

Boltz-2

Towards Accurate and Efficient Binding Affinity Prediction

Saro Passaro, Gabriele Corso, Jeremy Wohlwend, Mateo Reveiz, Stephan Thaler, Vignesh Ram Somnath, Noah Getz, Tally Portnoi, Julien Roy, Hannes Stark, David Kwabi-Addo, Dominique Beaini, Tommi Jaakkola, Regina Barzilay

The importance of structure and affinity prediction

CRISPR-Cas9 interaction. Image credit R. Andrade.

Interaction Paxlovid (Pfizer) and SARS MPro

Engineered G protein.

Carpenter et al.

AlphaFold3 and Boltz-1

May 2024

DeepMind publishes AlphaFold3 for arbitrary structure prediction without releasing the model

Nov 2024

Boltz-1 is the first fully open source model approaching AF3-level

2020

DeepMind announces
AlphaFold2 for single chain
protein structure prediction

Boltz adoption and feedback

2000+ members in the community slack

2800+ stars
430+ forks
40+ contributors

Beyond structure: Affinity Prediction

Accurate Binding Affinity calculation is likely the biggest bottleneck in preclinical drug development.

While we got good at structure prediction, across all these stages the **cost & time** of precise **binding affinity measurements** limit the number of molecules & proteins that are tested.

Boltz-2 Structure Prediction

Boltz-2 Architecture

Boltz-1 Feedback

- User control in terms of templates, contacts, and other domain knowledge
- Modeling dynamics
- Improving the physical quality of poses
- Faster speed and lower memory consumption

Boltz-1 Feedback

- User control in terms of templates, contacts, and other domain knowledge
- Modeling dynamics
- Improving the physical quality of poses
- Faster speed and lower memory consumption

New ways to condition the model

Boltz-1 Feedback

• User control in terms of templates, contacts, and other domain knowledge

- Modeling dynamics
- Improving the physical quality of poses
- Faster speed and lower memory consumption

Modeling Local Dynamics

Improvement on capturing local dynamics

Boltz-1 Feedback

- User control in terms of templates, contacts, and other domain knowledge
- Modeling dynamics
- Improving the physical quality of poses
- Faster speed and lower memory consumption

Boltz-x Steering Potentials

- Structure prediction models have so far had poor physical quality of the poses with issues with chirality (~5%), bond distances (~25%), stereochemistry, steric clashes and even overlapping chains.
- We addressed these by introducing a custom Feynman-Kac steering inference-time potentials

Boltz-1x & Boltz-2x for High Quality Poses

Boltz-1 Feedback

- User control in terms of templates, contacts, and other domain knowledge
- Modeling dynamics
- Improving the physical quality of poses
- Faster speed and lower memory consumption

Scalability

Just announced collaboration with NVIDIA to accelerate Boltz-1 & Boltz-2!

Scalability

Now live on the Boltz repo!

On "easier" modalities similar performance

Improvement in hard modalities

Boltz-2 Affinity Prediction

Key components for accurate affinity prediction

- Exploit deep representations learned by structural model.
- Curation of large amounts of good quality data.
- Designing supervision framework to extract signal from noise.
- Counter biases in the data with synthetic data and custom sampling.

Affinity module architecture

- PairFormer-based module
- Inputs:
 - Trunk representation
 - Predicted coordinates

- Output:
 - Binding Likelihood → hit discovery
 - Affinity Value (IC50) → hit-to-lead and lead-optimisation

Affinity data

Type	Affinity values	Binary data
Sources	PubChem, CheEMBL, BindingDB	PubChem, CheEMBL, BindingDB, CeMM, MIDAS
Total Size	~1.5M datapoints across 2.5k targets	~0.5M positives and ~5M negatives datapoints across 2.5k targets

Critical data curation:

- Keep highest quality data: filter low confidence assays and ligands.
- Avoid false positives: retain HTS binders only with a dose-response measurement.
- Reduce size bias: augment the binary classification dataset with synthetic decoys.

Binary focal loss → avoid overfitting to positives

- Binary focal loss → avoid overfitting to positives
- Structural confidence filter (ipTM ≥ 0.75)
 - → Avoid confounding the model with wrong structures

- Binary focal loss → avoid overfitting to positives
- Structural confidence filter (ipTM ≥ 0.75)
 - → Avoid confounding the model with wrong structures
- 90% weight on relative difference in affinity value loss:
 - → Reduce inter-lab experimental noise and merge multiple assay types

- Binary focal loss → avoid overfitting to positives
- Structural confidence filter (ipTM ≥ 0.75)
 - → Avoid confounding the model with wrong structures
- 90% weight on relative difference in affinity value loss:
 - → Reduce inter-lab experimental noise and merge multiple assay types
- Activity Cliff Sampler
 - → Focus on learning activity cliffs that are critical for ligand optimization

Hit-to-lead results: FEP+ benchmark

Boltz-2 approaches FEP methods on the FEP+ benchmark at 1000x the speed

Hit-to-lead results: CASP16 and internal targets

CASP16 affinity challenge:

- 140 protein-ligand pairs across two targets from Roche
- 31 entries from top labs
- Boltz-2 retrospectively ranked 1st

Internal targets:

- Challenging real-world assays
- 8 hit-to-lead assays
- 3 out of 8 targets with >0.55 Pearson

Hit-discovery results: MF-PCBA benchmark

Boltz-2 achieves 2x enrichment compared to ML baselines and docking

Prospective generative virtual screen

We use Boltz-2 to prospectively screen molecules on TYK2 using:

- Enamine Hit Locator Library (460k)
- Enamine Kinase Library (65k)
- SynFlowNet (117k)

Prospective generative virtual screen

Our top-10 compounds all bind and on average they bind stronger than existing binders according to ABFE validation.

Limitations

- Biomolecular structure prediction is not a solved problem: performance remains limited on many interaction modalities.
- Boltz-2 struggles to model large conformational changes.
- Good affinity prediction is dependent on good structure prediction.
- More work is needed to fully understand the applicability of affinity predictions.

Next: improve structure, affinity and more

On top of further improving Boltz-2 performance, we are working on further expanding Boltz's applicability! Stay tuned for:

- Protein-protein affinities
- Small-molecule and protein design pipelines
- ADME, toxicity and developability predictions
- Tools for fine-tuning and iterative design

Would you like to work together?
Please reach out to us!

Thank You! We'd love to hear from you!

Manuscript bit.ly/boltz2-pdf

Code and model bit.ly/boltz-git

Slack channel bit.ly/slack-boltz

saro00@csail.mit.edu gcorso@csail.mit.edu jwohlwend@csail.mit.edu

