- o Y | . X 1~ N
Intro to Practical Neural Networks

and Deep Learning (Part 1)
CL Kim

»»»»»»»»»

DIEAE ATENTN
&= 25 ale
7.3.8/.0. 2 84
IEEE Boston Computer Society and GBC/ACM Thursday, 15 July 2021 7:00 PM EDT

Reference book (online and free)
http://neuralnetworksanddeeplearning.com/

Neural Networks and Deep Learning

Personal: Please consider donating to author Michael Nielsen

Feedforward Neural Networks

1. Using neural nets to
recognize handwritten digits

Sigmoid neuron

An artificial neuron

An early artificial neuron model is a perceptron — skip in interest of time

Sigmoid neuron)

Has inputs x;, x,, --- where x;, 1s [0,1] inclusive T | output

Has weights wy, w,, --- corresponding to the inputs 3

Has one overall bias b Sigmoid neuron

* Notion of bias: measure of a threshold value needed to fire neuron

« Aswe'll see, b = —threshold (so b is notionally a negative number)

Sigmoid neuron

/2
Weighted input z
Let z = Z wi X, + b 21
k

T2 output

Orz=w-x+ b

xr3

w is weight vector, with components wy, w,, +-

Sigmoid neuron

X is input vector, with component x;, x,, -+

inner product w - x = z wX;, (In matrix form, dot product w! - x = 2 WX)
k k

Sigmoid neuron
/3

Output

* Given by an activation function)

e Itisa functionof z or (W -x + b) s %—ompm

* For a sigmoid neuron, output activation function is z3

* sigmoid function: 6(z) or o(w - x + b) Sigmoid neuron

* Also called logistic function

outputa = o(w - x + b)

Sigmoid neuron

/4
Sigmoid function
@ 1 1
o\Z7) = — output
I+e2 14exp(— Y, wx —b) "

* What is shape of 6(z)? ﬁ
if z=w -x+ b islarge positive: e~ 0 and o(z) ~ 1 J

if z=w -x + b islarge negative: 7> — o0 and o(z) ~ 0

-6 -4 -2 0 2 4 6

* Itis a “smoothed out” step function (~ perceptron output) ’

* To have argument z > 0, we must have w - x > — b or w - x > threshold

Sigmoid neuron
/5

Sigmoid function

1 1
I+e 1+exp(— Y wx —b)

o0(2) =

output

Continuity (no “jump” in value) of o matters ﬁ

* No big change Aoutput from small changes Aw;, and Ab J

Architecture of Neural Networks

input layer : leftmost layer, informally: input neurons

output layer : rightmost layer, has output neurons

hidden layer : middle layer, here 2 hidden layers

“_

E.g. Is handwritten image the digit “9” or not? wputue

* Image is 28X28 pixels, so 784 input neurons

* Each input neuron intensity scaled to [o, 1]

“_

* 1output neuron; say, if value > 0.5 -> image is “g

(Confusingly, sometimes called multilayer perceptrons)

Feedforward Neural Networks

* The output from one layer is used as input to the next layer
* No loops back, information always fed forward, never fed back
* Other models: feedback loops are possible
* Recurrent neural networks
* Idea is to have neurons which fire for some limited duration of time only
* That firing can stimulate other neurons to fire a while later (limited duration)
* Good for processing sequence data for predictions, e.g. Speech recognition

* Much more complex, not covering here

A Simple Network

to classify a handwritten digit

* Some ‘housekeeping’ clarification
* Each neuron has single output

* Multiple arrows merely to indicate

input layer

that output is used as input to o e

several others; here, to all neurons
in following layer (fully connected)

* Input neurons in input layer not really

neurons with output but no input

* Just a conventional shorthand to
represent the input values x;, x,, «-

A Simple Network

to classify a handwritten digit /2

Three-layer neural network

Input layer: 28 X 28 = 784 neurons

* Pixel is greyscale, so input value is
[1.0, 0.0] inclusive

input layer

Hidden layer: n number of neurons,
experiment with different numbers

Output layer: 10 neurons, #o to #9

* Predicted answer is neuron with
highest activation value

(784 neurons

output layer

9

MNIST data set

Learning with gradient descent

Named for a modified subset of two NIST (National Institute of Standards and
Technology) collected data sets.

