system model to cover interesting application
cases, namely those where P can be described within a regression framework, the case where the
output variables coincide with the state variables (input-output description) and the general case
where the process can be specified with a state space representation.

2.2.1 Regression models

When P does not have internal states (i.e., the system has no dynamics), the output variables
depend only on the input variables at time k and, hence, (47) can be rewritten as

y(k) = h(u(k)) + d(k) (48)

23

iSense D1.1: Specification of System Characteristics

If the relationship between y(k) and u(k) is linear, the system model simplifies to

y(k) = Du(k) + d(k) (49)

where D is an �×m matrix.

2.2.2 Input-output models

Of particular interest is the case where P can be described by the input-output representation, here
considered in the SISO scenario,

y(k) = h(y(k − 1), y(k − 2), . . . , y(k − k

y

), u(k), u(k − 1), . . . , u(k − k

u

)) + d(k) (50)

and characterized by a finite time lag dependency. Linear input-output models represent a further
specific subcase of the above where the relationship between the output and the input variables is
linear. In such a case and for the MIMO scenario, the system model assumes the general canonical
form [31]:

A(z)y(k) =
mX

i=1

B

i

(z)
F

i

(z)
u

i

(k) +
C(z)
D(z)

d(k) (51)

where z is the time-shift operator, A(z), B

i

(z), C(z), D(z), and F

i

(z) represent the z-transform
functions and, u

i

is the i-th input.
From the canonical form we can specify some linear input-output models for the system which

are widely-used in system identification, e.g., the AR, ARX and OE models. If we have a priori
information about the nature of the system then we can exploit such an information to build up an
effective model. An interesting positive consequence is that, after having identified the system with
the suitable model, the bias component of the residual error vanishes and the same model satisfies
the i.i.d hypothesis, which is useful for the subsequent statistical change detection phase.

AR system model: When the system can be expressed as a linear autoregressive (AR) model, Eq.
(51) simplifies to a linear relationship between the output variable y(k) at time k and its previous
values. For instance, in the case of a scalar single output of order k

y

, the system can be expressed
as

A(z)y(k) = d(k), (52)

which can be written as:

y(k) =
k

yX

i=1

a

i

y(k − i) + d(k). (53)

ARX model: When the process can be described as an autoregressive model with an exogenous
input (ARX), the output y(k) is function of the past values of the output variables and inputs. In
case of a single-input single-output (SISO) ARX models, Eq. (51) becomes

A(z)y(k) = B(z)u(k) + d(k) (54)

24

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

as in single vs. ensemble, sequential vs. batch, passive vs.
active.

We believe that the classification active vs. passive is the
most appropriate one since it refers to the way classifiers
adapt in response to concept drift. In the following, we mainly
focus on active classifiers [2]–[5], [8]–[20], since the proposed
approach falls in this category. Readers interested in passive
classifiers can refer to [1], [6].

Active classifiers rely on triggering mechanisms detecting
when the classifier is no more aligned with the current concept,
generally by means of a CDT.

The adaptation phase is then activated as soon as a change
is detected, and moves the learning machine into a new opera-
tional state. On the contrary, in passive solutions, the classifier
undergoes a continuous update every time new supervised
samples are made available. These latter solutions generally
rely on an ensemble of classifiers with adaptation confined in
the update of the weights of the fusion/aggregation rule and
in the creation/removal of classifiers composing the ensemble.

[19] suggests an active classifier that monitors nonstation-
arity by inspecting variations in the mean value of a sliding
window opened over raw data. Differently, [18] takes decisions
by inspecting the normalized Kolmogorov-Smirnov distance
between the cumulative density functions estimated from the
training samples and a window of the most recent ones.

[14]–[17], [20] present triggering mechanisms based on
the classification error. In more detail, [14], [16], [20] detect a
change when the classification error exceeds a fixed threshold
(which is tuned according to the sample standard deviation
of the associated Bernoulli distribution). [17] suggests an ad-
hoc statistical test on the proportion of incorrectly classified
samples for comparing two different partitions of supervised
couples. [15] introduces an active classifier for concept drift
that relies on a sequential CDT (the Bernoulli exponential
moving average chart) to assess the stationarity of the clas-
sification error over time.

The JIT classifiers [2] and [3], introduced the inspection
of raw data pdf without relying on supervised labels, as
these could be seldom available. More specifically, preliminary
versions of JIT classifiers [3], [13] rely on the CI-CUSUM
CDT [2], whereas most recent solutions have enforced the
ICI-based CDT [4] as a core technique. In [10] a specific
solution for gradual concept drift is presented. In some cases,
concept drift cannot be detected by solely inspecting the
distribution of raw data, e.g., when the concept drift affects the
class function without modifying the distribution of unlabeled
observations. The same problem arises when observations
contain qualitative components, a situation hardly manageable
with a CDT. To this purpose, an extension of the basic JIT
classifier to detect drifts affecting the average classification
error has been presented in [5]. A particularly convenient
solution consists in simultaneously monitoring the pdf of the
raw data and the classification error, by combining different
CDTs.

III. PROBLEM STATEMENT

Let us consider a classification problem where sequential
couples (xt, yt) are generated according to an unknown pdf. In

particular, let xt 2 Rd be the observation at time t, generated
by an unknown process X , and let yt be its class label,
belonging to a finite set ⇤. The probability of observations
at time t can be expressed as

p(x|t) =
X

y2⇤

p(y|t)p(x|y, t), such that
X

y2⇤

p(y|t) = 1,

(1)
where p(y|t) > 0, is the probability of receiving a sample
of class y 2 ⇤, while p(x|y, t) is the conditional probability
distribution of class y at time t. Both the probabilities of
classes and the conditional probabilities are unknown and,
possibly, time variant (whenever a concept drift occurs).

The training sequence is composed of the first T0 observa-
tions, assumed to be generated in stationary conditions, i.e.,
8y 2 ⇤, p(y|t) and p(x|y, t) do not change in t 2 [0, T0]. No
assumptions are made on how often supervised pairs (xt, yt)
are provided during the operational life (t > T0), as these
could be received following a regular time-pattern scheme
(e.g., one supervised sample out of m) or asynchronously.

