

Intro to Practical Neural Networks and Deep Learning (Part 1) CL Kim

53951431 530961517 67127549 75870286

IEEE Boston Computer Society and GBC/ACM Thursday, 15 July 2021 7:00 PM EDT

Reference book (online and free) <u>http://neuralnetworksanddeeplearning.com/</u>

Neural Networks and Deep Learning

Personal: Please consider donating to author Michael Nielsen

Feedforward Neural Networks

1. Using neural nets to recognize handwritten digits

Sigmoid neuron An artificial neuron

An early artificial neuron model is a *perceptron* – skip in interest of time *Sigmoid* neuron x_1

- Has inputs x_1, x_2, \cdots where x_k is [0,1] inclusive
- Has weights w_1, w_2, \cdots corresponding to the inputs
- Has one overall *bias b*
 - Notion of bias: measure of a threshold value needed to fire neuron
 - As we'll see, $b \equiv -$ threshold (so b is notionally a negative number)

Sigmoid neuron

Sigmoid neuron /2

Weighted input z

Let
$$z \equiv \sum_{k} w_k x_k + b$$

Or
$$z \equiv w \cdot x + b$$

w is weight vector, with components w_1, w_2, \cdots

Sigmoid neuron

 \boldsymbol{x} is input vector, with component x_1, x_2, \cdots

inner product
$$\mathbf{w} \cdot \mathbf{x} \equiv \sum_{k} w_k x_k$$
 (In matrix form, *dot* product $\mathbf{w}^T \cdot \mathbf{x} \equiv \sum_{k} w_k x_k$)

Sigmoid neuron /3

Output

- Given by an activation function
 - It is a function of z or $(w \cdot x + b)$
- For a sigmoid neuron, *output* activation function is
 - *sigmoid* function: $\sigma(z)$ or $\sigma(w \cdot x + b)$
 - Also called *logistic* function

output $a = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$

Sigmoid neuron

Sigmoid function

$$\sigma(z) \equiv \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-\sum_{k} w_{k} x_{k} - b)}$$

- What is shape of $\sigma(z)$? if $z = w \cdot x + b$ is large positive: $e^{-z} \approx 0$ and $\sigma(z) \approx 1$ if $z = w \cdot x + b$ is large negative: $e^{-z} \to \infty$ and $\sigma(z) \approx 0$
 - It is a "smoothed out" *step function* (~ perceptron output)

• To have argument z > 0, we must have $w \cdot x > -b$ or $w \cdot x >$ threshold

Sigmoid neuron /5

Sigmoid function

$$\sigma(z) \equiv \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-\sum_{k} w_{k} x_{k} - b)}$$

Continuity (no "jump" in value) of σ matters

• No big change Δ output from small changes Δw_k and Δb

Architecture of Neural Networks

- *input layer* : leftmost layer, informally: *input neurons*
- *output layer* : rightmost layer, has *output neurons*
- *hidden layer* : middle layer, here 2 hidden layers
- E.g. Is handwritten image the digit "9" or not?
 - Image is 28×28 pixels, so 784 input neurons
 - Each input neuron intensity scaled to [0, 1]
 - 1 output neuron; say, if value > 0.5 -> image is "9"
- (Confusingly, sometimes called *multilayer perceptrons*)

Feedforward Neural Networks

- The output from one layer is used as input to the next layer
 - No loops back, information always fed forward, never fed back
- Other models: feedback loops are possible
 - Recurrent neural networks
 - Idea is to have neurons which fire for some limited duration of time only
 - That firing can stimulate other neurons to fire a while later (limited duration)
 - Good for processing sequence data for predictions, e.g. Speech recognition
 - Much more complex, *not covering* here

A Simple Network to classify a handwritten digit

- Some 'housekeeping' clarification
 - Each neuron has single output
 - Multiple arrows merely to indicate that output is used as input to several others; here, to all neurons in following layer (*fully connected*)
 - Input neurons in input layer *not* really neurons with output but no input
 - Just a conventional shorthand to represent the input values *x*₁, *x*₂, …

A Simple Network

to classify a handwritten digit /2

- Three-layer neural network
- Input layer: $28 \times 28 = 784$ neurons
 - Pixel is greyscale, so input value is [1.0, 0.0] inclusive
- Hidden layer: *n* number of neurons, experiment with different numbers
- Output layer: 10 neurons, #0 to #9
 - Predicted answer is neuron with highest activation value

MNIST data set

Learning with gradient descent

Named for a *modified* subset of two *NIST* (National Institute of Standards and Technology) collected data sets.

