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Feedforward Neural Networks



1. Using neural nets to 
recognize handwritten digits



Sigmoid neuron

An early artificial neuron model is a perceptron — skip in interest of time 

Sigmoid neuron 

• Has inputs   where  

• Has weights  corresponding to the inputs 

• Has one overall bias  

• Notion of bias: measure of a threshold value needed to fire neuron 

• As we’ll see,  (so b is notionally a negative number)

x1, x2, ⋯ xk is [0,1] inclusive

w1, w2, ⋯

b

b ≡ −threshold

An artificial neuron

Sigmoid neuron



Sigmoid neuron

Weighted input z 

Let  

Or   

 is weight vector, with components  

 is input vector, with component   

inner product   (In matrix form, dot product )

z ≡ ∑
k

wkxk + b

z ≡ w ⋅ x + b

w w1, w2, ⋯

x x1, x2, ⋯

w ⋅ x ≡ ∑
k

wkxk wT ⋅ x ≡ ∑
k

wkxk
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Sigmoid neuron



Sigmoid neuron

Output 

• Given by an activation function 

• It is a function of    or   

• For a sigmoid neuron, output activation function is 

• sigmoid function:   or   

• Also called logistic function 

output 

z (w ⋅ x + b)

σ(z) σ(w ⋅ x + b)

a = σ(w ⋅ x + b)
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Sigmoid neuron



Sigmoid neuron

Sigmoid function 

 

• What is shape of ? 
if   is large positive:       and     
if   is large negative:   and   

• It is a “smoothed out” step function (~ perceptron output) 

• To have argument , we must have    or  

σ(z) ≡
1

1 + e−z
=

1
1 + exp( − ∑k wkxk − b)

σ(z)
z = w ⋅ x + b e−z ≈ 0 σ(z) ≈ 1
z = w ⋅ x + b e−z → ∞ σ(z) ≈ 0

z > 0 w ⋅ x > − b w ⋅ x > threshold
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Sigmoid neuron

Sigmoid function 

 

Continuity (no “jump” in value) of  matters 

• No big change  from small changes  and  

σ(z) ≡
1

1 + e−z
=

1
1 + exp( − ∑k wkxk − b)

σ

Δoutput Δwk Δb
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output

z



Architecture of Neural Networks

• input layer : leftmost layer, informally: input neurons 

• output layer : rightmost layer, has output neurons 

• hidden layer : middle layer, here 2 hidden layers 

• E.g. Is handwritten image the digit “9” or not? 

• Image is 28 28 pixels, so 784 input neurons 

• Each input neuron intensity scaled to [0, 1] 

• 1 output neuron; say, if value > 0.5  ->  image is “9” 

• (Confusingly, sometimes called multilayer perceptrons)

×



Feedforward Neural Networks

• The output from one layer is used as input to the next layer 

• No loops back, information always fed forward, never fed back 

• Other models: feedback loops are possible 

• Recurrent neural networks 

• Idea is to have neurons which fire for some limited duration of time only 

• That firing can stimulate other neurons to fire a while later (limited duration) 

• Good for processing sequence data for predictions, e.g. Speech recognition 

• Much more complex, not covering here



A Simple Network
to classify a handwritten digit

• Some ‘housekeeping’ clarification 

• Each neuron has single output 

• Multiple arrows merely to indicate 
that output is used as input to 
several others; here, to all neurons 
in following layer (fully connected) 

• Input neurons in input layer not really 
neurons with output but no input 

• Just a conventional shorthand to 
represent the input values x1, x2, ⋯



A Simple Network
to classify a handwritten digit    /2

• Three-layer neural network 

• Input layer: 28  28 = 784 neurons 

• Pixel is greyscale, so input value is 
[1.0, 0.0] inclusive 

• Hidden layer: n number of neurons, 
experiment with different numbers 

• Output layer: 10 neurons, #0 to #9 

• Predicted answer is neuron with 
highest activation value

×



MNIST data set

Named for a modified subset of two NIST (National Institute of Standards and 
Technology) collected data sets. 

Scanned handwriting samples from 250 people. Two parts. 