IV. JIT CLASSIFIERS FOR RECURRENT CONCEPTS:
THE GENERAL FORMULATION

The key elements composing a JIT classifier are the set
of concept representations C = {C1, . . . , CN} and the set of
operators {U ,⌥,D, E ,K} designed to handle such represen-
tations.

The i-th concept representation is defined as the triplet
Ci =

�

Zi, Fi, Di

�

where Zi is a sequence of supervised
pairs, Fi is a sequence of features characterizing the i-th
concept (to be used to assess the equivalence between two
concept representations), and Di is a sequence of features
used by the CDTs to detect a drift in the i-th concept. Not
rarely, Di contains also the same features of Fi. Examples of
Di are the cumulative statistics in CUSUM-like CDT [21];
examples of Fi are the sample statistics from non-overlapping
subsequences of observations.

The operators are defined as follows
• the update operator U(Ci, R) ! Ci. The operator U

receives concept Ci and a sequence of supervised or un-
supervised observations R. The operator U modifies the
concept representation Ci by appending recent supervised
samples Zi or features extracted from R to Fi.

• the split operator ⌥ (Ci) ! (Cj , Ck). The operator ⌥
divides a concept representation Ci into two disjoint
concept representations Cj and Ck. Elements that cannot
be safely associated either to Cj or Ck are discarded.

• the concept-drift detection operator D(Ci) ! {0, 1}: D
sequentially assesses the stationarity of concept Ci by
monitoring features in Di. When D(Ci) = 0 all observa-
tions yielding Ci are generated from the same concept,
i.e., “no concept drift” has occurred. When D(Ci) = 1,
the representation Ci has not been obtained from a single
concept, i.e., “concept drift has been detected”.

• the equivalence operator E(Ci, Cj) ! {0, 1}. E checks
if Ci and Cj are equivalent: E(Ci, Cj) = 1 means that
Ci and Cj are two representations coming from the same

We will come back to the learning mechanism later

Non-linear regression: statistical framework

The time invariant process generating the data

provides, given input output instance

We collect a set of couples (training set)

And wish to model unknown with
parameterized family of models

Process generating the
data

xi

yi

The goal of learning
is to build a model
able to explain past
data ZN and future
instances provided
by the data
generating process.

38 3 Uncertainty, information and learning mechanisms

From (3.6), each perturbation introduces an increase in E[dy] if we consider the
quadratic form expansion (a first order approximation, obtained by solely maintain-
ing the linear term, provides a null value). In order to compute Var(dy), we consider
only the first term of the expansion (the quadratic term does not allow us to advance
the mathematics), which means that we only keep the linear approximation for func-
tion f (x). Under the above assumptions and by taking expectation w.r.t. x and dx,
the variance of the perturbed output becomes

Var(dy) = E
h
J(x)T

dxdxT J(x)
i

= trace
⇣

E
h
J(x)J(x)T

i
C

dx

⌘
.

Obviously, if f (x) = q

T x the derivation reduces to that of the linear function
case.

3.4 Learning from data and uncertainty at the model level

This section studies the case where parameterized models are built from a series
of noisy data. The use of a limited number of data to estimate the model, i.e., to
determine an estimate of the optimal parameter configuration, introduces an extra
source of uncertainty on the estimated parameters in addition to the noise (in previ-
ous sections, the parameters were given). In fact, given a different data set with the
same cardinality, we will obtain a different parameter configuration with probabil-
ity one, also in the linear model case. What happens when we select a non-optimal
(”wrong”) model to describe the data? Which is the relationship between the optimal
parameter configuration, constrained by the selected model family, and the current
one configured on a limited data set? Since the estimated parameter vector is a re-
alization of a random variable centered on the optimal one, the model we obtain
from the available data can be seen as a perturbed model induced by perturbations
affecting the parameter vector. Which are then the effects of this perturbation on the
performance of the model? This section aims at addressing the above aspects.

3.4.1 Basics of Learning: inherent, approximation and estimation
risks

Let ZN = {(x1,y1), ...,(xN ,yN)} be the set composed of N (input-output) couples.
The goal of machine learning is to build the simplest approximating model able to
explain past ZN data and future instances that will be provided by the data generating
process.

Consider then the situation where the process generating the data (system model)
is ruled by

y = g(x)+h , (3.7)

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

3.4 Learning from data and uncertainty at the model level 39

where h is a noise term modeling the existing uncertainty affecting the unknown
non linear function g(x), if any. Once the generic data instance xi is available, (3.7)
provides value yi = g(xi)+ hi, hi being a realization of the random variable h . In
practical cases, the system for which we aim to create a model, by receiving input
xi, provides value yi. We comment that both inputs and outputs are quantities mea-
surable through sensors. The ultimate goal of learning is to build an approximation
of g(x) based on the information present in dataset ZN through model family

f (q ,x) (3.8)

parameterized in the parameter vector q 2Q ⇢Rp. Selection of a suitable family
of models f (q ,x) can be driven by some a priori available information about the
system model. If data are likely to be generated by a linear model -or a linear model
suffices- then this type of model should be considered. In this case, learning relies
on vast results provided by the system identification theory, e.g., see [130]. The
outcome of the the learning procedure is the parameter configuration q̂ and, hence,
model f (q̂ ,x), whose quality/accuracy must be assessed.

If the accuracy performance is not met, and margin for improvement exists, we
have to select a new model family and reiterate the learning process. For instance, if
the difference -residual- between the reconstructed value f (q̂ ,x) and the measured
y(x) one on a new data set in not a white noise (test procedure), then there is informa-
tion that model f (q̂ ,x) was not able to capture. A new richer model family should be
chosen and learning re-started. In this direction, feedforward neural networks have
been shown to be universal function approximators [131], i.e., can approximate any
nonlinear function, and are ideal candidates to solve the above learning problem
[39]. However, the complexity of the neural model family must be balanced with
the information content provided by the data, otherwise we might experience poor
approximating accuracy. Such performance loss is either associated with overfitting
(the degrees of freedom exposed by the family model are overdimensioned com-
pared to the effective needs, so that noise affecting the data instances is learned as
well) or underfitting (the model is underdimensioned w.r.t. the available data and
the model cannot extract all the information present in the data).

