Counterfeit Analysis - Detection & Quality Control
Non-Conformance Issues Prevention - Hardware & Data Destruction, Assured Domestic Electronics Recycling

Aaron DerMarderosian Jr.
Principal Electrical Engineer
Raytheon Company

Morgan Deptola
Quality Control & Inventory Manager
TCG Components

IEEE Joint Section Reliability Chapter monthly meeting
[Boston – New Hampshire – Providence]

February 12th, 2014 18:00
Outline - Supply Chain Issues & Case Studies

- Background & History Regarding Counterfeit
- Industry Issues & Awareness
- Existing Standards - Overview
- Issues - Detection, Analysis & Interpretation
- Supply Chain & Raytheon Case Examples
- Example Report - Suspect Counterfeit
- Conclusions & Recommendations - Standards, Training, Reporting
1. **Prior domestic counterfeit issues:** *(Incidence rate in-frequent)*
 Crude re-marks, lot reject scavenging, marked mechanical samples

2. **Current Global counterfeits:** *(Above plus re-claimed scrap & clones)*
 Sophisticated refurbish & remarking techniques. Increase in incident / detection rate
 Matriculation throughout the supply chain Effects: Brokers, ID’s, OEM’s, AD’s Even OCMs!

3. **U.S. Counterfeit Ring Investigation:** IC counterfeits, MVP Micro & VisionTech highlighted how serious this issue is
 2003: Reported to DOJ by an OCM, ICE investigation initiated
 04-12: Investigation ; Warrants ; Indictments ; Convictions ; Sentencing, 8 yr. timeframe
 10s to 100s of thousands counterfeit ICs sold prior & during the investigation!

4. **SASC Hearings Nov. 2011:** Levin-McCain listen to witness testimony
 Representation: MDA, GAO, SIA, Independent Distributors & OEMs

5. **NDAA 2011 - 2013:** Counterfeit laws passed, 2014 edits & DFARS *pending*
Industry Issues & Awareness

6. Domestic Transition to EU RoHS & WEEE: Implemented mid-2006
 Non-uniform OCM adoption - Part marking & numbering conventions not standardized
 Added complexity & confusion to the supply chain - Particularly 05-07 timeframe
 Reclamation requirements - Provided an endless supply of high value legacy components!

7. Conferences & Workshops: Counterfeit theme raises industry awareness
 Components for Military & Space Electronics: CMSE (CTI)
 U. Maryland Joint with SMTA: Calce Counterfeit Symposium (East & West)
 ERAI Executive Conference: Theme dedicated to counterfeits (ERAI)
 U. Conn ARO / CHASE Workshop on Counterfeits
 Counterfeit Component Awareness Workshop, CCAW (CTI)
 MDA Workshops- Counterfeit Materiel Training (Supports PMAP)
 Diminishing Manufacturing Sources & Material Shortages Conference (WG, supports DoD)

8. Industry Standards Generation:
 SAE, IDEA & iNEMI, also TechAmerica, ECA, IEC & GIFAS
 Standards released or pending. Several require updates & CB criteria!

9. Industry, DoD & Government awareness: Dramatic increase since 2011
 Highlights analysis, interpretation disparities & knowledge gaps within the electronics industry

Laws & Requirements **precede** standards adoption & awareness
Counterfeit Products Risk Mitigation and Prevention: **Raytheon**

243-RP: Corp. Policy includes procurement, controls, supplier requirements, based on **AS 5553A** (7.24.12)

SP-345: IDS procedure, References RTN policy & **IDEA-STD-1010**, articulates BU needs (12.15.11)

IDEA: “Acceptability of Electronic Components Distributed in the Open Market”
 - **IDEA-STD-1010B** Released April 2011- *Independent Distributors of Electronics Association*
 - Visual & surface inspection of electronic components traded in the open market

IDEA: **IDEA-1005-D** “IDEA Inspection process guideline checklist”
 - *Decommissioned* updated checklist, chapter 16 (p. 244-245) **IDEA-STD-1010B**
 - Best practice Industry process sheet & visual inspection guide, provides a generic framework
 - Comprehensive, assumes users are trained in inspection techniques, procedures & knows how to tailor to applicable work instructions