Scanned handwriting samples from 250 people. Two parts.

- 60,000 images to be used as *training data*
- 10,000 images to be used as *test data*
 - Different set 250 people

504192

A few images from MNIST

MNIST data set

Learning with gradient descent /2

We use notation *x*

• to denote a training input (image)

Regard each *x* as a $28 \times 28 = 784$ -dimension (column) *vector*

- Each component of the vector represents
 - the grey value for a single pixel in the image

A few images from MNIST

MNIST data set

Learning with gradient descent /3

Cost function

Learning with gradient descent

What we'd like is a (neural network deep learning) algorithm which lets us find

- weights and bias for each neuron in hidden and output layers
- in order that the result from output layer $L: a^L \approx y$
 - for every training input *x* in the training set

Define a cost function (or loss or objective function), say

$$C(w,b) = \frac{1}{n} \sum_{x} \frac{\|y(x) - a^{L}(x,w,b)\|^{2}}{2}$$

hidden laver

Our three-layer neural network

Cost function /2

 $C(w,b) = \frac{1}{n} \sum \frac{\|y(x) - a^L(x, w, b)\|^2}{2}$ quadratic or mean squared error MSE cost function

- *w* denotes all weights in the network, *b* all the biases
- *n* is total number of training inputs *x*
- a^L is a *vector* of output layer *L* neuron values, when input is $x_{\text{st neurons}}$
 - So a^L is also 10-dimensional, similar to desired y
- $||y a^{L}||$ denotes usual length function for vector $(y a^{L})$
- \div 2 seems only for *convenience*, when differentiating numerator

Our three-layer neural network

Cost function

$$C(w,b) = \frac{1}{n} \sum_{x} \frac{\|y(x) - a^{L}(x,w,b)\|^{2}}{2}$$

- Note: C(w, b) is non-negative
- When: $C(w, b) \approx 0$, then $a^L \approx y$ for all training inputs x
 - Found "good" values for each neuron's weights and bias
- Training algorithm's aim is to minimize $\cot C(w, b)$
 - as a function of the weights and bias of each neuron
- Can use gradient descent if cost function is "smooth"

quadratic or mean squared error MSE cost function

Our three-layer neural network

Minimizing cost function Learning with gradient descent

Suppose we're trying to minimize a function C(v) of many variables $v = v_1, v_2, ...$

- C must be a real-valued (returns a scalar) function, but could be any function
- We've replaced w and b notations by v to represent any multiple variables, say v_1 , v_2
- Can try using calculus to find minimum analytically
 - Nightmare if network has >> 10,000+ of w_k and b
- So imagine descending down slope of a "valley" shaped *C*
 - Move small amounts Δv_1 and Δv_2 in those directions

Minimizing cost function /2

Calculus tells us *C* changes as follows:

 $\Delta C \approx \frac{\partial C}{\partial v_1} \Delta v_1 + \frac{\partial C}{\partial v_2} \Delta v_2 \quad \text{Note: } \Delta C \text{ is a scalar}$ Define: gradient of C, $\nabla C \equiv \begin{bmatrix} \frac{\partial C}{\partial v_1} \\ \frac{\partial C}{\partial v_2} \end{bmatrix}$, $\Delta v \equiv \begin{bmatrix} \Delta v_1 \\ \Delta v_2 \end{bmatrix}$

 $\Delta C \approx \nabla C \cdot \Delta v$

• OK to view ∇C as a (gradient) *vector* whose components are the partial derivatives (or view ∇ as differential operator)

Minimizing cost function /4

$$\Delta C \approx \nabla C \cdot \Delta v = \Delta v \cdot \nabla C = \begin{bmatrix} \Delta v_1 \\ \Delta v_2 \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial C}{\partial v_1} \\ \frac{\partial C}{\partial v_2} \end{bmatrix}$$