In the sequel, we present the classic learning from data mechanism based on the
statistical formulation set by Vapnik [132], [133], [134].

Define as Structural risk the function

V̄ (q) =
Z

L(y, f (q ,x)) px,ydxy (3.9)

where L(y, f (q ,x)) is a discrepancy loss function evaluating the closeness be-
tween g(x) and f (q ,x) and px,y is the probability density function associated with
the i.i.d. (x,y) random variable vector. The structural risk (3.9) assesses the accuracy
of a given model according to the loss function L(y, f (q ,x)).

The optimal parameter q

o yielding the optimal model f (q o,x) constrained by
the particular choice of the model family f (q ,x), is

38 3 Uncertainty, information and learning mechanisms

From (3.6), each perturbation introduces an increase in E[dy] if we consider the
quadratic form expansion (a first order approximation, obtained by solely maintain-
ing the linear term, provides a null value). In order to compute Var(dy), we consider
only the first term of the expansion (the quadratic term does not allow us to advance
the mathematics), which means that we only keep the linear approximation for func-
tion f (x). Under the above assumptions and by taking expectation w.r.t. x and dx,
the variance of the perturbed output becomes

Var(dy) = E
h
J(x)T

dxdxT J(x)
i

= trace
⇣

E
h
J(x)J(x)T

i
C

dx

⌘
.

Obviously, if f (x) = q

T x the derivation reduces to that of the linear function
case.

3.4 Learning from data and uncertainty at the model level

This section studies the case where parameterized models are built from a series
of noisy data. The use of a limited number of data to estimate the model, i.e., to
determine an estimate of the optimal parameter configuration, introduces an extra
source of uncertainty on the estimated parameters in addition to the noise (in previ-
ous sections, the parameters were given). In fact, given a different data set with the
same cardinality, we will obtain a different parameter configuration with probabil-
ity one, also in the linear model case. What happens when we select a non-optimal
(”wrong”) model to describe the data? Which is the relationship between the optimal
parameter configuration, constrained by the selected model family, and the current
one configured on a limited data set? Since the estimated parameter vector is a re-
alization of a random variable centered on the optimal one, the model we obtain
from the available data can be seen as a perturbed model induced by perturbations
affecting the parameter vector. Which are then the effects of this perturbation on the
performance of the model? This section aims at addressing the above aspects.

3.4.1 Basics of Learning: inherent, approximation and estimation
risks

Let ZN = {(x1,y1), ...,(xN ,yN)} be the set composed of N (input-output) couples.
The goal of machine learning is to build the simplest approximating model able to
explain past ZN data and future instances that will be provided by the data generating
process.

Consider then the situation where the process generating the data (system model)
is ruled by

y = g(x)+h , (3.7)

• Up to now we assumed the system model to
be time invariant…

But everything and everybody changes over time ...

Be aware of Gradual Concept drift…

Ageing effects …

… changes in the system or the environment

Learning in Nonstationary Environments:
the effect of the non-stationarity

P
Data generating

process

(x,y)

Estimate
a model

Application

Ø Faults
Ø Ageing effects
Ø Changes in the environment

Perturbed, incorrect and missing data
can hence heavily affect the subsequent processing phase

so as to possibly induce wrong decisions or on-the-field
reactions.

iSense D1.1: Specification of System Characteristics

Figure 12: The general MIMO system model

In a networked –possibly controlled– environment the system model can describe relationships
within a sensor-actuator augmented unit, at a cluster of units level or at the whole network level;
the particular envisaged P depends then on the application needs.

In the following we consider a general MIMO system description. As a consequence, it also implic-
itly addresses multiple-input single-output (MISO) and single-input single-output (SISO) scenarios.
We recall that continuous-time dynamic systems can be brought back to a discrete-time representa-
tion with discretization techniques such as the (explicit) forward Euler or the (implicit) backward
Euler methods.

The considered MIMO discrete-time system model can be described by means of the canonical
form as the system of equations (similar to the ones presented in (26)-(27))

x(k + 1) = f(x(k), u(k)) + η(k), (46)
y(k) = h(x(k), u(k)) + d(k) (47)

where x ∈ Rn is the state vector, y ∈ R� is the output vector, u ∈ Rm is the input vector, which
may consist of some controlled inputs as well as some uncontrolled inputs which however can be
measured, η is the i.i.d. random variable describing the uncertainty affecting the state vector; d is
an independent and identically distributed (i.i.d.) random variable describing the noise affecting
the output vector. The functions f and h are, in general, non-linear functions and unlike the models
presented in (26)-(27) they are assumed unknown.

The output equation (47) models the relationship among the output, the state and the input
variables, while the state equation (46), models the evolution of the state variables over time with
respect to the inputs and states.

The discrete-time model presented above is quite general and allows the modeling of a wide range
of applications. In the following, we specialize the system model to cover interesting application
cases, namely those where P can be described within a regression framework, the case where the
output variables coincide with the state variables (input-output description) and the general case
where the process can be specified with a state space representation.

2.2.1 Regression models

When P does not have internal states (i.e., the system has no dynamics), the output variables
depend only on the input variables at time k and, hence, (47) can be rewritten as

y(k) = h(u(k)) + d(k) (48)

23

iSense D1.1: Specification of System Characteristics

If the relationship between y(k) and u(k) is linear, the system model simplifies to

y(k) = Du(k) + d(k) (49)

where D is an �×m matrix.