• 60,000 images to be used as training data 

• 10,000 images to be used as test data 

• Different set 250 people 

Learning with gradient descent

A few images from MNIST



MNIST data set

We use notation   

• to denote a training input (image) 

Regard each  as a -dimension (column) vector 

• Each component of the vector represents 

• the grey value for a single pixel in the image

x

x 28 × 28 = 784

Learning with gradient descent  /2

A few images from MNIST



MNIST data set

We use  denote the corresponding desired output, where  is a 10-dimension vector 

E.g. If training image  depicts digit 7, then  is desired output

y = y(x) y

x y = y(x) =

0
0
0
0
0
0
0
1
0
0

Learning with gradient descent  /3

A few images from MNIST



Cost function

What we’d like is a (neural network deep learning) algorithm which lets us find 

• weights and bias for each neuron in hidden and output layers 

• in order that the result from output layer :  

• for every training input  in the training set 

Define a cost function (or loss or objective function), say 

L aL ≈ y

x

C(w, b) =
1
n ∑

x

∥y(x) − aL(x, w, b)∥2

2

Learning with gradient descent

Our three-layer neural network



Cost function

    quadratic or mean squared error MSE cost function 

•  denotes all weights in the network,  all the biases 

•  is total number of training inputs  

•  is a vector of output layer  neuron values, when input is  

• So  is also 10-dimensional, similar to desired  

•  denotes usual length function for vector  

•  seems only for convenience, when differentiating numerator

C(w, b) =
1
n ∑

x

∥y(x) − aL(x, w, b)∥2

2

w b

n x

aL L x

aL y

∥y − aL∥ (y − aL)

÷ 2
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Our three-layer neural network



Cost function

    quadratic or mean squared error MSE cost function 

• Note:  is non-negative 

• When: , then  for all training inputs  

• Found “good” values for each neuron’s weights and bias 

• Training algorithm’s aim is to minimize cost  

• as a function of the weights and bias of each neuron 

• Can use gradient descent if cost function is “smooth”

C(w, b) =
1
n ∑

x

∥y(x) − aL(x, w, b)∥2

2

C(w, b)

C(w, b) ≈ 0 aL ≈ y x

C(w, b)
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Our three-layer neural network



Minimizing cost function

Suppose we’re trying to minimize a function  of many variables  

•  must be a real-valued (returns a scalar) function, but could be any function 

• We’ve replaced  and  notations by  to represent any multiple variables, say ,  

• Can try using calculus to find minimum analytically 

• Nightmare if network has >> 10,000+ of  and  

• So imagine descending down slope of a “valley” shaped  

• Move small amounts  and  in those directions

C(v) v = v1, v2, …

C

w b v v1 v2

wk b

C

Δv1 Δv2

Learning with gradient descent

C(v1, v2)



Minimizing cost function

Calculus tells us  changes as follows: 

      Note:  is a scalar 

Define:  gradient of , ,     

 

• OK to view  as a (gradient) vector whose components 
are the partial derivatives (or view  as differential operator)

C

ΔC ≈
∂C
∂v1

Δv1 +
∂C
∂v2

Δv2 ΔC

C ∇C ≡
∂C
∂v1

∂C
∂v2

Δv ≡ [Δv1
Δv2]

ΔC ≈ ∇C ⋅ Δv

∇C
∇

/2

C(v1, v2)



Minimizing cost function

 

• To minimize , want  

• Choose   where  (learning rate) is small, positive 

  both terms after minus sign  

• So, from     to move towards global  minimum

ΔC ≈ ∇C ⋅ Δv = Δv ⋅ ∇C = [Δv1
Δv2] ⋅

∂C
∂v1

∂C
∂v2

C ΔC < 0

Δv = − η∇C η

ΔC ≈ − η∇C ⋅ ∇C
= − η ∥∇C∥2

≤ 0
≥ 0

vnow → vnew = vnow − η∇C C
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C(v1, v2)



Gradient Descent
Another viewpoint of the rule

The rule is a way of taking small steps in the direction 
which does the most to immediately decrease  

• We want to make a move  so as to make  most 
negative, equivalent to minimizing   