- To minimize *C*, want $\Delta C < 0$
- Choose $\Delta v = -\eta \nabla C$ where η (*learning rate*) is small, positive

$$\Delta C \approx -\eta \nabla C \cdot \nabla C$$

= $-\eta \|\nabla C\|^2$ both terms after minus sign ≥ 0
 ≤ 0

• So, from $v_{now} \rightarrow v_{new} = v_{now} - \eta \nabla C$ to move towards global *C* minimum

Gradient Descent

Another viewpoint of the rule

The rule is a way of taking small steps in the *direction* which does the *most* to immediately decrease *C*

- We want to make a move Δv so as to make ΔC most negative, equivalent to minimizing $\Delta C \approx \nabla C \cdot \Delta v$
- If we also *constrain* $\|\Delta v\| = \epsilon$ for a small $\epsilon > 0$
- Can be proved: $\Delta v = -\eta \nabla C$ where $\eta = \epsilon / \|\nabla C\|$

$$\Delta v = \frac{-\epsilon}{\|\nabla C\|} \nabla C = -\epsilon \frac{\nabla C}{\|\nabla C\|}$$

= -\epsilon (unit vector in direction of \nabla C)

https://math.stackexchange.com/questions/1688662/tricky-proof-of-a-result-of-michael-nielsens-book-neural-networks-and-deep-lea/1945507#1945507

Gradient Descent in a Neural Network Learning with gradient descent

Use gradient descent to find/learn the *weights* w_k and *bias* b for each neuron

- Which would tend to minimize the cost function C
- Choose $\Delta v = -\eta \nabla C$ where η (*learning rate*) is small, positive

So here:
$$\Delta \mathbf{v} \equiv \begin{bmatrix} \Delta w_k \\ \Delta b \end{bmatrix} = -\eta \nabla \mathbf{C} \equiv -\eta \begin{bmatrix} \frac{\partial C}{\partial w_k} \\ \frac{\partial C}{\partial b} \end{bmatrix} = \begin{bmatrix} -\eta \frac{\partial C}{\partial w_k} \\ -\eta \frac{\partial C}{\partial b} \end{bmatrix}$$

Gradient descent update rule: $w_k \rightarrow w_{new,k} = w_k - \eta \frac{\partial C}{\partial w_k}$ and $b \rightarrow b_{new} = b - \eta \frac{\partial C}{\partial b}$

Learning with gradient descent

Gradient descent update rule: $w_k \rightarrow w_{new,k} = w_k - \eta \frac{\partial C}{\partial w_k}$ and $b \rightarrow b_{new} = b - \eta \frac{\partial C}{\partial b}$

One problem:
$$C(w, b) = \frac{1}{n} \sum_{x} \frac{\|y(x) - a^L(x, w, b)\|^2}{2}$$

- The quadratic cost function C is an average over sum of all cost C_x for each training input x
- To compute the gradient ∇C , for example the $\frac{\partial C}{\partial w_k}$ component, we would also need to compute that $\frac{\partial C_x}{\partial w_k}$ separately for each training input x then average the sum over all x
- For large training data set, this can take long time, and learning occurs slowly

Learning with gradient descent /2

stochastic gradient descent is used to speed up learning

- Idea is to estimate the gradient ∇C by computing each ∇C_{X_j} for a sample of randomly chosen (stochastic) training inputs X_j then averaging over this sample to get an estimate of the true gradient ∇C
 - Pick out a small(er) number *m* of randomly chosen training inputs $X_1, X_2, ..., X_m$ referred to as a *mini-batch*.

Learning with gradient descent /3

• Average value of the ∇C_{X_j} from the mini-batch will be \approx the average over *all* ∇C_x provided the sample size *m* is large enough

$$\frac{\sum_{j=1}^{m} \nabla C_{X_j}}{m} \approx \frac{\sum_{x} \nabla C_{x}}{n} = \nabla C \quad \text{where } \Sigma_x \text{ is over entire training data set}$$

 $\nabla C \approx \frac{1}{m} \sum_{j=1}^{m} \nabla C_{X_j}$ where we estimate overall ∇C from the random mini-batch