2.2.2 Input-output models

Of particular interest is the case where P can be described by the input-output representation, here
considered in the SISO scenario,

y(k) = h(y(k − 1), y(k − 2), . . . , y(k − k

y

), u(k), u(k − 1), . . . , u(k − k

u

)) + d(k) (50)

and characterized by a finite time lag dependency. Linear input-output models represent a further
specific subcase of the above where the relationship between the output and the input variables is
linear. In such a case and for the MIMO scenario, the system model assumes the general canonical
form [31]:

A(z)y(k) =
mX

i=1

B

i

(z)
F

i

(z)
u

i

(k) +
C(z)
D(z)

d(k) (51)

where z is the time-shift operator, A(z), B

i

(z), C(z), D(z), and F

i

(z) represent the z-transform
functions and, u

i

is the i-th input.
From the canonical form we can specify some linear input-output models for the system which

are widely-used in system identification, e.g., the AR, ARX and OE models. If we have a priori
information about the nature of the system then we can exploit such an information to build up an
effective model. An interesting positive consequence is that, after having identified the system with
the suitable model, the bias component of the residual error vanishes and the same model satisfies
the i.i.d hypothesis, which is useful for the subsequent statistical change detection phase.

AR system model: When the system can be expressed as a linear autoregressive (AR) model, Eq.
(51) simplifies to a linear relationship between the output variable y(k) at time k and its previous
values. For instance, in the case of a scalar single output of order k

y

, the system can be expressed
as

A(z)y(k) = d(k), (52)

which can be written as:

y(k) =
k

yX

i=1

a

i

y(k − i) + d(k). (53)

ARX model: When the process can be described as an autoregressive model with an exogenous
input (ARX), the output y(k) is function of the past values of the output variables and inputs. In
case of a single-input single-output (SISO) ARX models, Eq. (51) becomes

A(z)y(k) = B(z)u(k) + d(k) (54)

24

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

as in single vs. ensemble, sequential vs. batch, passive vs.
active.

We believe that the classification active vs. passive is the
most appropriate one since it refers to the way classifiers
adapt in response to concept drift. In the following, we mainly
focus on active classifiers [2]–[5], [8]–[20], since the proposed
approach falls in this category. Readers interested in passive
classifiers can refer to [1], [6].

Active classifiers rely on triggering mechanisms detecting
when the classifier is no more aligned with the current concept,
generally by means of a CDT.

The adaptation phase is then activated as soon as a change
is detected, and moves the learning machine into a new opera-
tional state. On the contrary, in passive solutions, the classifier
undergoes a continuous update every time new supervised
samples are made available. These latter solutions generally
rely on an ensemble of classifiers with adaptation confined in
the update of the weights of the fusion/aggregation rule and
in the creation/removal of classifiers composing the ensemble.

[19] suggests an active classifier that monitors nonstation-
arity by inspecting variations in the mean value of a sliding
window opened over raw data. Differently, [18] takes decisions
by inspecting the normalized Kolmogorov-Smirnov distance
between the cumulative density functions estimated from the
training samples and a window of the most recent ones.

[14]–[17], [20] present triggering mechanisms based on
the classification error. In more detail, [14], [16], [20] detect a
change when the classification error exceeds a fixed threshold
(which is tuned according to the sample standard deviation
of the associated Bernoulli distribution). [17] suggests an ad-
hoc statistical test on the proportion of incorrectly classified
samples for comparing two different partitions of supervised
couples. [15] introduces an active classifier for concept drift
that relies on a sequential CDT (the Bernoulli exponential
moving average chart) to assess the stationarity of the clas-
sification error over time.

The JIT classifiers [2] and [3], introduced the inspection
of raw data pdf without relying on supervised labels, as
these could be seldom available. More specifically, preliminary
versions of JIT classifiers [3], [13] rely on the CI-CUSUM
CDT [2], whereas most recent solutions have enforced the
ICI-based CDT [4] as a core technique. In [10] a specific
solution for gradual concept drift is presented. In some cases,
concept drift cannot be detected by solely inspecting the
distribution of raw data, e.g., when the concept drift affects the
class function without modifying the distribution of unlabeled
observations. The same problem arises when observations
contain qualitative components, a situation hardly manageable
with a CDT. To this purpose, an extension of the basic JIT
classifier to detect drifts affecting the average classification
error has been presented in [5]. A particularly convenient
solution consists in simultaneously monitoring the pdf of the
raw data and the classification error, by combining different
CDTs.

III. PROBLEM STATEMENT

Let us consider a classification problem where sequential
couples (xt, yt) are generated according to an unknown pdf. In

particular, let xt 2 Rd be the observation at time t, generated
by an unknown process X , and let yt be its class label,
belonging to a finite set ⇤. The probability of observations
at time t can be expressed as

p(x|t) =
X

y2⇤

p(y|t)p(x|y, t), such that
X

y2⇤

p(y|t) = 1,

(1)
where p(y|t) > 0, is the probability of receiving a sample
of class y 2 ⇤, while p(x|y, t) is the conditional probability
distribution of class y at time t. Both the probabilities of
classes and the conditional probabilities are unknown and,
possibly, time variant (whenever a concept drift occurs).

The training sequence is composed of the first T0 observa-
tions, assumed to be generated in stationary conditions, i.e.,
8y 2 ⇤, p(y|t) and p(x|y, t) do not change in t 2 [0, T0]. No
assumptions are made on how often supervised pairs (xt, yt)
are provided during the operational life (t > T0), as these
could be received following a regular time-pattern scheme
(e.g., one supervised sample out of m) or asynchronously.

IV. JIT CLASSIFIERS FOR RECURRENT CONCEPTS:
THE GENERAL FORMULATION

The key elements composing a JIT classifier are the set
of concept representations C = {C1, . . . , CN} and the set of
operators {U ,⌥,D, E ,K} designed to handle such represen-
tations.

The i-th concept representation is defined as the triplet
Ci =

�

Zi, Fi, Di

�

where Zi is a sequence of supervised
pairs, Fi is a sequence of features characterizing the i-th
concept (to be used to assess the equivalence between two
concept representations), and Di is a sequence of features
used by the CDTs to detect a drift in the i-th concept. Not
rarely, Di contains also the same features of Fi. Examples of
Di are the cumulative statistics in CUSUM-like CDT [21];
examples of Fi are the sample statistics from non-overlapping
subsequences of observations.

The operators are defined as follows
• the update operator U(Ci, R) ! Ci. The operator U

receives concept Ci and a sequence of supervised or un-
supervised observations R. The operator U modifies the
concept representation Ci by appending recent supervised
samples Zi or features extracted from R to Fi.

