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The importance of structure and affinity prediction

Engineered G protein. 
Carpenter et al.

Interaction Paxlovid 
(Pfizer) and SARS MPro  

CRISPR-Cas9 interaction. 
Image credit R. Andrade.  



AlphaFold3 and Boltz-1

2020 
DeepMind announces 

AlphaFold2 for single chain 
protein structure prediction

May 2024 
DeepMind publishes AlphaFold3 
for arbitrary structure prediction 

without releasing the model

Nov 2024 
Boltz-1 is the first fully 
open source model 

approaching AF3-level



Boltz adoption and feedback

2000+  
members in the 
community slack

2800+ stars 
430+ forks 

40+ contributors



Beyond structure: Affinity Prediction

Hit-discovery
Find an initial small 
molecule that binds

Hit-to-lead
Maximize the affinity 

to the target

Lead-optimization
Minimize off-target 

interactions

Target discovery
Find the right protein 
target for the disease

Invivo & 
clinical trials

While we got good at structure prediction, across all these stages the cost & time of precise 
binding affinity measurements limit the number of molecules & proteins that are tested.

Accurate Binding Affinity calculation is likely the biggest bottleneck 
in preclinical drug development.



Boltz-2 Structure Prediction



Boltz-2 Architecture



Boltz-1 Feedback

• User control in terms of templates, contacts, and other domain knowledge 

• Modeling dynamics 

• Improving the physical quality of poses 

• Faster speed and lower memory consumption
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New ways to condition the model

Method conditioning Templates (+ Multimer) Contacts or pocket



Boltz-1 Feedback

• User control in terms of templates, contacts, and other domain knowledge 

• Modeling dynamics 

• Improving the physical quality of poses  

• Faster speed and lower memory consumption



Modeling Local Dynamics

x N x N

Distribution over N

MD datasets



Improvement on capturing local dynamics



Boltz-1 Feedback
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Boltz-x Steering Potentials

• Structure prediction models have so far had poor physical quality of 
the poses with issues with chirality (~5%), bond distances (~25%), 
stereochemistry, steric clashes and even overlapping chains. 

• We addressed these by introducing a custom Feynman-Kac 
steering inference-time potentials

Clashing chains

Chirality error

AlphaFold3 report



Boltz-1x & Boltz-2x for High Quality Poses



Boltz-1 Feedback

• User control in terms of templates, contacts, and other domain knowledge  

• Modeling dynamics 

• Improving the physical quality of poses 

• Faster speed and lower memory consumption



Scalability

Just announced 
collaboration with 

NVIDIA to accelerate 
Boltz-1 & Boltz-2!



Scalability

Now live on the Boltz repo!



On “easier” modalities similar performance



Improvement in hard modalities



Boltz-2 Affinity Prediction



Key components for accurate affinity prediction

• Exploit deep representations learned by structural model. 

• Curation of large amounts of good quality data. 

• Designing supervision framework to extract signal from noise. 

• Counter biases in the data with synthetic data and custom sampling. 



Affinity module architecture

• PairFormer-based module 

• Inputs: 

• Trunk representation 

• Predicted coordinates 

• Output: 

• Binding Likelihood → hit discovery 

• Affinity Value (IC50) → hit-to-lead and lead-optimisation



Affinity data

Critical data curation: 

• Keep highest quality data: filter low confidence assays and ligands.  

• Avoid false positives: retain HTS binders only with a dose-response measurement. 

• Reduce size bias: augment the binary classification dataset with synthetic decoys.

Type Affinity values Binary data

Sources
PubChem, CheEMBL, 

BindingDB
PubChem, CheEMBL, 

BindingDB, CeMM, MIDAS

Total 
Size

~1.5M datapoints 

across 2.5k targets

~0.5M positives and ~5M negatives 

datapoints across 2.5k targets



Training Affinity: extracting signal over noise

• Binary focal loss → avoid overfitting to positives
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Training Affinity: extracting signal over noise

• Binary focal loss → avoid overfitting to positives 

• Structural confidence filter (ipTM ≥ 0.75) 

→ Avoid confounding the model with wrong structures 

• 90% weight on relative difference in affinity value loss: 

→ Reduce inter-lab experimental noise and merge multiple assay types 

• Activity Cliff Sampler 

→ Focus on learning activity cliffs that are critical for ligand optimization





Hit-to-lead results: FEP+ benchmark

Boltz-2 approaches FEP methods on the FEP+ benchmark at 1000x the speed



Hit-to-lead results: CASP16 and internal targets

CASP16 affinity challenge: 

• 140 protein-ligand pairs across 
two targets from Roche 

• 31 entries from top labs 

• Boltz-2 retrospectively ranked 1st 

Internal targets: 

• Challenging real-world assays 

• 8 hit-to-lead assays 

• 3 out of 8 targets with >0.55 Pearson



Hit-discovery results: MF-PCBA benchmark

Boltz-2 achieves 2x enrichment compared to ML baselines and docking



We use Boltz-2 to prospectively screen 
molecules on TYK2 using: 

• Enamine Hit Locator Library (460k)  

• Enamine Kinase Library (65k) 

• SynFlowNet (117k)

Molecular Library Annotated Library SynFlowNet

Model Training

Boltz2

Boltz2

Boltz2
Annotated Samples

Boltz2

Boltz2

Boltz2
A. B.
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Prospective generative virtual screen



Prospective generative virtual screen

Our top-10 compounds all bind and on average they bind 
stronger than existing binders according to ABFE validation.



Limitations

• Biomolecular structure prediction is not a solved problem: 
performance remains limited on many interaction modalities. 

• Boltz-2 struggles to model large conformational changes. 

• Good affinity prediction is dependent on good structure prediction. 

• More work is needed to fully understand the applicability of affinity 
predictions.



Next: improve structure, affinity and more

On top of further improving Boltz-2 performance, we are working on further 
expanding Boltz’s applicability! Stay tuned for: 

• Protein-protein affinities 

• Small-molecule and protein design pipelines 

• ADME, toxicity and developability predictions 

• Tools for fine-tuning and iterative design

Would you like to 
work together? 

Please reach 
out to us!



Thank You! We’d love to hear from you!

saro00@csail.mit.edu  
gcorso@csail.mit.edu  

jwohlwend@csail.mit.edu 

Manuscript 
bit.ly/boltz2-pdf 

Code and model 
bit.ly/boltz-git  

Slack channel 
bit.ly/slack-boltz   
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