
IEEE Boston Computer Society and GBC/ACM Thursday, 15 July 2021 7:00 PM EDT

Intro to Practical Neural Networks
and Deep Learning (Part 1)

CL Kim

Neural Networks and Deep Learning

Reference book (online and free)
http://neuralnetworksanddeeplearning.com/

Personal: Please consider donating to author Michael Nielsen

Feedforward Neural Networks

1. Using neural nets to
recognize handwritten digits

Sigmoid neuron

An early artificial neuron model is a perceptron — skip in interest of time

Sigmoid neuron

• Has inputs where

• Has weights corresponding to the inputs

• Has one overall bias

• Notion of bias: measure of a threshold value needed to fire neuron

• As we’ll see, (so b is notionally a negative number)

x1, x2, ⋯ xk is [0,1] inclusive

w1, w2, ⋯

b

b ≡ −threshold

An artificial neuron

Sigmoid neuron

Sigmoid neuron

Weighted input z

Let

Or

 is weight vector, with components

 is input vector, with component

inner product (In matrix form, dot product)

z ≡ ∑
k

wkxk + b

z ≡ w ⋅ x + b

w w1, w2, ⋯

x x1, x2, ⋯

w ⋅ x ≡ ∑
k

wkxk wT ⋅ x ≡ ∑
k

wkxk

/2

Sigmoid neuron

Sigmoid neuron

Output

• Given by an activation function

• It is a function of or

• For a sigmoid neuron, output activation function is

• sigmoid function: or

• Also called logistic function

output

z (w ⋅ x + b)

σ(z) σ(w ⋅ x + b)

a = σ(w ⋅ x + b)

/3

Sigmoid neuron

Sigmoid neuron

Sigmoid function

• What is shape of ?
if is large positive: and
if is large negative: and

• It is a “smoothed out” step function (~ perceptron output)

• To have argument , we must have or

σ(z) ≡
1

1 + e−z
=

1
1 + exp(− ∑k wkxk − b)

σ(z)
z = w ⋅ x + b e−z ≈ 0 σ(z) ≈ 1
z = w ⋅ x + b e−z → ∞ σ(z) ≈ 0

z > 0 w ⋅ x > − b w ⋅ x > threshold

/4

output

z

Sigmoid neuron

Sigmoid function

Continuity (no “jump” in value) of matters

• No big change from small changes and

σ(z) ≡
1

1 + e−z
=

1
1 + exp(− ∑k wkxk − b)

σ

Δoutput Δwk Δb

/5

output

z

Architecture of Neural Networks

• input layer : leftmost layer, informally: input neurons

• output layer : rightmost layer, has output neurons

• hidden layer : middle layer, here 2 hidden layers

• E.g. Is handwritten image the digit “9” or not?

• Image is 28 28 pixels, so 784 input neurons

• Each input neuron intensity scaled to [0, 1]

• 1 output neuron; say, if value > 0.5 -> image is “9”

• (Confusingly, sometimes called multilayer perceptrons)

×

Feedforward Neural Networks

• The output from one layer is used as input to the next layer

• No loops back, information always fed forward, never fed back

• Other models: feedback loops are possible

• Recurrent neural networks

• Idea is to have neurons which fire for some limited duration of time only

• That firing can stimulate other neurons to fire a while later (limited duration)

• Good for processing sequence data for predictions, e.g. Speech recognition

• Much more complex, not covering here

A Simple Network
to classify a handwritten digit

• Some ‘housekeeping’ clarification

• Each neuron has single output

• Multiple arrows merely to indicate
that output is used as input to
several others; here, to all neurons
in following layer (fully connected)

• Input neurons in input layer not really
neurons with output but no input

• Just a conventional shorthand to
represent the input values x1, x2, ⋯

A Simple Network
to classify a handwritten digit /2

• Three-layer neural network

• Input layer: 28 28 = 784 neurons

• Pixel is greyscale, so input value is
[1.0, 0.0] inclusive

• Hidden layer: n number of neurons,
experiment with different numbers

• Output layer: 10 neurons, #0 to #9

• Predicted answer is neuron with
highest activation value

×

MNIST data set

Named for a modified subset of two NIST (National Institute of Standards and
Technology) collected data sets.