• If we also constrain           for a small   

• Can be proved:     where   
 

C

Δv ΔC
ΔC ≈ ∇C ⋅ Δv

∥Δv∥ = ϵ ϵ > 0

Δv = − η∇C η = ϵ/∥∇C∥

Δv =
−ϵ

∥∇C∥
∇C = − ϵ

∇C
∥∇C∥

= − ϵ (unit vector in direction of  ∇C)
https://math.stackexchange.com/questions/1688662/tricky-proof-of-a-result-of-michael-nielsens-book-neural-networks-and-deep-lea/1945507#1945507



Gradient Descent in a Neural Network

Use gradient descent to find/learn the weights  and bias  for each neuron 

• Which would tend to minimize the cost function  

• Choose   where  (learning rate) is small, positive 

So here:           

Gradient descent update rule:      and    

wk b

C

Δv = − η∇C η

Δv ≡ [Δwk

Δb ] = −η∇C ≡ − η
∂C
∂wk

∂C
∂b

=
−η ∂C

∂wk

−η ∂C
∂b

wk → wnew,k = wk − η
∂C
∂wk

b → bnew = b − η
∂C
∂b

Learning with gradient descent



Stochastic Gradient Descent

Gradient descent update rule:     and    

One problem:  

• The quadratic cost function  is an average over sum of all cost  for each training input x 

• To compute the gradient , for example the  component, we would also need to 

compute that  separately for each training input x then average the sum over all x 

• For large training data set, this can take long time, and learning occurs slowly 

wk → wnew,k = wk − η
∂C
∂wk

b → bnew = b − η
∂C
∂b

C(w, b) =
1
n ∑

x

∥y(x) − aL(x, w, b)∥2

2

C Cx

∇C
∂C
∂wk∂Cx

∂wk

Learning with gradient descent



Stochastic Gradient Descent

stochastic gradient descent is used to speed up learning 

• Idea is to estimate the gradient  by computing each   

for a sample of randomly chosen (stochastic) training inputs  
then averaging over this sample to get an estimate of the true gradient  

• Pick out a small(er) number  of randomly chosen training inputs  
referred to as a mini-batch.

∇C ∇CXj

Xj

∇C

m X1, X2, …, Xm

Learning with gradient descent  /2



Stochastic Gradient Descent

• Average value of the  from the mini-batch will be 

 the average over all  provided the sample size  is large enough 

    where  is over entire training data set 

        where we estimate overall  from the random mini-batch

∇CXj

≈ ∇Cx m

∑m
j=1 ∇CXj

m
≈

∑x ∇Cx

n
= ∇C Σx

∇C ≈
1
m

m

∑
j=1

∇CXj
∇C

Learning with gradient descent  /3



Stochastic Gradient Descent

Reminder:  

Stochastic gradient descent update rule 

• Pick out a randomly chosen mini-batch of training inputs  and train with those 

    and     

where the sums are over all the training examples in current mini-batch 

• Then pick out another random mini-batch, and train (do  and  updates) with those 

• Until we've exhausted the training data inputs, which completes an epoch of training 

• At which point we start over with a new training epoch

v → vnew = v − η∇C

Xj

wk → wnew,k = wk −
η
m ∑

j

∂CXj

∂wk
b → bnew = b −

η
m ∑

j

∂CXj

∂b

wk b

Learning with gradient descent  /4



Stochastic Gradient Descent

E.g. if we have a training set of size  as in MNIST and choose a mini-batch 
size of (say)  

• Get a factor of 6,000 speedup in estimating the gradient (in each update pass) 

• The estimate won’t be perfect because of statistical fluctuations 

• But it doesn’t need to be perfect 

• All we care about is moving in a general direction that will help decrease cost  