SAE: “Counterfeit Electronic Parts; Avoidance, Detection, Mitigation, and Disposition”
 - **AS 5553A** Released Jan 2013- *SAE International* (Society of Automotive & Aerospace Engineering)
 - Policies / requirements flow down, to sub-tier organizations that procure electronic parts
 - Utilized by Aerospace / Defense OEM Integrators, Contains RTN policy elements

OEMs & Supply Chain: Authorized, Franchised, Independent Distribution
Standards & Programs - Counterfeit Components & Materials

SAE: “Counterfeit Electronic Parts: Avoidance, Detection, Mitigation & Disposition”

AS 6081: Released November 2012 - Mandatory practices for Independent Distributors, Implementation in process

AS 6171: Initial draft pending - Testing & Analysis Methods, applies to Failure Analysis Labs. in review

AS 6174: Released May 2012 - Parts and Materials Initial draft, released

Component Technology Institute: “Counterfeit Component Avoidance Program”

CTI-CCAP-101 Established in 2008, now in Revision D

- Mandatory practices for Independent Distributors
- Detection / avoidance of acquisition & delivery of counterfeit electronic components

Inspection Certifications & Training:

IDEA-ICE-3000 - Inspector Certification Pre-requisites, IDEA training & Inspection experience

Counterfeit Component Avoidance Workshop (CTI) - 2 day hands on event hosted in a FA lab

NASA JPL - Beginner to advanced workshops, offered at Industry conferences

IDEA-STD-1010B - Offered through IDEA / IPC certified training centers (IE: EpTac)

MDA Workshops - Counterfeit materiel training, provided to DoD suppliers

Implementation, CB criteria & compliance within industry will TAKE TIME!
Inspection Guidelines-
IDEA-STD-1010B {Ch. 16} Used by permission from IDEA www.idofea.org

[Formerly IDEA-1005-D] Assumes user knows how to implement
Issues - Detection, Analysis & Interpretation

- Industry awareness of counterfeits subject components to heightened scrutiny
- Standards provide requirements, procedures, analysis techniques & \textit{generalized} examples of compliant & suspect devices
- Analysis / Inspection data interpretation guidance & how to perform investigation, is \textbf{NOT} provided!
- Training & certification for counterfeit inspection not required
- Counterfeit inspection techniques are NEW for many in the industry
- OCM quality non-conformances, misinterpreted as “suspect” counterfeit issues
- Packaging & component construction knowledge, REQUIRED to interpret results
- Analysis & data requirements in “Industry” consortia databases, are \textbf{NOT} well established. Many entries lack documentation / evidence to indict parts
- Parts categorized as “suspect” require analytical tests to determine if it is counterfeit, cost \textit{prohibitive} to most organizations

\textbf{Follow on examples Illustrate some of these issues}
Supply Chain Case Studies
Counterfeit Test Detection & Interpretation Issues
Supply Chain Case Example 1 - High volume flash memory; Training Issue

• Parts contained in OCM packaging. Labeling, Component finish / quality consistent with OCM

• Visual Inspection & surface tests executed per 1010B: for Authenticity (06 week 42)
 1. Barcode readout, verify component info.
 2. Inspect mold cavities
 3. Dimensions per datasheet
 4. Verify OCM markings, P1 location
 5. Top / Bottom surface Match
 6. Marking Permanency
 7. Surface Test (Blacktopping)
 8. No reported ERAI Instances
 9. Date code verified with supplemental EOL information

• Customer noted mold mark opposite Pin1 was textured, claimed part was re-surfaced, **lot rejected**

• Surface test in-correctly executed, results misinterpreted

• P1 mark is always smooth, alternate mold marks can be textured!

• Enhanced optical / textured images
 Revealed acetone and excess Burnishing smoothed part surface

• **Enhanced digital imaging highlights black top evidence. NONE present**

Training, test execution & Interpretation leads to false Indictments!
Supply Chain Case Example 2 - High volume flash memory; Database Issue, RoHS Interpretation

- OCM packaging & consistent component finish, pass 1010B QC inspection. No report history in ERAI database.

- Customer questioned date code (06 week 32), ERAI database reports a LTB of 12/31/04. Incorrect info. entered in IHS.

- OCM responds with PCN / EOL LTB date of 8/31/06, last ship date 11/30/06. (builds continue 6-12 months after LTB)

- Customer part number search indicates product is Tin/Lead, box states “Lead Free”.