Scanned handwriting samples from 250 people. Two parts.

• 60,000 images to be used as training data

• 10,000 images to be used as test data

• Different set 250 people

Learning with gradient descent

A few images from MNIST

MNIST data set

We use notation

• to denote a training input (image)

Regard each as a -dimension (column) vector

• Each component of the vector represents

• the grey value for a single pixel in the image

x

x 28 × 28 = 784

Learning with gradient descent /2

A few images from MNIST

MNIST data set

We use denote the corresponding desired output, where is a 10-dimension vector

E.g. If training image depicts digit 7, then is desired output

y = y(x) y

x y = y(x) =

0
0
0
0
0
0
0
1
0
0

Learning with gradient descent /3

A few images from MNIST

Cost function

What we’d like is a (neural network deep learning) algorithm which lets us find

• weights and bias for each neuron in hidden and output layers

• in order that the result from output layer :

• for every training input in the training set

Define a cost function (or loss or objective function), say

L aL ≈ y

x

C(w, b) =
1
n ∑

x

∥y(x) − aL(x, w, b)∥2

2

Learning with gradient descent

Our three-layer neural network

Cost function

 quadratic or mean squared error MSE cost function

• denotes all weights in the network, all the biases

• is total number of training inputs

• is a vector of output layer neuron values, when input is

• So is also 10-dimensional, similar to desired

• denotes usual length function for vector

• seems only for convenience, when differentiating numerator

C(w, b) =
1
n ∑

x

∥y(x) − aL(x, w, b)∥2

2

w b

n x

aL L x

aL y

∥y − aL∥ (y − aL)

÷ 2

/2

Our three-layer neural network

Cost function

 quadratic or mean squared error MSE cost function

• Note: is non-negative

• When: , then for all training inputs

• Found “good” values for each neuron’s weights and bias

• Training algorithm’s aim is to minimize cost

• as a function of the weights and bias of each neuron

• Can use gradient descent if cost function is “smooth”

C(w, b) =
1
n ∑

x

∥y(x) − aL(x, w, b)∥2

2

C(w, b)

C(w, b) ≈ 0 aL ≈ y x

C(w, b)

/3

Our three-layer neural network

Minimizing cost function

Suppose we’re trying to minimize a function of many variables

• must be a real-valued (returns a scalar) function, but could be any function

• We’ve replaced and notations by to represent any multiple variables, say ,

• Can try using calculus to find minimum analytically

• Nightmare if network has >> 10,000+ of and

• So imagine descending down slope of a “valley” shaped

• Move small amounts and in those directions

C(v) v = v1, v2, …

C

w b v v1 v2

wk b

C

Δv1 Δv2

Learning with gradient descent

C(v1, v2)

Minimizing cost function

Calculus tells us changes as follows:

 Note: is a scalar

Define: gradient of , ,

• OK to view as a (gradient) vector whose components
are the partial derivatives (or view as differential operator)

C

ΔC ≈
∂C
∂v1

Δv1 +
∂C
∂v2

Δv2 ΔC

C ∇C ≡
∂C
∂v1

∂C
∂v2

Δv ≡ [Δv1
Δv2]

ΔC ≈ ∇C ⋅ Δv

∇C
∇

/2

C(v1, v2)

Minimizing cost function

• To minimize , want

• Choose where (learning rate) is small, positive

 both terms after minus sign

• So, from to move towards global minimum

ΔC ≈ ∇C ⋅ Δv = Δv ⋅ ∇C = [Δv1
Δv2] ⋅

∂C
∂v1

∂C
∂v2

C ΔC < 0

Δv = − η∇C η

ΔC ≈ − η∇C ⋅ ∇C
= − η ∥∇C∥2

≤ 0
≥ 0

vnow → vnew = vnow − η∇C C

/4

C(v1, v2)

Gradient Descent
Another viewpoint of the rule

The rule is a way of taking small steps in the direction
which does the most to immediately decrease