• In practice, stochastic gradient descent is a commonly used and powerful 
technique for learning in neural networks

n = 60,000
m = 10

C

Learning with gradient descent  /6



Sigmoid neuron

Weighted input z 

Let  

Or          <== 

 is weight vector, with components  

 is input vector, with component   

inner product   (In matrix form, dot product )

z ≡ ∑
k

wkxk + b

z ≡ w ⋅ x + b

w w1, w2, ⋯

x x1, x2, ⋯

w ⋅ x ≡ ∑
k

wkxk wT ⋅ x ≡ ∑
k

wkxk

/2

Sigmoid neuron



Sigmoid neuron

Output 

• Given by an activation function 

• It is a function of    or   

• For a sigmoid neuron, output activation function is 

• sigmoid function:   or   

• Also called logistic function 

output         <==

z (w ⋅ x + b)

σ(z) σ(w ⋅ x + b)

a = σ(w ⋅ x + b)

/3

Sigmoid neuron



Implementing our network to classify digits

• Reminder:  = weights[1]    a 10 by 30 matrix 

• As we’ll see, it stores the weights associated with the neurons in the third layer 

• We can write the output activation of third layer:  

 

•  is one of the weights of the  neuron in the third layer, 
in particular, the weight for the output from the  neuron in the second layer

wl=3rd layer

al=3 = σ (wl=3 al=2 + bl=3)

al=3 = σ

wl=3
1 1 wl=3

1 k ⋯ ⋯ wl=3
1 30

wl=3
j 1 wl=3

j k ⋯ ⋯ wl=3
j 30

⋮
wl=3

10 1 wl=3
10 k ⋯ ⋯ wl=3

10 30

al=2
1

al=2
k
⋮
⋮

al=2
30

+

bl=3
1

bl=3
j

⋮
bl=3

10

wl=3
j k = weights[1]j k jth

kth

/4

Our three-layer neural network



Implementing our network to classify digits

 

 

• Denote:  = biases[1]    a 10 by 1 matrix 

•  is the bias for the  neuron in the third layer

al=3 = σ (wl=3 al=2 + bl=3)

= σ

wl=3
1 1 wl=3

1 k ⋯ ⋯ wl=3
1 30

wl=3
j 1 wl=3

j k ⋯ ⋯ wl=3
j 30

⋮
wl=3

10 1 wl=3
10 k ⋯ ⋯ wl=3

10 30

al=2
1

al=2
k
⋮
⋮

al=2
30

+

bl=3
1

bl=3
j

⋮
bl=3

10

bl=3

bl=3
j = biases[1]j jth

/5

Our three-layer neural network



2. How the backpropagation 
algorithm works



Gradient Descent in a Neural Network

Use gradient descent to find/learn the weights  and bias  for each neuron 

• Which would tend to minimize the cost function  

• Choose   where  (learning rate) is small, positive 

So here:           

Gradient descent update rule:      and    

wk b

C

Δv = − η∇C η

Δv ≡ [Δwk

Δb ] = −η∇C ≡ − η
∂C
∂wk

∂C
∂b

=
−η ∂C

∂wk

−η ∂C
∂b

wk → wnew,k = wk − η
∂C
∂wk

b → bnew = b − η
∂C
∂b

Learning with gradient descent



Backpropagation Algorithm

• Introduced in 70’s, came into own in famous 1986 Rumelhart, Hinton, & Williams paper 

• At its heart: gives expression for the partial derivatives of the cost function  

  and           for one training example x 

Or, with notation to specify the  neuron in the  layer 

  and          for one training example x 

• Fast algorithm to compute those expressions

Cx
∂Cx

∂wk

∂Cx

∂b

jth lth

∂Cx

∂wl
jk

∂Cx

∂bl
j

How to compute gradient of the cost function



Backpropagation Algorithm Overview

[al=1
1

al=1
2 ] = [x1

x2] layer 1

to layer 2 [al=2
1

al=2
2 ] = σ [wl=2

1 1 wl=2
1 2

wl=2
2 1 wl=2

2 2 ] [al=1
1

al=1
2 ] + [bl=2

1

bl=2
2 ] layer 2

to layer 3
[al=3

1 ] = σ [wl=3
1 1 wl=3

1 2 ] [al=2
1

al=2
2 ] + [bl=3

1 ]