Learning with gradient descent /4

Reminder: $v \rightarrow v_{new} = v - \eta \nabla C$

Stochastic gradient descent update rule

• Pick out a randomly chosen mini-batch of training inputs X_i and train with those

$$w_k \rightarrow w_{new,k} = w_k - \frac{\eta}{m} \sum_j \frac{\partial C_{X_j}}{\partial w_k}$$
 and $b \rightarrow b_{new} = b - \frac{\eta}{m} \sum_j \frac{\partial C_{X_j}}{\partial b}$

where the sums are over all the training examples in current mini-batch

- Then pick out another random mini-batch, and train (do w_k and b updates) with those
- Until we've exhausted the training data inputs, which completes an *epoch* of training
- At which point we start over with a new training epoch

Learning with gradient descent /6

E.g. if we have a training set of size n = 60,000 as in MNIST and choose a mini-batch size of (say) m = 10

- Get a factor of 6,000 speedup in estimating the gradient (in each update pass)
- The estimate won't be perfect because of statistical fluctuations
- But it doesn't need to be perfect
- All we care about is moving in a general direction that will help decrease cost C
- In practice, stochastic gradient descent is a commonly used and powerful technique for learning in neural networks

Sigmoid neuron

Weighted input z

Let
$$z \equiv \sum_{k} w_k x_k + b$$

$$Or \ z \equiv w \cdot x + b \qquad <==$$

w is weight vector, with components w_1, w_2, \cdots

 \boldsymbol{x} is input vector, with component x_1, x_2, \cdots

Sigmoid neuron

inner product $\boldsymbol{w} \cdot \boldsymbol{x} \equiv \sum_{k} w_k x_k$ (In matrix form, *dot* product $\boldsymbol{w}^T \cdot \boldsymbol{x} \equiv \sum_{k} w_k x_k$)

Sigmoid neuron /3

Output

- Given by an activation function
 - It is a function of z or $(w \cdot x + b)$
- For a sigmoid neuron, *output* activation function is
 - *sigmoid* function: $\sigma(z)$ or $\sigma(w \cdot x + b)$
 - Also called *logistic* function

output $a = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$ <==

Implementing our network to classify digits /4

- Reminder: $w^{l=3rd \, layer} = weights[1]$ a <u>10 by 30</u> matrix
 - As we'll see, it stores the weights associated with the neurons in the third layer
 - We can write the *output* activation of third layer: $a^{l=3} = \sigma (w^{l=3} a^{l=2} + b^{l=3})$

$$a^{l=3} = \sigma \left(\begin{bmatrix} w_{11}^{l=3} & w_{1k}^{l=3} & \cdots & \cdots & w_{130}^{l=3} \\ w_{j1}^{l=3} & w_{jk}^{l=3} & \cdots & \cdots & w_{j30}^{l=3} \\ \vdots & & & & \\ w_{101}^{l=3} & w_{10k}^{l=3} & \cdots & \cdots & w_{1030}^{l=3} \end{bmatrix} \begin{bmatrix} a_1^{l=2} \\ a_k^{l=2} \\ \vdots \\ \vdots \\ a_{l=2}^{l=2} \\ \vdots \\ a_{l=2}^{l=2} \end{bmatrix} + \begin{bmatrix} b_1^{l=3} \\ b_j^{l=3} \\ \vdots \\ b_{10}^{l=3} \end{bmatrix} \right)$$

Our three-layer neural network

• $w_{jk}^{l=3} = weights[1]_{jk}$ is one of the weights of the j^{th} neuron in the <u>third</u> layer, in particular, the weight for the output from the k^{th} neuron in the <u>second</u> layer

Implementing our network to classify digits /5

$$a^{l=3} = \sigma \left(w^{l=3} a^{l=2} + b^{l=3} \right)$$

$$= \sigma \left(\begin{bmatrix} w_{11}^{l=3} & w_{1k}^{l=3} & \cdots & \cdots & w_{130}^{l=3} \\ w_{j1}^{l=3} & w_{jk}^{l=3} & \cdots & \cdots & w_{j30}^{l=3} \\ \vdots \\ w_{101}^{l=3} & w_{10k}^{l=3} & \cdots & \cdots & w_{1030}^{l=3} \end{bmatrix} \begin{bmatrix} a_1^{l=2} \\ a_k^{l=2} \\ \vdots \\ a_k^{l=2} \\ \vdots \\ a_{30}^{l=2} \end{bmatrix} + \begin{bmatrix} b_1^{l=3} \\ b_j^{l=3} \\ \vdots \\ b_{10}^{l=3} \end{bmatrix} \right)$$