• We want to make a move so as to make most
negative, equivalent to minimizing

• If we also constrain for a small

• Can be proved: where

C

Δv ΔC
ΔC ≈ ∇C ⋅ Δv

∥Δv∥ = ϵ ϵ > 0

Δv = − η∇C η = ϵ/∥∇C∥

Δv =
−ϵ

∥∇C∥
∇C = − ϵ

∇C
∥∇C∥

= − ϵ (unit vector in direction of ∇C)
https://math.stackexchange.com/questions/1688662/tricky-proof-of-a-result-of-michael-nielsens-book-neural-networks-and-deep-lea/1945507#1945507

Gradient Descent in a Neural Network

Use gradient descent to find/learn the weights and bias for each neuron

• Which would tend to minimize the cost function

• Choose where (learning rate) is small, positive

So here:

Gradient descent update rule: and

wk b

C

Δv = − η∇C η

Δv ≡ [Δwk

Δb] = −η∇C ≡ − η
∂C
∂wk

∂C
∂b

=
−η ∂C

∂wk

−η ∂C
∂b

wk → wnew,k = wk − η
∂C
∂wk

b → bnew = b − η
∂C
∂b

Learning with gradient descent

Stochastic Gradient Descent

Gradient descent update rule: and

One problem:

• The quadratic cost function is an average over sum of all cost for each training input x

• To compute the gradient , for example the component, we would also need to

compute that separately for each training input x then average the sum over all x

• For large training data set, this can take long time, and learning occurs slowly

wk → wnew,k = wk − η
∂C
∂wk

b → bnew = b − η
∂C
∂b

C(w, b) =
1
n ∑

x

∥y(x) − aL(x, w, b)∥2

2

C Cx

∇C
∂C
∂wk∂Cx

∂wk

Learning with gradient descent

Stochastic Gradient Descent

stochastic gradient descent is used to speed up learning

• Idea is to estimate the gradient by computing each

for a sample of randomly chosen (stochastic) training inputs
then averaging over this sample to get an estimate of the true gradient

• Pick out a small(er) number of randomly chosen training inputs
referred to as a mini-batch.

∇C ∇CXj

Xj

∇C

m X1, X2, …, Xm

Learning with gradient descent /2

Stochastic Gradient Descent

• Average value of the from the mini-batch will be

 the average over all provided the sample size is large enough

 where is over entire training data set

 where we estimate overall from the random mini-batch

∇CXj

≈ ∇Cx m

∑m
j=1 ∇CXj

m
≈

∑x ∇Cx

n
= ∇C Σx

∇C ≈
1
m

m

∑
j=1

∇CXj
∇C

Learning with gradient descent /3

Stochastic Gradient Descent

Reminder:

Stochastic gradient descent update rule

• Pick out a randomly chosen mini-batch of training inputs and train with those

 and

where the sums are over all the training examples in current mini-batch

• Then pick out another random mini-batch, and train (do and updates) with those

• Until we've exhausted the training data inputs, which completes an epoch of training

• At which point we start over with a new training epoch

v → vnew = v − η∇C

Xj

wk → wnew,k = wk −
η
m ∑

j

∂CXj

∂wk
b → bnew = b −

η
m ∑

j

∂CXj

∂b

wk b

Learning with gradient descent /4

Stochastic Gradient Descent

E.g. if we have a training set of size as in MNIST and choose a mini-batch
size of (say)

• Get a factor of 6,000 speedup in estimating the gradient (in each update pass)

• The estimate won’t be perfect because of statistical fluctuations

• But it doesn’t need to be perfect

• All we care about is moving in a general direction that will help decrease cost

• In practice, stochastic gradient descent is a commonly used and powerful
technique for learning in neural networks

n = 60,000
m = 10

C

Learning with gradient descent /6

Sigmoid neuron

Weighted input z

Let

Or <==

 is weight vector, with components

 is input vector, with component

inner product (In matrix form, dot product)

z ≡ ∑
k

wkxk + b

z ≡ w ⋅ x + b

w w1, w2, ⋯

x x1, x2, ⋯

w ⋅ x ≡ ∑
k

wkxk wT ⋅ x ≡ ∑
k

wkxk

/2

Sigmoid neuron

Sigmoid neuron

Output

• Given by an activation function

• It is a function of or

• For a sigmoid neuron, output activation function is

• sigmoid function: or

• Also called logistic function

output <==

z (w ⋅ x + b)