Feedforward phase - using the activation function

Layer 2Input : Layer 1 Output : Layer 3



Backpropagation Algorithm Overview

[al=1
1

al=1
2 ] = [x1

x2] layer 1

to layer 2 [al=2
1

al=2
2 ] = σ [wl=2

1 1 wl=2
1 2

wl=2
2 1 wl=2

2 2 ] [al=1
1

al=1
2 ] + [bl=2

1

bl=2
2 ] layer 2

to layer 3
[al=3

1 ] = σ [wl=3
1 1 wl=3

1 2 ] [al=2
1

al=2
2 ] + [bl=3

1 ]

Feedforward phase - using the activation function

Layer 2Input : Layer 1 Output : Layer 3

x



Backpropagation Algorithm Overview

[al=1
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2 ] = [x1

x2] layer 1
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Backpropagation Algorithm Overview
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Backpropagation Algorithm Overview
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Backpropagation Algorithm Overview
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Backpropagation Algorithm Overview
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Backpropagation Algorithm Overview

Define the error   of neuron  in layer  :        because can get   and   fast 

1.       If using quadratic cost function    

2.  

3.  

4.

δl
j j l δl

j ≡
∂C
∂zl

j

∂C
∂wl

jk

∂C
∂bl

j

δL
j =

∂C
∂aL

j
σ′ (zL

j ) δL
j = (aL

j − yj) σ′ (zL
j )

δl
j = ∑

k

wl+1
kj δl+1

k σ′ (zl
j) = ((Wl+1

: , j )Tδl+1) σ′ (zl
j)

∂C
∂bl

j
= δl

j

∂C
∂wl

jk
= al−1

k δl
j

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation



Backpropagation Algorithm Overview

Define the error   of neuron  in layer  :        because can get   and   fast 

1.       If using quadratic cost function         <== e.g. L = 3 

2.  

3.  
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Backpropagation Algorithm Overview

Define the error   of neuron  in layer  :        because can get   and   fast 
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Backpropagation Algorithm Overview

Define the error   of neuron  in layer  :        because can get   and   fast 

1.       If using quadratic cost function  

2.                                                     <== l = 2 

3.  

4.
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Backpropagation Algorithm Overview

Define the error   of neuron  in layer  :        because can get   and   fast 
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4 fundamental eqns of backprop

Some insights

• Consider  in BP4 when it is small 

• The gradient term  also tends to be small 

• Consider  in BP1 or  in BP2 when  

• which is when the  function is flat or saturated at
 (low or high activation) 

•  and/or  also tend to be small 

• A bias or a weight of a neuron will tend to learn 
slowly if the neuron is near saturation 

• Recap: the weight of a neuron tends to learn slowly 

• if either its input neuron has low activation  

• or the neuron's output has saturated

al−1
k

∂C/∂w

σ′ (zL
j ) σ′ (zl

j) σ′ (zj) ≈ 0

σ
σ(zj) ≈ 0 or ≈ 1

∂C/∂b ∂C/∂w

al−1
k



3. Improving the way 
neural networks learn



Overfitting

• Models with large enough number of 
(independent) parameters can describe 
almost any data set of a given size 

• Will work well for the existing data 

• But will fail to generalize to new input it 
hasn’t been exposed to before 

• Here’s graph of training cost, with our 30 
hidden neuron network, with its (28x28 x 
30) + 30 + (30x10) + 10 = 23,860 parameters; 
but using just first 1,000 training images 

• Seems decreasing cost, up to epoch 400



Overfitting
/2

• But classification accuracy on the 
test data set gradually slows down 
and pretty much stops improving 
around epoch 280, at around 82% 

• What our network learns after 
epoch 280 no longer generalizes to 
the test data; it’s not useful learning 

• We say the network is overfitting or 
overtraining beyond epoch 280



Overfitting
/3

• Another sign of overfitting may be 
seen in the classification accuracy on 
the training data 

• Accuracy rises to 100%; our network 
correctly classifies all 1000 training 
images; but accuracy tops out 
around 82% on test data 

• Our network really is learning about 
peculiarities of the training set, and 
not about recognizing digits in general



Increase training data
To reduce Overfitting

• We were training with 1,000 training images 

• Let’s use full training set of 50,000 for 30 
epochs (here, comparing with test data, not 
validation data, so result more comparable) 

• The classification accuracy gap is still there 
peaking at 97.86% - 95.33% = 2.53%, but is 
much smaller than the ~18%; overfitting is 
still going on but greatly reduced 

• Increasing size of the training data is one of 
best ways of reducing overfitting 

• But can be expensive or difficult to acquire 

• So not always a practical option



L2 or Weight decay Regularization

• Idea of L2 regularization or weight decay regularization is to add extra term to the cost 
function, a term called the regularization term 

Can write regularized cost function     where  is original c.f. 