• the split operator ⌥ (Ci) ! (Cj , Ck). The operator ⌥
divides a concept representation Ci into two disjoint
concept representations Cj and Ck. Elements that cannot
be safely associated either to Cj or Ck are discarded.

• the concept-drift detection operator D(Ci) ! {0, 1}: D
sequentially assesses the stationarity of concept Ci by
monitoring features in Di. When D(Ci) = 0 all observa-
tions yielding Ci are generated from the same concept,
i.e., “no concept drift” has occurred. When D(Ci) = 1,
the representation Ci has not been obtained from a single
concept, i.e., “concept drift has been detected”.

• the equivalence operator E(Ci, Cj) ! {0, 1}. E checks
if Ci and Cj are equivalent: E(Ci, Cj) = 1 means that
Ci and Cj are two representations coming from the same

Obsolete
model

Stationarity and time invariance

§ Stationarity

• We say that a data generating process is stationary
when generated data are i.i.d. realizations of a unique
random variable whose distribution does not change
with time

§ Time invariance

• We say that a process is time invariant when its
outputs do not explicitely depend on time

Searching for adaptation

q Traditional assumption: stationarity hypothesis

q Adaptive solutions in a non-stationary framework:

q A comprehensive methodology addressing this problem is
not available

instance
selection

instance
weighting

Multiple
Models

Passive
solution

Active
solution

WHAT: Instance Selection

§ The idea: identifying the samples of the training set that are relevant
to the current state of the process.

§ The adaptive systems generally rely on a window over the most
recent training samples to process the upcoming data

• fixed window approach: the length of the window is fixed a-priori
by the user

• heuristic approaches: adapt the window length over the latest
samples to maximize the accuracy

Time tTime t

Time t+1Time t+1

Removed knowledge baseRemoved knowledge base

A change
is detected
A change
is detected

Training set of the systemat time tTraining set of the systemat time t

Training set of the systemat time t+1Training set of the systemat time t+1

WHAT: Instance Weighting

§ The idea: training samples are not removed from the training set
of the system but all the training samples (suitably weighted) are
considered.

§ The training samples might be weighted according to

• the age

• the relevancy to the current state of the process in term of
accuracy of the last batch of supervised data

Weigth
at time t
Weigth
at time t

A change
is detected
A change
is detected

Training set of the systemat time tTraining set of the systemat time t

Training set of the systemat time t+1Training set of the systemat time t+1

Weigth
at time t
Weigth
at time t

Training samples are
equally important

Training samples are
equally important

Last training samples are
more influent

Last training samples are
more influent

WHAT: Multiple Models

§ The idea: the outputs of an ensemble of models are combined by means of
voting or weighted mechanisms to form the final output

§ All these systems includes techniques for dynamically including new
models in the system or deleting obsolete ones (i.e., pruning techniques
aiming at removing the oldest model or the one with the lowest accuracy).

Model 1

Model 2

Model N

...

In
pu
t O

utput

Ensamble of classifiers
working at time t

Ensamble of classifiers
working at time t

Model 1

Model 2

Model N+1

...In
pu
t O

utput

Ensamble of classifiers
working at time t+1

Ensamble of classifiers
working at time t+1

A change
is detected
at time t

A change
is detected
at time t

Model N

Critical analysis of the considered approaches

§ Instance selection
é: low computational-complexity
reduced training set

ê: fixed windows or heuristics to adapt the window size
forgetting mechanisms

§ Instance weighting
é: low computational-complexity
availability of all the training samples for recurrent models

ê: heuristics to define the sample weights
full training set

§ Multiple models
é: availability of a model for “each bunch of data”

ê: high computational-complexity

WHEN: passive vs active approach

§ Passive solutions continuously adapt the model without
the need to detect the change
• Ensembles of models with the adaptation phase consisting in a
continuous update of the weights of the fusion/aggregation rule
and creation/removal of models

§ Active solutions rely on triggering mechanisms to
identify changes in the process and react by updating the
model
• The most popular triggering mechanism is the change detection

Passive approach: the general idea

§ The underlying data distributions may (or may not) change
at any time with any rate of change.

§ A continuous adaptation of the model parameters every
time new data arrive

§ Maintain an up-to-date model at all times
• Avoid the potential pitfall associated with false alarms
in active solutions

Passive learning

Environment

Sensors

Adaptation

Application / Service

User

Online (incremental) learning

Batch learning

Ensemble learning

Ensemble-based mechanisms

§ Ensemble-based approaches provide a natural fit to the
problem of learning in nonstationary environments:
a) more accurate than single classifier-based systems

b) easily incorporate new data into a classification model
(a new item into the ensemble)

c) provide a natural mechanism to forget irrelevant
knowledge (removing an item from the ensemble)

Incremental learning ensembles
in nonstationary environments

Incremental learning ensembles
in nonstationary environments: SEA

§ The streaming ensemble algorithm (SEA) was one of
the earliest ensemble approaches:

• New classifiers are added as new batches of data
arrive

• Classifiers are removed as the ensemble reaches a
predetermined size

• Which classifier must be removed?
− evaluation of classifier’s predictions
− age of the classifier
− remove the least contributing member

Incremental learning ensembles
in nonstationary environments: other solutions

§ Several popular extensions to online bagging/boosting for
nonstationary environments

• Online bagging & boosting form the basis of online
nonstationary boosting algorithm (e.g., ONSBoost)

§ Dynamic weighted majority (DWM) extends weighted
majority algorithm to data streams with concept drift, and
uses an updated period to add/remove classifiers

§ Other approaches:

• accuracy updated ensemble (AUE)
• random forest algorithm has also been extended to
learning nonstationary data streams

Learn++.NSE

§ Maintain an ensemble
that applies a time-
adjusted loss function
to favor classifiers that
have been performing
well in recent times (not
just the most recent
ones)

§ A classifier that
performed poorly a long
time ago can be
reactivated (e.g.,
recurring or cyclic drift)

Active learning

Environment

Sensors

Detection

Adaptation

Application / Service

User

The Oracle provides information
about an event, e.g., the
occurrence of concept drift

WHEN: Triggering mechanisms

é: monitoring the distribution
of unlabeled observation

ê: this solution does not allow
us for detecting changes that
do not affect the distribution of
observations