σ(z) σ(w ⋅ x + b)

a = σ(w ⋅ x + b)

/3

Sigmoid neuron

Implementing our network to classify digits

• Reminder: = weights[1] a 10 by 30 matrix

• As we’ll see, it stores the weights associated with the neurons in the third layer

• We can write the output activation of third layer:

• is one of the weights of the neuron in the third layer,
in particular, the weight for the output from the neuron in the second layer

wl=3rd layer

al=3 = σ (wl=3 al=2 + bl=3)

al=3 = σ

wl=3
1 1 wl=3

1 k ⋯ ⋯ wl=3
1 30

wl=3
j 1 wl=3

j k ⋯ ⋯ wl=3
j 30

⋮
wl=3

10 1 wl=3
10 k ⋯ ⋯ wl=3

10 30

al=2
1

al=2
k
⋮
⋮

al=2
30

+

bl=3
1

bl=3
j

⋮
bl=3

10

wl=3
j k = weights[1]j k jth

kth

/4

Our three-layer neural network

Implementing our network to classify digits

• Denote: = biases[1] a 10 by 1 matrix

• is the bias for the neuron in the third layer

al=3 = σ (wl=3 al=2 + bl=3)

= σ

wl=3
1 1 wl=3

1 k ⋯ ⋯ wl=3
1 30

wl=3
j 1 wl=3

j k ⋯ ⋯ wl=3
j 30

⋮
wl=3

10 1 wl=3
10 k ⋯ ⋯ wl=3

10 30

al=2
1

al=2
k
⋮
⋮

al=2
30

+

bl=3
1

bl=3
j

⋮
bl=3

10

bl=3

bl=3
j = biases[1]j jth

/5

Our three-layer neural network

2. How the backpropagation
algorithm works

Gradient Descent in a Neural Network

Use gradient descent to find/learn the weights and bias for each neuron

• Which would tend to minimize the cost function

• Choose where (learning rate) is small, positive

So here:

Gradient descent update rule: and

wk b

C

Δv = − η∇C η

Δv ≡ [Δwk

Δb] = −η∇C ≡ − η
∂C
∂wk

∂C
∂b

=
−η ∂C

∂wk

−η ∂C
∂b

wk → wnew,k = wk − η
∂C
∂wk

b → bnew = b − η
∂C
∂b

Learning with gradient descent

Backpropagation Algorithm

• Introduced in 70’s, came into own in famous 1986 Rumelhart, Hinton, & Williams paper

• At its heart: gives expression for the partial derivatives of the cost function

 and for one training example x

Or, with notation to specify the neuron in the layer

 and for one training example x

• Fast algorithm to compute those expressions

Cx
∂Cx

∂wk

∂Cx

∂b

jth lth

∂Cx

∂wl
jk

∂Cx

∂bl
j

How to compute gradient of the cost function

Backpropagation Algorithm Overview

[al=1
1

al=1
2] = [x1

x2] layer 1

to layer 2 [al=2
1

al=2
2] = σ [wl=2

1 1 wl=2
1 2

wl=2
2 1 wl=2

2 2] [al=1
1

al=1
2] + [bl=2

1

bl=2
2] layer 2

to layer 3
[al=3

1] = σ [wl=3
1 1 wl=3

1 2] [al=2
1

al=2
2] + [bl=3

1]

Feedforward phase - using the activation function

Layer 2Input : Layer 1 Output : Layer 3

Backpropagation Algorithm Overview

[al=1
1

al=1
2] = [x1

x2] layer 1

to layer 2 [al=2
1

al=2
2] = σ [wl=2

1 1 wl=2
1 2

wl=2
2 1 wl=2

2 2] [al=1
1

al=1
2] + [bl=2

1

bl=2
2] layer 2

to layer 3
[al=3

1] = σ [wl=3
1 1 wl=3

1 2] [al=2
1

al=2
2] + [bl=3

1]