Scanned handwriting samples from 250 people. Two parts. slolHl/]q][2

* 60,000 images to be used as training data A few images from MNIST
* 10,000 images to be used as test data

* Different set 250 people

MNIST data set

Learning with gradient descent /2

We use notation x
* to denote a training input (image)
Regard each x as a 28 X 28 = 784-dimension (column) vector

« Each component of the vector represents

* the grey value for a single pixel in the image

by

o

L,t'

/

q

2

A few images from MNIST

MNIST data set

Learning with gradient descent /3

We use y = y(x) denote the corresponding desired output, where y is a 10-dimension vector

E.g. If training image x depicts digit 7, theny = y(x) =

(0)

-

SO = O OO o 0o

7~
A\ -

by

o

L,t'

/

q

2

A few images from MNIST

is desired output

Cost function

Learning with gradient descent

What we'd like is a (neural network deep learning) algorithm which lets us find

* weights and bias for each neuron in hidden and output layers
« in order that the result from output layer L: a’ ~ y

* for every training input x in the training set
Define a cost function (or loss or objective function), say

L 2
.y = L 3 O =)

n

X

Our three-layer neural network

Cost function
/2

quadratic or mean squared error MSE cost function

. 1 ”y(X) - aL(-x7 w, b)”2
Cw,b) = ;zx: :

w denotes all weights in the network, b all the biases

n is total number of training inputs x

« alis a vector of output layer L neuron values, when input is x —

* So a' is also 10-dimensional, similar to desired y

ly — a”|| denotes usual length function for vector (y — a*)

» + 2 seems only for convenience, when differentiating numerator our three-layer neural network

Cost function
/3

L 2
oy = Ly b =

n

quadratic or mean squared error MSE cost function

X

Note: C(w, b) is non-negative

When: C(w, b) = 0, then a® =~ y for all training inputs x

* Found “good” values for each neuron’s weights and bias ...

84 neurons)

Training algorithm’s aim is to minimize cost C(w, b)

* as a function of the weights and bias of each neuron

Can use gradient descent if cost function is “smooth”

Our three-layer neural network

Minimizing cost function

Learning with gradient descent

Suppose we're trying to minimize a function C(v) of many variablesv = v, v,, ...
* C must be a real-valued (returns a scalar) function, but could be any function

« We've replaced w and b notations by v to represent any multiple variables, say v, v,

 Can try using calculus to find minimum analytically
* Nightmare if network has >> 10,000+ of w;, and b
* So imagine descending down slope of a “valley” shaped C

* Move small amounts Av, and Av, in those directions

Minimizing cost function

/2
Calculus tells us C changes as follows:
oC oC
AC ~ —Av;+—Av, Note: ACisa scalar
oV, oV,
- o
Define: gradientof C, vC = | ' |, av= [2
efine: gradient of C, = 1| y = Av,
dvz
AC~ VC - Ay

« OK toview VC as a (gradient) vector whose components

are the partial derivatives (or view V as differential operator)

Minimizing cost function

/4
o]
Avl avl
AC~VC-Av=Av-VC = :
Av, 9C
* To minimize C, want AC < 0
* Choose Av = — nVC where 5 (learning rate) is small, positive

AC~ —-—nVC-VC
= —7||VC||> both terms after minus sign > 0
<0

* So, fromv,,, = v, =V,,, —1VC tomove towards global C minimum

Gradient Descent

Another viewpoint of the rule

The rule is a way of taking small steps in the direction
which does the most to immediately decrease C

* We want to make a move Av so as to make AC most
negative, equivalent to minimizing AC ~ VC - Ay

* If we also constrain ||Av|| = ¢ forasmalle > 0

* Can be proved: Ay = — nVC where n = ¢/||VC||
—€ vC
Vv

= —¢c—

v IvC||
= — ¢ (unit vector in direction of V()

Ay

https:/math.stackexchange.com/questions/1688662/tricky-proof-of-a-result-of-michael-nielsens-book-neural-networks-and-deep-lea/1945507#1945507