é: reacting to changes when
these directly influence its
accuracy

ê: the need of supervised
samples

Change detection on the classification error

Change detection on the pdf of the inputs:

Nominal
Concept
Nominal
ConceptNominal
ConceptReference
Concept

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

Samples

Te
mp

era
tur

e (
°C

)

Sensor 1
Sensor 2
Sensor 3

0 2000 4000 6000 8000 10000 12000
0

2

4

6

Samples

Nu
mb

er
of m

iss
ing

 da
ta

φ

Adaptation

Concept Drift Detection

Feature Extraction

Detection,
Information
about concept drift

Time
occurrence

Operational Phase
Learning
Phase

Application

Info

The active learning framework within an evolving
environment

Concept
Library

Features (1)

Features must be i.i.d (but data are generally signals)

§ Data space

ü Raw data are used (e.g., the minimum of the water consumption
of a day @ district metered area)

Water flow at the DMA

M
in
im
um
 D
ai
ly
Fl
ow
 (l
/s
)

Features (2)

§ Feature space

ü Any i.i.d. feature (e.g., residual, measurements in a quality
analysis applications)

Features (3)

§ Model space

ü LTI models are used to approximate the signal

y1(t) y2(t)f1,2
✓

y1(t)

y2(t)

Estimate model parameters ✓̂t1 , . . . , ✓̂tn

Active learning

Identification of the new
state

Concept Drift Detection

Retrain the application

Change detection tests CDT
CPM Change point methods

Determination of consistent
data instances

Online, batch or full learning

Phase How

Concept drift detection

Ad hoc triggers designed to detect changes by inspecting
sequences of data or derived features

§ Data-based methods

• Limit checking

• Binary threshold

§ Statistical-basedmethods

• Statistical Hypothesis tests

• Change-Point Methods

• Change detection tests

Limit checking

§ Testing if a given (measured) variable exceeds (indicating
a change) or not a known absolute limit.

§ Variants:

• Two limits, associated to different levels of safety.

• Use of superior and inferior limits.

§ Easy to implement.
§ Too conservative (low change sensitivity).

§ Estimation of mean and variance

• The monitored variables are usually stochastic
variables Yi(t) with a certain pdf in nominal condition

§ Changes are then expressed by

Change detection with binary thresholds

If the pdfs do not
significantly overlap,
one could use a fixed
threshold based on σ,
e.g., γ=2σ

Ratio between
the detection of
small changes
and false
alarms

More powerful techniques need to be considered

§ Statistical tests

• off-line: fixed length sequence (after storing all data)

• on-line: at each time instant

§ Statistical hypothesis tests:
• Off-line

• Control of FPs

§ Change detection tests
• On-line

• No control of FPs

Statistical hypothesis tests

§ Theory of statistics

§ Testing one hypothesis (H0) against one or more
alternative hypotheses H1 ,.., HN
• H0: null hypothesis (no change) è Y in Y0
• H1 ,.., HN: change hypothesis è Y in Y1

§ Decision: Based on the assumption that the null
hypothesis is true if no fault occurs, the null hypothesis is
rejected and the alternate hypothesis is accepted if the
sample of the random variable Y falls outside the region of
acceptance. Otherwise, H0 is accepted and H1 rejected

Regions of rejection and acceptance for a HT

How to set the regions?

Hypothesis tests: the literature

 Test family Type
(P/NP)

Change
(Ab/Dr)

Entity
under

test

1D/
ND

On-line/
Off-line

Training Set
/A priori

information
Notes

Z-test
Statistical

Hypothesis
testing

Parameteric Abrupt Mean 1D Off-line Parameters Assume normality and
known variance

t-test
Statistical

Hypothesis
testing

Parameteric Abrupt Mean 1D Off-line None Assume normality

Mann-
Whitney U

test

Statistical
Hypothesis

testing

Non
Parameteric

Abrupt Median 1D Off-line None Rank Test

Kolmogorov-
Smirnov test

Statistical
Hypothesis

testing

Non
Parameteric

Abrupt Pdf 1D Off-line None Also goodness of fit test

Kruskal-
Wallis test

Statistical
Hypothesis

testing

Non
Parameteric

Abrupt Median 1D Off-line None
Mann-Whitney based,

Multiple subsets

Change point methods

CPMs inspect a sequence of data and check for concept drift

Given sequence

Produce a generic partitioning

and

In practice

Change point methods

Example

With hypothesis test

For instance consider the Student t statistics for the means

Change point methods

Threshold e.g., provided by the CPM package

Change-detection tests

§ Change detection tests are methods designed to detect variations
in the pdf of the process generating the data

§ Parametric approach: knowledge of the pdf before and after the
change
• CUSUM test
• Shiryaev-Robert test

§ Nonparametric approach:
• CI-CUSUM test, NPCUSUM test
• ICI-based change detection test

§ Semi-parametric approach:

• Semiparametric log-likelihood criterion (SPLL)

45

The CUSUM test

§

§ The change at t0 modeled as a transition from θ0 to θ1 (Hp:
we keep the pdf structure)

§ Measure a discrepancy at time time t:

§ Evaluate the cumulative sum

§ CUSUM identifies a change at time
when
with

1 2{ , ,.., } ()NX x x x p xθ= :

1

0

()
ln

()
t

t
t

p x
s

p x
θ

θ

=

∑
=

=
t

i
tt sS

1

t

tttt hmSg ≥−=
)(min

1 ttit Sm
≤≤

= hgt

t

Kulback-Leibler

The CI-CUSUM test

1. Observations
2. Partitions of into disjoint intervals
3. Extract the average feature vector (e.g., mean, var., kur., skew.)

from each subsequence
4. The pdf is gaussian from the central limit theorem
5. Estimate the null hypothesis from
6. Define alternative hypotheses as “not being in “