Feedforward phase - using the activation function

Layer 2Input : Layer 1 Output : Layer 3

x

Backpropagation Algorithm Overview

[al=1
1

al=1
2] = [x1

x2] layer 1

to layer 2 [al=2
1

al=2
2] = σ [wl=2

1 1 wl=2
1 2

wl=2
2 1 wl=2

2 2] [al=1
1

al=1
2] + [bl=2

1

bl=2
2] layer 2

to layer 3
[al=3

1] = σ [wl=3
1 1 wl=3

1 2] [al=2
1

al=2
2] + [bl=3

1]

Feedforward phase - using the activation function

Layer 2Input : Layer 1 Output : Layer 3

a

Backpropagation Algorithm Overview

[al=1
1

al=1
2] = [x1

x2] layer 1

to layer 2 [al=2
1

al=2
2] = σ [wl=2

1 1 wl=2
1 2

wl=2
2 1 wl=2

2 2] [al=1
1

al=1
2] + [bl=2

1

bl=2
2] layer 2

to layer 3
[al=3

1] = σ [wl=3
1 1 wl=3

1 2] [al=2
1

al=2
2] + [bl=3

1]

Feedforward phase - using the activation function

Layer 2Input : Layer 1 Output : Layer 3

z

Backpropagation Algorithm Overview

[al=1
1

al=1
2] = [x1

x2] layer 1

to layer 2 [al=2
1

al=2
2] = σ [wl=2

1 1 wl=2
1 2

wl=2
2 1 wl=2

2 2] [al=1
1

al=1
2] + [bl=2

1

bl=2
2] layer 2

to layer 3
[al=3

1] = σ [wl=3
1 1 wl=3

1 2] [al=2
1

al=2
2] + [bl=3

1]

Feedforward phase - using the activation function

Layer 2Input : Layer 1 Output : Layer 3

a

Backpropagation Algorithm Overview

[al=1
1

al=1
2] = [x1

x2] layer 1

to layer 2 [al=2
1

al=2
2] = σ [wl=2

1 1 wl=2
1 2

wl=2
2 1 wl=2

2 2] [al=1
1

al=1
2] + [bl=2

1

bl=2
2] layer 2

to layer 3
[al=3

1] = σ [wl=3
1 1 wl=3

1 2] [al=2
1

al=2
2] + [bl=3

1]

Feedforward phase - using the activation function

Layer 2Input : Layer 1 Output : Layer 3

z

Backpropagation Algorithm Overview

[al=1
1

al=1
2] = [x1

x2] layer 1

to layer 2 [al=2
1

al=2
2] = σ [wl=2

1 1 wl=2
1 2

wl=2
2 1 wl=2

2 2] [al=1
1

al=1
2] + [bl=2

1

bl=2
2] layer 2

to layer 3
[al=3

1] = σ [wl=3
1 1 wl=3

1 2] [al=2
1

al=2
2] + [bl=3

1]

Feedforward phase - using the activation function

Layer 2Input : Layer 1 Output : Layer 3

a

Backpropagation Algorithm Overview

Define the error of neuron in layer : because can get and fast

1. If using quadratic cost function

2.

3.

4.

δl
j j l δl

j ≡
∂C
∂zl

j

∂C
∂wl

jk

∂C
∂bl

j

δL
j =

∂C
∂aL

j
σ′ (zL

j) δL
j = (aL

j − yj) σ′ (zL
j)

δl
j = ∑

k

wl+1
kj δl+1

k σ′ (zl
j) = ((Wl+1

: , j)Tδl+1) σ′ (zl
j)

∂C
∂bl

j
= δl

j

∂C
∂wl

jk
= al−1

k δl
j

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation

Backpropagation Algorithm Overview

Define the error of neuron in layer : because can get and fast

1. If using quadratic cost function <== e.g. L = 3

2.

3.

4.