Our three-layer neural network

- Denote: $b^{l=3} = biases[1]$ a <u>10 by 1</u> matrix
 - $b_j^{l=3} = biases[1]_j$ is the bias for the j^{th} neuron in the third layer

2. How the backpropagation algorithm works

Gradient Descent in a Neural Network Learning with gradient descent

Use gradient descent to find/learn the *weights* w_k and *bias* b for each neuron

- Which would tend to minimize the cost function C
- Choose $\Delta v = -\eta \nabla C$ where η (*learning rate*) is small, positive

So here:
$$\Delta \mathbf{v} \equiv \begin{bmatrix} \Delta w_k \\ \Delta b \end{bmatrix} = -\eta \nabla \mathbf{C} \equiv -\eta \begin{bmatrix} \frac{\partial C}{\partial w_k} \\ \frac{\partial C}{\partial b} \end{bmatrix} = \begin{bmatrix} -\eta \frac{\partial C}{\partial w_k} \\ -\eta \frac{\partial C}{\partial b} \end{bmatrix}$$

Gradient descent update rule: $w_k \rightarrow w_{new,k} = w_k - \eta \frac{\partial C}{\partial w_k}$ and $b \rightarrow b_{new} = b - \eta \frac{\partial C}{\partial b}$

Backpropagation Algorithm How to compute gradient of the cost function

- Introduced in 70's, came into own in famous 1986 Rumelhart, Hinton, & Williams paper
- At its heart: gives expression for the partial derivatives of the cost function C_{x}

 $\frac{\partial C_x}{\partial w_k}$ and $\frac{\partial C_x}{\partial b}$ for one training example x

Or, with notation to specify the j^{th} neuron in the l^{th} layer

 $\frac{\partial C_x}{\partial w_{ik}^l}$ and $\frac{\partial C_x}{\partial b_i^l}$ for one training example x

• Fast algorithm to compute those expressions

Feedforward phase - using the activation function

$$\begin{bmatrix} a_1^{l=1} \\ a_2^{l=1} \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \xrightarrow{layer 1} \quad \begin{bmatrix} a_1^{l=2} \\ a_2^{l=2} \end{bmatrix} = \sigma \left(\begin{bmatrix} w_{11}^{l=2} & w_{12}^{l=2} \\ w_{21}^{l=2} & w_{22}^{l=2} \end{bmatrix} \begin{bmatrix} a_1^{l=1} \\ a_2^{l=1} \end{bmatrix} + \begin{bmatrix} b_1^{l=2} \\ b_2^{l=2} \end{bmatrix} \right) \xrightarrow{layer 2} \quad [a_1^{l=3}] = \sigma \left(\begin{bmatrix} w_{11}^{l=3} & w_{12}^{l=3} \\ a_2^{l=2} \end{bmatrix} + \begin{bmatrix} b_1^{l=3} \\ b_1^{l=2} \end{bmatrix} \right)$$

Feedforward phase - using the activation function

Define the error
$$\delta_j^l$$
 of neuron j in layer $l: \delta_j^l \equiv \frac{\partial C}{\partial z_j^l}$ because can get $\frac{\partial C}{\partial w_{jk}^l}$ and $\frac{\partial C}{\partial b_j^l}$ fast
1. $\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L)$ If using quadratic cost function $\delta_j^L = (a_j^L - y_j) \sigma'(z_j^L)$
2. $\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l) = ((W_{:,j}^{l+1})^T \delta^{l+1}) \sigma'(z_j^l)$
3. $\frac{\partial C}{\partial b_j^l} = \delta_j^l$
4. $\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l$

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation

Define the error δ_j^l of neuron j in layer $l: \delta_j^l \equiv \frac{\partial C}{\partial z_j^l}$ because can get $\frac{\partial C}{\partial w_{jk}^l}$ and $\frac{\partial C}{\partial b_j^l}$ fast 1. $\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L)$ If using quadratic cost function $\delta_j^L = (a_j^L - y_j) \sigma'(z_j^L)$ <== e.g. L = 32. $\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l) = ((W_{:,j}^{l+1})^T \delta^{l+1}) \sigma'(z_j^l)$ 3. $\frac{\partial C}{\partial b_j^l} = \delta_j^l$ 4. $\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l$