7. Measure the discrepancy at time as

8. CI-CUSUM identifies a change
at time if

S
el
f-c
on
fig
ur
at
io
n
pr
oc
ed
ur
e

S
el
f-c
on
fig
ur
at
io
n
pr
oc
ed
ur
e

R
un
ni
ng

R
un
ni
ng

{ } dtxTttxX ℜ∈==)(,,..,1),(
X { },)1(),()(νν ⋅<≤⋅−= ststxsY

()syϕ

(){ }0, sssTS y ≤= ϕ

()()
()() mj

N
N

sR
s

y

y
j

j
,..,1,ln)(

1 0

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=∑

= Θ

Θ

τ τϕ

τϕs

() () jj
s

j hRsRsg >−=
≤≤

τ
τ1
min)(s

)(sY

0Θm mjj ,..,1},{ =Θ

0Θ

hg(t)

t

The ICI-based change detection test

§ The test relies on a set of functions that transform the
observations into Gaussian distributed features

§ ICI rule: a method for developing adaptive estimates for
regression of functions from noisy observations (signal and
image denoising)

§ The ICI rule, combined with a polynomial regression
technique, assesses the stationary of the features (and
hence of the process)

Feature
Extraction

X(t) ICI rule
test

outcome
Polynomial
Regression

Particularly effective in detecting changes but

How to increase promptness in detection still
maintaining robustness w.r.t false positives?

False Positives

D
et
ec
tio
n
de
la
y

False positives rate

Confidence level

The answer to the
question “what
happened?”
is not enough ...

... Tell me:
“when did it
happen?”

What and when ...

§ Not only detection of the change, but also estimation of
the time instant the process becomes non stationary

0TO

0T *T T̂

After the detection, we want an estimate Tref of T*
by means of a refinement procedure

The change
is detected

The change
started

Tref

Feature
Extracti
on

ICI rulePolynomial
Regression

Second-Level CDT

Process
X(t) Detection

Estimation
about the
change

Confirmed
Detection /
Restart
the test

First-Level CDT

refT

Error
e(t)

Second level change-
detection test aiming at
confirming (or not) the change
hypothesis:
• Multivariate hypothesis test
• Change-point methods

A multivariate hypothesis test based on
the Hotelling T-square statistics

Change-point methods: statistical tests
able to assess whether a given data-
sequence contains (or not) a change point

Compute

Hierarchical CDT

Which data are consistent with the current status?

§ Instances: between and *T T̂

0TO

0T
*T T̂refT

T* is unknown: use estimates and

The change
is detected

The change
happened

T̂refT

§ If concet drift is
detected the whole
framework is
retrained

Retrain the application

Application

Detection trigger

Reference
concept

0TO

0T
*T T̂refT

An example:
Just-in-Time Adaptive Classifiers

Nominal
Concept
Nominal
ConceptNominal
ConceptNominal
Concept

Just-in-Time Adaptive Classifiers

φ

Adaptation

Hierarchical
Concept Drift Detection

Feature Extraction

JIT Classifiers

Sample Statistical
moments,

Classification error

Statistical
Moments

• ICI-based CDT on
the observations
and the errors

• Hypothesis tests,
Change-Point
Methods

• Dynamic knowledge
base management

• Estimate of change
time

• K-NN
• SVMs
• Neural networks

Recurrent
Concepts

Asymptotic optimality with JIT classifiers

ob
se

rv
at

io
ns

-5

0

5

10 class ω
class ω
T*

Classification error as a function of time

C
la

ss
ifi

ca
tio

n
E

rr
or

 (%
)

1000 2000 3000 4000 5000 6000 7000 8000 9000

27

28

29

30

31

32

33

34

35

T

JIT classifier
Continuous Update Classifier
Sliding Window Classifier
Bayes error

 Dataset

1

2

a)

b)

1000 2000 3000 4000 5000 6000 7000 8000 9000 T

JIT adaptive classifiers grant asymptotic optimality when the process
generating the data is affected by a sequence of abrupt concept drift

Gaussian
classes

Dealing with concept drift …

θ1

θ2

Concept #1

xxxxx
x x
xx xx xxxxx
x x
xx xx xxxxx
x x
xx xx
xxxxx
x x
xx xx

xxxxx
x x
xx xx
xxxxx
x x
xx xx

xxxxx
x x
xx xx
xxxxx
x x
xx xx

xxxxx
x x
xx xx xxxxx xxx xx

Concept #2

Concept #3

…

xxxxx
x x
xx xx xxxxx
x x
xx xx xxxxx
x x
xx xx
xxxxx
x x
xx xx

xxxxx
x x
xx xx
xxxxx
x x
xx xx

xxxxx
x x
xx xx
xxxxx
x x
xx xx

xxxxx
x x
xx xx xxxxx xxx xx

Concept #NRecurrent Concept

according to the estimated accuracy [10], [11] or reactivate
previously trained classifiers [12]. Also in these cases, the
main drawback is the need of a sufficient amount of supervised
samples to reliably assess the classification error. Once again,
the unlabeled observations could be considered to identify
within the most recent observations, those that are up-to-
date with the current state of the data-generating process,
thus representing an ideal candidate for constituting the new
knowledge base [8]. However, since analyzing the unlabeled
observations does not allow one to perceive changes that do
not affect the distribution of observations (e.g., the swap of
the classes), it is necessary to consider additional information
to successfully deal with recurrent concepts.

In this paper we present an effective solution for exploiting
the classification error within the JIT framework. This novel
solution allows us to increase the effectiveness of the change-
detection phase by monitoring both the distribution of the
observations and the classification error. Thus, the JIT clas-
sifier exploits both supervised and unsupervised samples to
adapt to changes in the data-generating process and, de facto,
the proposed solution extends the JIT framework to deal with
recurrent concepts. Every time a concept drift is detected, the
previously trained classifiers are tested to identify if the current
concept has been already envisaged or not. If the concept is
recurrent, the previous classifier is re-activated (together with
the new knowledge); otherwise a new classifier is introduced.

The experiments allow us to investigate in practice how
the amount of supervised information influences the classifier
accuracy in nonstationary data-generating processes. Results
are coherent with the intuitive idea that exploiting unsuper-
vised data and handling recurrent concepts become essential
elements for learning in non stationary environments when the
amount of supervised samples is scarce.