δl
j j l δl

j ≡
∂C
∂zl

j

∂C
∂wl

jk

∂C
∂bl

j

δL
j =

∂C
∂aL

j
σ′ (zL

j) δL
j = (aL

j − yj) σ′ (zL
j)

δl
j = ∑

k

wl+1
kj δl+1

k σ′ (zl
j) = ((Wl+1

: , j)Tδl+1) σ′ (zl
j)

∂C
∂bl

j
= δl

j

∂C
∂wl

jk
= al−1

k δl
j

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation

Backpropagation Algorithm Overview

Define the error of neuron in layer : because can get and fast

1. If using quadratic cost function

2.

3. <== l = 3

4. <== l = 3

δl
j j l δl

j ≡
∂C
∂zl

j

∂C
∂wl

jk

∂C
∂bl

j

δL
j =

∂C
∂aL

j
σ′ (zL

j) δL
j = (aL

j − yj) σ′ (zL
j)

δl
j = ∑

k

wl+1
kj δl+1

k σ′ (zl
j) = ((Wl+1

: , j)Tδl+1) σ′ (zl
j)

∂C
∂bl

j
= δl

j

∂C
∂wl

jk
= al−1

k δl
j

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation

Backpropagation Algorithm Overview

Define the error of neuron in layer : because can get and fast

1. If using quadratic cost function

2. <== l = 2

3.

4.

δl
j j l δl

j ≡
∂C
∂zl

j

∂C
∂wl

jk

∂C
∂bl

j

δL
j =

∂C
∂aL

j
σ′ (zL

j) δL
j = (aL

j − yj) σ′ (zL
j)

δl
j = ∑

k

wl+1
kj δl+1

k σ′ (zl
j) = ((Wl+1

: , j)Tδl+1) σ′ (zl
j)

∂C
∂bl

j
= δl

j

∂C
∂wl

jk
= al−1

k δl
j

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation

Backpropagation Algorithm Overview

Define the error of neuron in layer : because can get and fast

1. If using quadratic cost function

2.

3. <== l = 2

4. <== l = 2

δl
j j l δl

j ≡
∂C
∂zl

j

∂C
∂wl

jk

∂C
∂bl

j

δL
j =

∂C
∂aL

j
σ′ (zL

j) δL
j = (aL

j − yj) σ′ (zL
j)

δl
j = ∑

k

wl+1
kj δl+1

k σ′ (zl
j) = ((Wl+1

: , j)Tδl+1) σ′ (zl
j)

∂C
∂bl

j
= δl

j

∂C
∂wl

jk
= al−1

k δl
j

Backpropagate the Error phase - using 4 fundamental eqns of backpropagation

4 fundamental eqns of backprop

Some insights

• Consider in BP4 when it is small

• The gradient term also tends to be small

• Consider in BP1 or in BP2 when

• which is when the function is flat or saturated at
 (low or high activation)

• and/or also tend to be small

• A bias or a weight of a neuron will tend to learn
slowly if the neuron is near saturation

• Recap: the weight of a neuron tends to learn slowly

• if either its input neuron has low activation

• or the neuron's output has saturated

al−1
k

∂C/∂w

σ′ (zL
j) σ′ (zl

j) σ′ (zj) ≈ 0

σ
σ(zj) ≈ 0 or ≈ 1

∂C/∂b ∂C/∂w

al−1
k

3. Improving the way
neural networks learn

Overfitting

• Models with large enough number of
(independent) parameters can describe
almost any data set of a given size

• Will work well for the existing data

• But will fail to generalize to new input it
hasn’t been exposed to before

• Here’s graph of training cost, with our 30
hidden neuron network, with its (28x28 x
30) + 30 + (30x10) + 10 = 23,860 parameters;
but using just first 1,000 training images

• Seems decreasing cost, up to epoch 400

Overfitting
/2

• But classification accuracy on the
test data set gradually slows down
and pretty much stops improving
around epoch 280, at around 82%

• What our network learns after
epoch 280 no longer generalizes to
the test data; it’s not useful learning

• We say the network is overfitting or
overtraining beyond epoch 280

Overfitting
/3

• Another sign of overfitting may be
seen in the classification accuracy on
the training data

• Accuracy rises to 100%; our network
correctly classifies all 1000 training
images; but accuracy tops out
around 82% on test data