Gradient Descent in a Neural Network

Learning with gradient descent

Use gradient descent to find/learn the weights w, and bias b for each neuron

* Which would tend to minimize the cost function C

* Choose Av = — nVC where 1 (learning rate) is small, positive
[9C | i e]
A —_) —
So here: Ay = [Wk] = —pVC=—-1p e | _ oW
Ab 9C _9C
| ob | i ob |

oC oC
Gradient descent update rule: w, - w,, ., =w,—n—— and b— b, =b—n—
’ aWk ob

Stochastic Gradient Descent

Learning with gradient descent

. oC oC
Gradient descent update rule: wy — w,,, , =w,—n— and b— b,,, =b—n—

aWk ob

1 —a"(x, w, b)|)?
Oneproblem:C(w,b):_Z”y(x) az(xw |

n
X

* The quadratic cost function C is an average over sum of all cost C, for each training input x

oC
. To compute the gradient VC, for example the —— component, we would also need to

ow
compute that —— separately for each training input x then average the sum over all x
Wi

* For large training data set, this can take long time, and learning occurs slowly

Stochastic Gradient Descent

Learning with gradient descent /2

stochastic gradient descent is used to speed up learning

o Idea is to estimate the gradient VC by computing each VCXj

for a sample of randomly chosen (stochastic) training inputs X;

then averaging over this sample to get an estimate of the true gradient VC

* Pick out a small(er) number m of randomly chosen training inputs X;, X, ...

referred to as a mini-batch.

Stochastic Gradient Descent

Learning with gradient descent /3

« Average value of the VCXj from the mini-batch will be

~ the average over all VC, provided the sample size m is large enough

Zj’il V(jXJ szCx

m n

= VC where X2, is over entire training data set

1 m
VC ~ — Z VCy where we estimate overall VC from the random mini-batch
m J
J=1

Stochastic Gradient Descent

Learning with gradient descent /4

Reminder:v — v, , =v —nVC

Stochastic gradient descent update rule

» Pick out a randomly chosen mini-batch of training inputs X; and train with those

oC oC
n X n X
w, > W =w, —— and b— b =b——§
k new,k k m j dwk new m j ob

where the sums are over all the training examples in current mini-batch

* Then pick out another random mini-batch, and train (do w; and b updates) with those
* Until we've exhausted the training data inputs, which completes an epoch of training

* At which point we start over with a new training epoch

Stochastic Gradient Descent

Learning with gradient descent /6

E.g. if we have a training set of size n = 60,000 as in MNIST and choose a mini-batch
size of (say) m = 10

* Get a factor of 6,000 speedup in estimating the gradient (in each update pass)

The estimate won't be perfect because of statistical fluctuations

But it doesn’t need to be perfect

All we care about is moving in a general direction that will help decrease cost C

In practice, stochastic gradient descent is a commonly used and powerful
technique for learning in neural networks

Sigmoid neuron

/2
Weighted input z
Let z = Z wi X, + b z1
k

T2 output

OrZEW‘x+b <==

xr3

w is weight vector, with components wy, w,, +-

Sigmoid neuron

X is input vector, with component x;, x,, -+

inner product w - x = z wX;, (In matrix form, dot product w! - x = 2 WX)
k k

Sigmoid neuron
/3

Output

* Given by an activation function)

* Itis afunctionof z or (W -x + b) z2 %Ompm

* For a sigmoid neuron, output activation function is z3

* sigmoid function: 6(z) or o(w - x + b) Sigmoid neuron

* Also called logistic function

outputa = o(w -x + b) <==

Implementing our network to classify digits

* Reminder: w

« We can write the output activation of third layer: a'=> = ¢ (wl=3 a=? + bl=3)

(

=
Wi

1=3
=3 _ Wiq

3

\

[=3

c W = weights[1];; is one of the weights of the j™ neuron in the third layer,

in particular, the weight for the output from the k”* neuron in the second layer

[=3rd layer

Wl?{?)

=3

=3
Wiok

=weights[1]

=3
Wi30

=3
Wi30

[=3

W1030_

[=2

/4

a 10 by 30 matrix

* As we'll see, it stores the weights associated with the neurons in the third layer

o
by

=3
b;

=3

\

/

Our three-layer neural network

Implementing our network to classify digits

/5
=3 _ G(Wl:3 a=? + bl:3)
- =3 . 1=3 =3] _lezz_ =3 \
Wit Wi ottt Wiz I by~
=3 . I1=3 =3 ay 1=3
T wiso ||| 4 |Y
* E * Our three-layer neural network
=3 . I=3 =3 =3
| Wior Wioxr 0t Wi030 | als? bio” |
e)