The novel contributions of the paper can be summarizes as:
1) We introduce a novel JIT classifier that exploits both

the supervised and unsupervised samples to effectively
adapt to concept drift. The proposed adaptive classifier
relies on two different change-detection tests (CDTs) to
assess the stationarity of the data-generating process: the
former CDT is meant for monitoring the stationarity of
the observations disregarding their label (CDTX), while
the latter assesses the change if the classification error
(computed on supervised samples) is stationary (CDT✏).
This approach is particularly promising in case of low
supervised-sample rates as it exploits the promptness of
CDTX , while maintaining the detection ability also in
non-stationarity cases that do not affect the distribution
of the observations.

2) A specific solution for CDT✏ designed for assessing if
the classification error is stationary: CDT✏ operates on
Bernoulli sequences, which reliably model the classifica-
tion error measured at supervised samples. The proposed
CDT is based on the ICI-based CDT [8], [13].

3) A procedure to handle recurrent concepts within an
ensemble of classifiers framework. The classifier is
retrained using the knowledge base previously acquired

that is coherent with the current concept. This proce-
dure allows the classifier to compensate the shortage
of supervised samples by reactivating the knowledge
base already acquired whenever this is coherent with
the current state of the process.

The paper is organized as follows: Section II states the
problem and introduces the formalism used; Section III gives
an outline of the proposed JIT adaptive classifier and discusses
in details the core techniques such as the change-detection test
on classification error and the procedure to handle recurrent
concepts. Section IV details the complete algorithm, while
experimental results are presented in Section V.

II. PROBLEM STATEMENT

Let us consider the concept drift framework in which the
input samples (observations) are scalar entities generated from
process X according to an unknown distribution. Denote by
xt 2 R the observation at time t, and by yt the class
label associated with xt. In what follows, without loss of
generality, we consider a two-class classification problem, i.e.,
yt 2 {!1,!2}. The probability density function of the inputs
at time t can thus be defined as

p(x|t) = p(!1|t)p(x|!1, t) + p(!2|t)p(x|!2, t), (1)

where p(!1|t), p(!2|t) = 1 � p(!1|t) are the probabilities
of getting a sample of class !1 and !2, respectively, while
p(x|!1, t), p(x|!2, t) are the conditional probability distribu-
tions at time t. Both the probabilities of the classes and the
conditional pdfs are assumed to be unknown and may evolve
over time, whenever a non-stationarity occurs.

The training sequence consists in the first T0 observations
that are assumed to be generated in stationary conditions,
i.e., p(!1|t), p(!2|t), and p(x|!1, t), p(x|!2, t) do not change
within the time interval [0, T0]. Supervised pairs (xt, yt) are
provided both within the training sequence and during the
operational life (i.e., t > T0). However, no assumption is
made on how often these supervised pairs are provided, as
these could be received following a regular time-pattern (e.g.,
one supervised sample out of m) or even intermittently.

III. THE PROPOSED SOLUTION

The main characteristic of the proposed JIT classifier is the
integration of a CDT on the classification error for monitoring
the stationary of a data-generating process. This improves the
change-detection abilities of JIT adaptive classifiers suggested
in [6], [8], [14]–[16] relying on a single CDT to monitor the
stationarity of the distribution of X , disregarding the existence
of supervised labels.

The key elements of the proposed solution are:
CDTX : the CDT that analyzes the raw observations to

monitor the stationarity of xt, disregarding their
labels;

CDT✏: the CDT for assessing if the average classification
error changes over time (CDT✏ operates only on
supervised samples);

K: the classifier used to classify input samples;

The novel idea: extending the JIT classifier

Application

CDT

Reactivate
previous
classifier

KB

Supervised/Unsupervised data

Recurrent

Yes

Identify current
concept

No

stationary
Non

stationary

Two CDTs are to asses if:
• The pdf of the input is stationary
• the classification error is
stationary

Adaptation phase consists in:
• Isolation of the current concept
• Identification of recurrent
concepts

• Training the classifier by exploiting
all the available supervised
information

Define the new
KB (Adaptation)

Some relevant remarks …

üBeing acquainted with learning techniques is a
plus in everybody’s background

üMost of time the we can assume that the process
generating the data is time invariant. When it is
not we need to pay attention…

ü Learning in a chaging environment must be
considered and represents a key property
intelligent systems should possess

Open Source Software and Available Benchmarks

§ Many authors have made the code and data used in their
publications available to the public

§ Code:
• Hierarchical ICI-based Change-Detection Tests
• Learn++.NSE
• (Scalable Advance) Massive Online Analysis
• Online Nonstationary Boosting

§ Dataset (generator):
• Minku & Yao’s / Kuncheva’s Concept Drift Generator
• Kuncheva’s Concept Drift Generator
• Airlines Flight Delay Prediction, Spam Classification, Chess.com
• KDD Cup 1999: Collection of network intrusion detection data.
• POLIMI Rock Collapse and Landslide Forecasting

Ditzler, G., Roveri, M., Alippi, C., & Polikar, R. (2015). Learning in nonstationary
environments: a survey. IEEE Computational Intelligence Magazine, 10(4), 12-25.

Topics of Future Interest

§ Theoretical frameworks for learning

§ Unstructured and heterogeneous data streams

§ Transient concept drift and limited data

§ Concept drift and Big Data

Ditzler, G., Roveri, M., Alippi, C., & Polikar, R. (2015). Learning in nonstationary
environments: a survey. IEEE Computational Intelligence Magazine, 10(4), 12-25.

Let’s play with MATLAB

§ Download the examples related to Active and Passive
solutions ….

Some References

§ J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey
on concept drift adaptation,” ACM Computing Surveys, 2014.

§ Ditzler, Gregory, Manuel Roveri, Cesare Alippi, and Robi Polikar. "Learning in
nonstationary environments: A survey." Computational Intelligence Magazine,
IEEE 10, no. 4 (2015): 12-25.

§ Tsymbal, Alexey. "The problem of concept drift: definitions and related work."
Computer Science Department, Trinity College Dublin 106 (2004).

§ IEEE Transactions on Neural Networks and Learning Systems, “Special Issue
on Learning in Nonstationary and Evolving Environments”, Jan. 2004