• Our network really is learning about
peculiarities of the training set, and
not about recognizing digits in general

Increase training data
To reduce Overfitting

• We were training with 1,000 training images

• Let’s use full training set of 50,000 for 30
epochs (here, comparing with test data, not
validation data, so result more comparable)

• The classification accuracy gap is still there
peaking at 97.86% - 95.33% = 2.53%, but is
much smaller than the ~18%; overfitting is
still going on but greatly reduced

• Increasing size of the training data is one of
best ways of reducing overfitting

• But can be expensive or difficult to acquire

• So not always a practical option

L2 or Weight decay Regularization

• Idea of L2 regularization or weight decay regularization is to add extra term to the cost
function, a term called the regularization term

Can write regularized cost function where is original c.f.

• Second term is sum of the squares of all the weights in the network (but doesn’t
include the biases, will touch on why later)

• Scaled by factor

• is the regularization parameter; is, as usual, size of our training set

C = CO +
λ

2n ∑
w

w2 CO

λ/2n

λ > 0 n

Regularization techniques to reduce Overfitting

L2 or Weight decay Regularization

Some closing words on (L2) regularization

• It’s an empirical fact that regularized neural networks usually generalize better than unregularized
networks

• But we don't have an entirely satisfactory systematic understanding of what's going on, merely
incomplete heuristics and rules of thumb

Regularization term doesn’t include biases

• Empirically, regularizing biases often doesn’t change the results very much

• We don’t need to worry about large biases enabling our network to learn the noise in our training
data, because a large bias doesn’t make a neuron sensitive to its inputs as weights do

• Large biases make it easier for neurons to saturate, which is sometimes desirable

C = C0 +
λ

2n ∑
w

w2

Regularization techniques to reduce Overfitting /9

Dropout

• In dropout we modify the network itself

• Suppose we’re trying to train a network with training inputs

• Forward propagate, backpropagate to do gradient descent, over mini-batches

• With dropout, first choose a random half of the hidden neurons to delete temporarily
Leave input and output neurons untouched

• Forward propagate and backpropagate through such a modified network

• After a mini-batch of examples, update appropriate weights, biases

• Restore dropout neurons; repeat process, deleting a new random subset

• When we actually run the full network, twice as many hidden neurons are active

• To compensate, we halve the weights outgoing from the hidden neurons

Other regularization techniques to reduce Overfitting

Artificially expanding the training data

• Suppose we take an MNIST training image of a “5” and rotate it

• At the pixel level, it’s quite different to any image in MNIST

• Powerful and widely used idea to expand MNIST training data

• Rotating, Translating, Skewing

• “Elastic distortions” intended to emulate the random oscillations in hand muscles

• Increased accuracy up to 99.3%

• General principle is to expand training data

• Apply operations to reflect real-world variation

• Speech: add background noise, speed up or slow down

• Sometimes instead of adding noise, may be more efficient to clean up the input by first applying noise reduction

Other regularization techniques to reduce Overfitting

Running demo code

• Why using Docker container
• In order to avoid needing to give out separate

instructions on how to install Python and needed
packages to run the book's code on different
platforms/flavors (such as Mac, Windows, Linux), it
seemed easier to just give one set of instructions
on how to create a docker container and how to
run the demo code in it.

• Hopefully, Docker is sufficiently ubiquitous
nowadays so that installing and running docker on
different platforms should be well documented.

• Book’s code is in my forked GitHub repository

https://github.com/clkim/DeepLearningPython35
• Instructions are in the README

Neural Networks and Deep Learning — A Practical Introduction

• Simple (Python) Network to
classify a handwritten digit

• Learning with Gradient Descent

• Backpropagation algorithm

• Improving neural networks

• Overfitting and Regularization

Live Webinar class: Saturday, October 16, 2021, 9:00 AM - 12:30 PM EDT
Organizer: GBCACM Instructor: CL Kim

• Improving how neural networks learn

• Cross-entropy cost function

• Softmax activation function and log-
likelihood cost function

• Rectified Linear Unit

• Overfitting and Regularization

• L2 regularization

• Dropout

• Artificially expanding data set