Define the error
$$\delta_j^l$$
 of neuron j in layer $l: \delta_j^l \equiv \frac{\partial C}{\partial z_j^l}$ because can get $\frac{\partial C}{\partial w_{jk}^l}$ and $\frac{\partial C}{\partial b_j^l}$ fast
1. $\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L)$ If using quadratic cost function $\delta_j^L = (a_j^L - y_j) \sigma'(z_j^L)$
2. $\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l) = ((W_{:,j}^{l+1})^T \delta^{l+1}) \sigma'(z_j^l)$
3. $\frac{\partial C}{\partial b_j^l} = \delta_j^l$ <= $l = 3$
4. $\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l$ <= $l = 3$

Define the error
$$\delta_j^l$$
 of neuron j in layer $l: \delta_j^l \equiv \frac{\partial C}{\partial z_j^l}$ because can get $\frac{\partial C}{\partial w_{jk}^l}$ and $\frac{\partial C}{\partial b_j^l}$ fast
1. $\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L)$ If using quadratic cost function $\delta_j^L = (a_j^L - y_j) \sigma'(z_j^L)$
2. $\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l) = ((W_{:,j}^{l+1})^T \delta^{l+1}) \sigma'(z_j^l)$ <== $l = 2$
3. $\frac{\partial C}{\partial b_j^l} = \delta_j^l$
4. $\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l$

Define the error
$$\delta_j^l$$
 of neuron j in layer $l: \delta_j^l \equiv \frac{\partial C}{\partial z_j^l}$ because can get $\frac{\partial C}{\partial w_{jk}^l}$ and $\frac{\partial C}{\partial b_j^l}$ fast
1. $\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L)$ If using quadratic cost function $\delta_j^L = (a_j^L - y_j) \sigma'(z_j^L)$
2. $\delta_j^l = \sum_k w_{kj}^{l+1} \delta_k^{l+1} \sigma'(z_j^l) = ((W_{:,j}^{l+1})^T \delta^{l+1}) \sigma'(z_j^l)$
3. $\frac{\partial C}{\partial b_j^l} = \delta_j^l$ <== $l = 2$
4. $\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l$ <= $l = 2$

4 fundamental eqns of backprop

Some insights

- Consider a_k^{l-1} in BP4 when it is small
 - The gradient term $\partial C/\partial w$ also tends to be small
- Consider $\sigma'(z_j^L)$ in BP1 or $\sigma'(z_j^l)$ in BP2 when $\sigma'(z_j) \approx 0$
 - which is when the σ function is flat or *saturated* at $\sigma(z_i) \approx 0$ or ≈ 1 (low or high activation)
 - $\partial C/\partial b$ and/or $\partial C/\partial w$ also tend to be small
 - A bias or a weight of a neuron will tend to *learn slowly* if the neuron is near saturation
- *Recap*: the weight of a neuron tends to learn slowly
 - if either its input neuron has low activation a_k^{l-1}
 - or the neuron's output has saturated

Summary: the equations of backpropagation

$$\delta^L = \nabla_a C \odot \sigma'(z^L) \tag{BP1}$$

$$\delta^{l} = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$
 (BP2)

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \tag{BP3}$$

$$\frac{\partial C}{\partial w_{j_k}^l} = a_k^{l-1} \delta_j^l \tag{BP4}$$

3. Improving the way neural networks learn

Overfitting

- Models with large enough number of (independent) parameters can describe almost any data set of a given size
 - Will work well for the existing data
 - But will fail to generalize to new input it hasn't been exposed to before
- Here's graph of *training* cost, with our 30 hidden neuron network, with its (28x28 x 30) + 30 + (30x10) + 10 = 23,860 parameters; but using just first 1,000 training images
 - Seems decreasing cost, up to epoch 400

Overfitting /2

- But classification accuracy on the *test data* set gradually slows down and pretty much stops improving around epoch 280, at around 82%
- What our network learns after epoch 280 no longer generalizes to the test data; it's not useful learning
- We say the network is *overfitting* or *overtraining* beyond epoch 280

Overfitting /3

- Another sign of overfitting may be seen in the classification accuracy on the *training data*
 - Accuracy rises to 100%; our network correctly classifies all 1000 training images; but accuracy tops out around 82% on test data
- Our network really is learning about peculiarities of the training set, and not about recognizing digits in general