• Second term is sum of the squares of all the weights in the network (but doesn’t 
include the biases, will touch on why later) 

• Scaled by factor  

•  is the regularization parameter;   is, as usual, size of our training set

C = CO +
λ

2n ∑
w

w2 CO

λ/2n

λ > 0 n

Regularization techniques to reduce Overfitting



L2 or Weight decay Regularization

Some closing words on (L2) regularization 

• It’s an empirical fact that regularized neural networks usually generalize better than unregularized 
networks 

• But we don't have an entirely satisfactory systematic understanding of what's going on, merely 
incomplete heuristics and rules of thumb 

Regularization term doesn’t include biases   

• Empirically, regularizing biases often doesn’t change the results very much 

• We don’t need to worry about large biases enabling our network to learn the noise in our training 
data, because a large bias doesn’t make a neuron sensitive to its inputs as weights do 

• Large biases make it easier for neurons to saturate, which is sometimes desirable

C = C0 +
λ

2n ∑
w

w2

Regularization techniques to reduce Overfitting  /9



Dropout

• In dropout we modify the network itself 

• Suppose we’re trying to train a network with training inputs 

• Forward propagate, backpropagate to do gradient descent, over mini-batches 

• With dropout, first choose a random half of the hidden neurons to delete temporarily 
Leave input and output neurons untouched 

• Forward propagate and backpropagate through such a modified network 

• After a mini-batch of examples, update appropriate weights, biases 

• Restore dropout neurons; repeat process, deleting a new random subset 

• When we actually run the full network, twice as many hidden neurons are active 

• To compensate, we halve the weights outgoing from the hidden neurons

Other regularization techniques to reduce Overfitting



Artificially expanding the training data

• Suppose we take an MNIST training image of a “5” and rotate it 

• At the pixel level, it’s quite different to any image in MNIST 

• Powerful and widely used idea to expand MNIST training data 

• Rotating, Translating, Skewing 

• “Elastic distortions” intended to emulate the random oscillations in hand muscles 

• Increased accuracy up to 99.3% 

• General principle is to expand training data 

• Apply operations to reflect real-world variation 

• Speech: add background noise, speed up or slow down 

• Sometimes instead of adding noise, may be more efficient to clean up the input by first applying noise reduction

Other regularization techniques to reduce Overfitting



Running demo code

• Why using Docker container 
• In order to avoid needing to give out separate 

instructions on how to install Python and needed 
packages to run the book's code on different 
platforms/flavors (such as Mac, Windows, Linux), it 
seemed easier to just give one set of instructions 
on how to create a docker container and how to 
run the demo code in it. 

• Hopefully, Docker is sufficiently ubiquitous 
nowadays so that installing and running docker on 
different platforms should be well documented. 

• Book’s code is in my forked GitHub repository 

https://github.com/clkim/DeepLearningPython35 
• Instructions are in the README



Neural Networks and Deep Learning — A Practical Introduction

• Simple (Python) Network to 
classify a handwritten digit 

• Learning with Gradient Descent 

• Backpropagation algorithm 

• Improving neural networks 

• Overfitting and Regularization

Live Webinar class: Saturday, October 16, 2021, 9:00 AM - 12:30 PM EDT
Organizer: GBCACM    Instructor: CL Kim

• Improving how neural networks learn 

• Cross-entropy cost function 

• Softmax activation function and log-
likelihood cost function 

• Rectified Linear Unit 

• Overfitting and Regularization 

• L2 regularization 

• Dropout 

• Artificially expanding data set