Denote: b'=> =biases [1] a10byi1matrix

. bjl:3 = biases|1] ;s the bias for the jth neuron in the third layer

2. How the backpropagation
algorithm works

Gradient Descent in a Neural Network

Learning with gradient descent

Use gradient descent to find/learn the weights w, and bias b for each neuron

* Which would tend to minimize the cost function C

* Choose Av = — nVC where 1 (learning rate) is small, positive
[9C | i e]
A —_) —
So here: Ay = [Wk] = —pVC=—-1p e | _ oW
Ab 9C _9C
| ob | i ob |

oC oC
Gradient descent update rule: w, - w,, ., =w,—n—— and b— b, =b—n—
’ aWk ob

Backpropagation Algorithm

How to compute gradient of the cost function

* Introduced in 70’s, came into own in famous 1986 Rumelhart, Hinton, & Williams paper

* Atits heart: gives expression for the partial derivatives of the cost function C,
oC, oC,

—— and — for one training example x
dwk

Or, with notation to specify the j™ neuron in the I" layer
oC. aC,

—— and — for one training example x

owl, dbjl

* Fast algorithm to compute those expressions

Backpropagation Algorithm Overview

Feedforward phase - using the activation function

Input : Layer 1 Layer 2 Output : Layer 3

I=1 1=2 =2 =2 I=1 1=2
a X layer 1 a Wit Wiz | |4 bi layer2 =3 =3 =3
=1 ~ |x | T | || e @7 = o[Wi wiz
a, 2 to layer?2 a, Wy© Wy, a, bz_ to layer3

Backpropagation Algorithm Overview

Feedforward phase - using the activation function

Input : Layer 2 Output : Layer 3

=1 =2 =2 . 1= =1 =2
a layer 1 ap Wit Wi2 ap by layer2 /=3 =3 =3
= _ =0 + _— [al—] =0 [wl_l WiH
al=1 to layer?2 al=2 wl=2 wl=2 alzl bl=2 to layer3
2 2 21 22 2 2

Backpropagation Algorithm Overview

Feedforward phase - using the activation function

Input : Layer 2 Output : Layer 3

=2 =2 =2 =1 =2 =2
= T° =2 . 1=2 I=1 T =2 [al] =0 [Wl Wiz] =2 T [1]
to layer?2 a, Wy© Wy, a, b2 to layer3 a,

Backpropagation Algorithm Overview

Feedforward phase - using the activation function

Input : Layer 1 Output : Layer 3

Backpropagation Algorithm Overview

Feedforward phase - using the activation function

Input : Layer 1 Output : Layer 3

al=! X 422
MR = 7) = a(w S [bf=3]]

to layer2 to layer3

Backpropagation Algorithm Overview

Feedforward phase - using the activation function

Input : Layer 1 Layer 2 Output :

I=1 =2 =2 . I=2 I=1 =2
a X1 layer 1 a Wit W12 a by layer2 /=3

=1 = |x = T° =2 =2 =1 T = s [al_] =0
a, 2 to layer?2 a, Wy© Wy, a, bz_ to layer3

Backpropagation Algorithm Overview

Feedforward phase - using the activation function

Input : Layer 1 Layer 2 Output :

=1 =2 =2 =2 =1 =2
X1 layer 1 a Wit W12 a + by layer2
= SN =0 —
[=1 X2 to layer?2 aé=2 wé=12 Wé=22 aéz 1 bé=2 to layer3

Backpropagation Algorithm Overview

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation

! .] C oC oC
Define the error 6; of neuronjinlayer/: 6; = — because can get —— and — fast
J J Z-l ow! [
J Jk J
L dC 1¢ L . . . L L 1¢ L
1. 07 =——0(z7) Ifusing quadratic cost function & = (a;" — ;) 0'(z")

a
J

2. 5]1 = ZWI£;-15]£+1 0/(Z]l) — ((Wl:l}l)Tél+l) O_/(Z]l)
k

oc_
3 obt

oC
4. —— = a]i_léjl

Backpropagation Algorithm Overview

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation

z N l C oC oC
Define the error 6; of neuronjinlayer/: 6; = — because can get —— and — fast
J i oyl ow! /
J Jk J
L aC 10 L . . . L 1¢ L
1. 5] =—0 (zj) If using quadratic cost function = (aj —y)o (zj)

a
J

2. 5]1 = ZWI£;-15]£+1 0/(Z]l) — ((Wl:l}l)Tél+l) O_/(Z]l)
k

oC _ 5l
3- 0_bjl = 0
oC
4. —— = a]i_léjl

Backpropagation Algorithm Overview

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation

z N l C oC oC
Define the error 6; of neuronjinlayer/: 6; = — because can get —— and — fast
J i oyl ow! /
J Jk J
L aC 10 L . . . L 1¢ L
1. 5] =—0 (zj) If using quadratic cost function = (aj —y)o (zj)

a
J

2. 5]1 = ZWI£;-15]£+1 0/(Z]l) — ((Wl:l}l)Tél+l) O_/(Z]l)
k

3.