- RoHS transition year- Some OCMs DID NOT change part numbers or add LF markings.

- OCM did not respond to tech. support LF request. Customer accepted part on risk, verified parts were "Lead free" via XRF.

Industry is looking at ICs with a lot of scrutiny & are risk adverse!
Supplies Chain Case Example 3-
8 Bit Micro-controller; Font Disparity, OCM QC Issues

- IC Packaging with varied component finish, pass 1010B QC inspection (08 week 28) IC’s construction consistent with OCM QC
- No ERAI reports or EOL notice (still in production) = Lower Risk
- Acquired from manufacturer, purchased directly from OCM’s AD
- Issues discovered in inspection: Varied COO mark by date codes, faded P1 indicator
- No evidence of tampering / blacktop (Passes Surface Tests)
- Enhanced imaging suggests QC process issue at OCM: Part marking requiring surface re-work OR injection Mold issue NOT effecting functionality
- COO font disparity likely related to supplier Injection mold differences (factory supplier location)
- **OCM ICs may have QC non-conformances, that can be indicted as counterfeit!**

Parts scrapped Pin 1 & COO font issue will not pass basic QC Inspection!
Supply Chain Case Example 4 - 3 Mb, 256K, 12 bit Field Memory; Training, Construction Knowledge

- OCM packaging & consistent component finish, pass 1010B QC inspection

- Component packaging pristine, copper NOT present on the lead ends

- Inspection training includes verifying presence copper, lead frame (LF) formation marks, OCM cut striations *Evident*

- LF can come in other metals, IE Kovar (iron Alloy) vs. Sn / Ni / Cu, LF base metal not identified on datasheet

- XRF or SEM-edx could verify lead materials

- For low quantity sales, **cost** of analytical testing can exceed the lot value!

- **Rules of thumb do NOT always apply**

- **Engineering judgment & further investigation required to verify authenticity**

Datasheet / App. note review & contacting the OCM may be required
Components provided to FA lab as “suspect counterfeit”

Failing during CCA assembly: Leads de-wetting from the board

Components indicted as “suspect” based on appearance due to counterfeit awareness

Component construction typical of specialized components:

- Fixed Digital Delay Lines (DDLs)
- Time Delay Units (TDUs)
- Bite Line Filters
- Low Noise Amplifiers (LNAs)
- RF Filters (LP, HP, BP)

Supplier makes timing devices based on customer’s circuit design application

- Wired & assembled using manual assembly “commercial best practices”
- Substrate cap is epoxy potted, following assembly
- Surface sanding marks part of assembly process
- Part markings & surface finish consistent with manually assembled specialty components

Analysis Revealed:

- Component in-correctly indicted initially as “Counterfeit”
- Supplier Issue, SEM-EDS showed intermetallic formation under the Tin/Lead plate
- Observations of parts from Stores, lead plating procedures at supplier required review
- Leads could be reworked to meet production needs
- DDD Inc. needed to be contacted, determine if replacement stock is available

Supplier Issue indicted as counterfeit based on cursory knowledge
Raytheon Case Example -
Fixed Delay Line, Data I/O; Sanding Marks, Poor Construction & Print Quality

Manually stamped Ink Marks

Component wall epoxied in place, Cavity filled with potting & sanded

Consistent Sanding Marks, From Manual Assembly

Top & Side View: All dimensions & lead formation meet print
Raytheon Case Example -
Fixed Delay Line, Data I/O; Components from Stores provided

DC: 1204 Construction consistent with device provided for analysis

Side View: overall, 45 Degree 3D depth up, Purged Devices
Example Database Report -
Category: Suspect Counterfeit

Part: FM93C56M8

- Part Number: FM93C56
- Manufacturer:
- Date Code: 22
- Lot Code: B22XX
- Country of Origin:
- Suspect Counterfeit: Yes
- Date Reported: 08/28/2013

Description of Nonconformance:
Parts were represented as new and unused, however the following nonconformities were observed during inspection of entire lot:
1. Parts failed resistance to solvents (RTS) testing.
2. Parts failed scrape test.
3. Obvious visual evidence of ghost markings.