Increase training data To reduce Overfitting

- We were training with 1,000 training images
- Let's use full training set of 50,000 for 30 epochs (here, comparing with test data, not validation data, so result more comparable)
 - The classification accuracy gap is still there peaking at 97.86% 95.33% = 2.53%, but is much smaller than the ~18%; overfitting is still going on but greatly reduced
- Increasing *size* of the *training data* is one of best ways of reducing overfitting
 - But can be expensive or difficult to acquire
 - So not always a practical option

L2 or Weight decay Regularization Regularization techniques to reduce Overfitting

• Idea of *L2 regularization* or *weight decay regularization* is to add extra term to the cost function, a term called the *regularization term*

Can write regularized cost function $C = C_O + \frac{\lambda}{2n} \sum_{w} w^2$ where C_O is original c.f.

- Second term is sum of the squares of all the weights in the network (but doesn't include the biases, will touch on why later)
 - Scaled by factor $\lambda/2n$
 - $\lambda > 0$ is the *regularization parameter*; *n* is, as usual, size of our training set

L2 or Weight decay Regularization Regularization techniques to reduce Overfitting /9

Some closing words on (L2) regularization

- It's an empirical fact that regularized neural networks usually generalize better than unregularized networks
 - But we don't have an entirely satisfactory systematic understanding of what's going on, merely incomplete heuristics and rules of thumb

Regularization term doesn't include biases $C = C_0 + \frac{\lambda}{2n} \sum_{w} w^2$

- Empirically, regularizing biases often doesn't change the results very much
 - We don't need to worry about large biases enabling our network to learn the noise in our training data, because a large bias doesn't make a neuron sensitive to its inputs as weights do
 - Large biases make it easier for neurons to saturate, which is sometimes desirable

Dropout

Other regularization techniques to reduce Overfitting

- In dropout we modify the network itself
- Suppose we're trying to train a network with training inputs
 - Forward propagate, backpropagate to do gradient descent, over mini-batches
- With dropout, first choose a *random* half of the hidden neurons to delete temporarily Leave input and output neurons untouched
 - Forward propagate and backpropagate through such a modified network
 - After a mini-batch of examples, update appropriate weights, biases
 - Restore dropout neurons; repeat process, deleting a new random subset
 - When we actually run the full network, twice as many hidden neurons are active
 - To compensate, we halve the weights outgoing from the hidden neurons

Artificially expanding the training data Other regularization techniques to reduce Overfitting

- Suppose we take an MNIST training image of a "5" and rotate it
 - At the pixel level, it's quite different to any image in MNIST
- Powerful and widely used idea to expand MNIST training data
 - Rotating, Translating, Skewing
 - "Elastic distortions" intended to emulate the random oscillations in hand muscles
 - Increased accuracy up to 99.3%
- General principle is to expand training data
 - Apply operations to reflect real-world variation
 - Speech: add background noise, speed up or slow down
- Sometimes instead of adding noise, may be more efficient to clean up the input by first applying noise reduction

55

Running demo code

- Why using Docker container
 - In order to avoid needing to give out separate instructions on how to install Python and needed packages to run the book's code on different platforms/flavors (such as Mac, Windows, Linux), it seemed easier to just give one set of instructions on how to create a docker container and how to run the demo code in it.
 - Hopefully, Docker is sufficiently ubiquitous nowadays so that installing and running docker on different platforms should be well documented.
- Book's code is in my forked GitHub repository https://github.com/clkim/DeepLearningPython35
- Instructions are in the README

Neural Networks and Deep Learning – A Practical Introduction

Live Webinar class: Saturday, October 16, 2021, 9:00 AM - 12:30 PM EDT Organizer: GBCACM Instructor: CL Kim

- Simple (Python) Network to classify a handwritten digit
- Learning with Gradient Descent
- Backpropagation algorithm
- Improving neural networks
- Overfitting and Regularization

- Improving how neural networks learn
 - Cross-entropy cost function
 - Softmax activation function and loglikelihood cost function
 - Rectified Linear Unit
- Overfitting and Regularization
 - L2 regularization
 - Dropout
 - Artificially expanding data set