Backpropagation Algorithm Overview

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation

l B e oC oC
Define the error 6; of neuronjinlayer/: 6; = — because can get —— and — fast
/ / 0ZJ5 0wjlk abj
L 9C L L_ i L
1. 5] =—0 (z) If using quadratic cost function 5 (a yj) 15} (zj)
2. Z l+151+1 /(Z]l) — ((Wl:l}l)Tél+l) O_/(Z]l)
oC 5
3 opt 7
J
oC
4. — = a]i_léjl

Backpropagation Algorithm Overview

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation

l B e oC oC
Define the error 6; of neuronjinlayer/: 6; = — because can get —— and — fast
/ / 0Zjl 0wjlk abj
L 9C L L_ i L
1. 5] =—0 (z) If using quadratic cost function 5 (a yj) 15} (zj)
2. Z l+151+1 /(Z]l) — ((Wl:l}l)Tél+l) O_/(Z]l)

4 fundamental eqns of backprop

Some insights

* Consider a,ﬁ‘l in BP4 when it is small
* The gradient term dC/0w also tends to be small
» Consider a’(sz) in BP1 or a’(zjl) in BP2 when 6'(z)) =~ 0
* which is when the o function is flat or saturated at
a(zj) ~ 0 or ~ 1 (low or high activation)

* 0C/0b and/or 0C/0ow also tend to be small

* A bias or a weight of a neuron will tend to learn
slowly if the neuron is near saturation

* Recap: the weight of a neuron tends to learn slowly

* if either its input neuron has low activation a,i_l

* or the neuron's output has saturated

Summary: the equations of backpropagation

b =V,C oo ()

8 = ((wHHT 1) @ o' (21)

ocC __ sl
o6, = 9]

oC _ _I1—-1¢l
(')u'JL X = ay, O.]'

(BP1)

(BP2)

(BP3)

(BP4)

5. Improving the way
neural networks learn

Overfitting

Models with large enough number of
(independent) parameters can describe
almost any data set of a given size

* Will work well for the existing data

* But will fail to generalize to new input it
hasn’t been exposed to before

Here’s graph of training cost, with our 30
hidden neuron network, with its (28x28 x
30) + 30 + (30x10) + 10 = 23,860 parameters;
but using just first 1,000 training images

* Seems decreasing cost, up to epoch 400

0.010

0.009 |-

0.008

0.007 |-

0.006

0.005f

0'00300 250 300 350 400

Cost on the training data

Epoch

Overfitting

/2
82.30 ‘ Accuracy (%) on the test data .
 But classification accuracy on the wERL [LW .
AN NV\) Iy VA, \i ‘J'l‘L \ W' u’\\‘f \[
test data set gradually slows down 2.20¢ N V"N'xf“\'m” 5(,“,; WA §
. . I\ v ‘ /
and pretty much stops improving 215 .
around epoch 280, at around 82% T N'\aﬁ R
/4. r!n JV L"
* What our network learns after G205 ‘lf U,\w
epoch 280 no longer generalizes to 2,001 fﬂw
.y . I
the test data; it’s not useful learning o195 }lf,g,'\f "‘!}f
' \‘J |
. . 81.9 - I i
* We say the network is overfitting or %00 250 £ = o

overtraining beyond epoch 280

Overfitting

/3
100 __ Accuracyl (%) on ‘the traiping datla
///-
* Another sign of overfitting may be 95/
. . N [
seen in the classification accuracy on ool
the training data f
. 851
* Accuracy rises to 100%; our network |
. « e 80
correctly classifies all 1000 training
images; but accuracy tops out 5
around 82% on test data ol
* Our network really is learning about o T S R N S B
0 50 100 150 200 250 300 350 400

Epoch

peculiarities of the training set, and
not about recognizing digits in general

Increase training data

To reduce Overfitting

* We were training with 1,000 training images

* Let’s use full training set of 50,000 for 30
epochs (here, comparing with test data, not
validation data, so result more comparable)