Available Images and Test/Nonconformance Reports:

- 8/28/13, suspect counterfeit. Fails visual & surface tests per IDEA-STD-1010B
- Ghost markings, WELL known practice for 2 Major OCMs who remarked components to downgrade & sell off production excess to Rochester Electronics, Landsdale, etc. at EOL
- Some OCMs do NOT control markings or conform to QC finish requirements
- Report submitted inaccurate, incorrect category & missing information!

Reporting entity should check with resellers, Ads & OCMs; Gather background information
Industry requirements and procedures define inspection techniques but do not provide guidance on interpretation.

Supply chain knowledge / experience gaps exist on execution of visual and surface inspection analysis techniques.

Interpretation is subjective, requires working knowledge of IC supplier assembly / packaging construction, OCM markings & finish quality levels. Quality can vary significantly by supplier!

Training should include: Analysis interpretation & investigation techniques; Component construction methods; Examples of IC supplier quality issues.

Minimum reporting guidelines for analysis, supporting images & documentation, Required to improve data collection & reporting.

Reporting databases NEED a new category: “Lessons learned” or “Exceptions to the Rule”.

DoD and Industry established standards & procedures require optimization.
Integrated System Product Life Cycle
Secure Hardware & Data Destruction
Outline - Secure Hardware & Data Destruction

- Systems Product Life Cycle Process (PLCP) - Issues & Concerns with retired electronics proliferation
- Quality Management Systems - Overview of ISO-14000 & R2 / RIOS
- Security Policies - Facilities & Personnel
- Overview Hardware Destruction - Shredder Process, Raw Material Reclamation
- Overview Data Destruction (MIL-STD vs. NIST) - Data storage devices, Destruction & Recycling
- Other Services - Assured Destruction, Refurbishment, Equivalency Reports
- Conclusions & Recommendations
Platform design/development takes years, deployment = decades

Diagram: Integrated System Product Life Cycle Process
- Systems within DoD & Aerospace have service life requirements that span decades
- Aging equipment is iteratively upgraded to integrate additional capabilities & take advantage of advances in electronic IC’s & components
System PLCP - DoD / Aerospace life cycle issues

Issues: Integrated System Product Life Cycle

- Modernized Defense, Weapon & Aerospace systems contain high value ICs in electronics packaging which meet system environmental requirements. *Processors, Memory, Micro-controllers, FPGAs, Mil-Grade specialty components*

- Large percentage of components (>80%) are commercial grade!

- **HOW** do we ensure valuable electronics ICs are NOT re-claimed by counterfeiters and returned to the supply chain to be re-sold as new?

- Presents SERIOUS system, reliability, readiness (up time) & security concerns

- DoD, MDA & DHS share concerns regarding electronics technology export, IP Infringement (technology matriculation), sensitive data containment & IC re-use through E-Waste exports

- Procedures ARE in place to ensure Classified & Critical Information is destroyed. Collateral system level hardware & data containment needs to be addressed

- Retired / Failed hardware that contain high value legacy electronics MUST be disposed of in accordance with all EHS regulations (Federal, State & local)

- Certified domestic companies provide specialized services to address these concerns

PLC 5 – 7 generate valuable E-waste, domestic services can address this!
ISO 14001:2004 Environmental quality management standard
Assures proper handling, disposal & reclamation of materials

- Applicable to organizations that want to establish, implement, maintain & improve an environmental management system. Assures & demonstrates conformity within stated environmental policies
- Requirements to develop / implement an Environment Management System & Policy
- Includes legal & other requirements to which the organization subscribes & information about significant environmental aspects
- Applies to environmental traits that the organization identifies, which it can control & influence, does not state specific environmental performance criteria
- Certification & registration conformance performed by an accredited CB, conformance includes customer and other interested party audits (Federal/state/local agencies)
- Annex A- provides informative guidance on it’s use & Implementation
Establishes a Certified QMS to address proper handling of E-waste

- **RIOS:2006** Recycling Industry Operating Standard
 - Similar to ISO 9001 Quality Management System (QMS)
 - For recycling companies that want to establish a Quality & Environmental, Health & Safety (QEHS) management system
 - Responsible / secure material de-construction and recycling
 - Requires Independent certification & on-site audits