* The classification accuracy gap is still there
peaking at 97.86% - 95.33% = 2.53%, but is
much smaller than the ~18%; overfitting is
still going on but greatly reduced

* Increasing size of the training data is one of
best ways of reducing overfitting

* But can be expensive or difficult to acquire

* So not always a practical option

100

98|

96

94|

90

92_'v,,

— Accuracy on the test data
Accuracy on the training data

10 15 20 25
Epoch

30

L2 or Weight decay Regularization

Regularization techniques to reduce Overfitting

* Idea of L2 regularization or weight decay regularization is to add extra term to the cost
function, a term called the regularization term

Can write regularized cost function C = Cj, + E™ Z w? where C,, is original c.f.
n
w

» Second term is sum of the squares of all the weights in the network (but doesn’t
include the biases, will touch on why later)

 Scaled by factor A/2n

* A > 0is the regularization parameter; n is, as usual, size of our training set

L2 or Weight decay Regularization

Regularization techniques to reduce Overfitting /9

Some closing words on (L2) regularization

* It’s an empirical fact that regularized neural networks usually generalize better than unregularized
networks

* But we don't have an entirely satisfactory systematic understanding of what's going on, merely
incomplete heuristics and rules of thumb

A
Regularization term doesn’t include biases C = C, + E™ Z w?
n
w

* Empirically, regularizing biases often doesn’t change the results very much

* We don’t need to worry about large biases enabling our network to learn the noise in our training
data, because a large bias doesn’t make a neuron sensitive to its inputs as weights do

* Large biases make it easier for neurons to saturate, which is sometimes desirable

Dropout

Other regularization techniques to reduce Overfitting

* In dropout we modify the network itself
* Suppose we're trying to train a network with training inputs

* Forward propagate, backpropagate to do gradient descent, over mini-batches

* With dropout, first choose a random half of the hidden neurons to delete temporarily
Leave input and output neurons untouched

* Forward propagate and backpropagate through such a modified network

After a mini-batch of examples, update appropriate weights, biases

Restore dropout neurons; repeat process, deleting a new random subset

When we actually run the full network, twice as many hidden neurons are active

* To compensate, we halve the weights outgoing from the hidden neurons

Artificially expanding the training data

Other regularization techniques to reduce Overfitting

Suppose we take an MNIST training image of a “5” and rotate it -
* At the pixel level, it’s quite different to any image in MNIST S 5
Powerful and widely used idea to expand MNIST training data
* Rotating, Translating, Skewing
* “Elastic distortions” intended to emulate the random oscillations in hand muscles
* Increased accuracy up to 99.3%
General principle is to expand training data
* Apply operations to reflect real-world variation
* Speech: add background noise, speed up or slow down

Sometimes instead of adding noise, may be more efficient to clean up the input by first applying noise reduction

Running demo code

* Why using Docker container

* In order to avoid needing to give out separate
instructions on how to install Python and needed
packages to run the book's code on different
platforms/flavors (such as Mac, Windows, Linux), it
seemed easier to just give one set of instructions
on how to create a docker container and how to
run the demo code in it.

* Hopefully, Docker is sufficiently ubiquitous
nowadays so that installing and running docker on
different platforms should be well documented.

* Book’s code is in my forked GitHub repository

. . .
.

* Instructions are in the README

N QN R[Q 5B Q4O
[~ ey N = 6 | (] L

N6V el By e Sal No | NSNS

sl N [R W | W — =R

Ol [4]Bal [N5

NN N O o)) oN e)

/NN oy ol i Sy
WOINICHE 2| YN oy —

RN N SN Mo

MV [cal (e[L] 103~ o] X

Neural Networks and Deep Learning — A Practical Introduction

Live Webinar class: Saturday, October 16, 2021, 9:00 AM -12:30 PM EDT
Organizer: GBCACM Instructor: CL Kim

o Slmple (Python) Network to * Improving how neural networks learn
* Cross-entropy cost function

classify a handwritten digit

* Softmax activation function and log-

* Learning with Gradient Descent likelihood cestfunctipn

. . * Rectified Linear Unit
y Backpropagatlon algorlthm * Opverfitting and Regularization
e Improving neural networks " L2 rezabizatidy
* Dropout

 QOverfitting and Regularization Rl o dine dauset