- **R2 (R2:2008)** Electronics Recycling Operating Standard
 - Specific facility certification for responsible *electronics* product recycling
 - Includes a broad consortia of electronics recyclers & the Environmental Protection Agency
 - Currently there are 432 Certified E-recyclers
 - Updated **R2:2013** includes *additional* requirements on proper handling of components, traceability & security
 - Consortia Members (Including TCG) working towards updated Compliance requirements in **R2:2013**, anticipated adoption in 2014

Adoption is NOT Mandatory
Security & Containment: Personnel & Facilities, ALL

- Employees subject to drug & background checks (7 years- Federal/State/Local)
- Required to use electronic access badges {maintains control of restricted areas}
- Sites monitored with an extensive video surveillance / security system network. 90 day continuous video loop
- Premises alarmed with central security system, restricted Manager / Owner access
- Qualified employees granted access to restricted material areas:
 - Data Destruction- Biometric restricted access, Limited / cleared employees
 - Components side- At risk “suspect” components, Locked QC manager access only
- High security fences , Metal detectors in entrance / exit of all facilities

Clearances & controlled limited access ESSENTIAL for containment!
Secured Destruction - *Hardware*

- **Industrial Shredder:** Multi-Stage Separation / Reclamation process
 - Crush & Shred- 2 Stage Multi-Tine electro-hydraulic roll pins
 - 4 stage Gross Material Separation - Metals / Plastics / Styrene's

 - Screen sort Vibration Separation
 - Electro-Magnet separation
 - Directed Air Puff & knives
 - Sort / Compress / Bin for proper disposal

- Reclaimed Base, precious metals & plastic, applied to rebate or payout to customer
- Hardware, data / disk & memory devices can be marked for destruction regardless of condition, *Based on customer requirements*

Initial Shred

Example, Material Separation

Hardware & Data bearing devices destroyed at customer request
Secured Destruction - *Hardware*

- **Industrial Shredder:** 4 stage Separation - Base / Precious Metals, Plastics, Styrene’s & other (non-recyclables)

* Automated Industrial shredder, Sorts & bins de-constructed materials *
Secured Destruction - Data

- **Disk Drives (Storage):** Data ERASED; drives recycled or destroyed
 - Data security / destruction exceeds federal information protection acts (Multi Write-Clear operations)
 - Area Biometric Access: (authorized personnel only) Limited / Restricted access
 - Multiple Hard Drive Interfaces: SATA, IDE, SCSI, ESDI, UDMA, Fibre Channel, USB
 - Data destruction to NIST STD 800-88 (TCG is a NAID member) [National Association for Information Destruction]
 - Requires Write / Clear operations on all drive data bits 7 Times VS. outdated MIL-STD which requires 3
 - Longer cycle time BUT assures destruction of ALL critical data!
 - Ideal for proprietary, sensitive, company information
 - Does NOT include Classified & CPI/CI storage assets. Handled in accordance with OEM / DoD requirements

Automated NIST procedure preferred industry Standard
Secured Destruction - *Data & Other services*

- **Memory devices** (Solid state, Microcontrollers, FPGAs):
 - Destroyed in accordance with secured hardware destruction procedures, based on customer requirements

- **Other Services:** Electronics Refurbishment / Witnessed Destruction
 - **Certificates of information Destruction:** Assure assets are sanitized
 - **Witnessed on-site or remote destruction:** Based on Customer requirements, resources can be on-site to observe destruction or have video of procedure provided with the Destruction Certificate
 - **Microsoft certified asset refurbishment:** Testing / refurbishment requirements imposed. Option to resell/reuse assets for material disposition return
 - **Annual / Semi-Annual equivalency reports:** Based on EPA Waste Reduction Model (WARM), EPEAT & EPA GHG calculators estimate:
 - ✔ Energy & Solid Waste Savings
 - ✔ Green House Gas reduction
 - ✔ Compliments & supports corporate “Green” initiatives
Conclusion & Recommendations

✓ Containment & Secure destruction of system platform electronics ensures legacy components do not re-enter the supply chain as counterfeit devices!

✓ Domestic ISO-14001 R2/RIOS certified electronics recycling companies have Quality, Environmental & Security management systems in place to address the need of Secure Hardware & Data Destruction

✓ For secure information destruction work with a company who is a NAID member & utilizes enhanced data clear requirements NIST STD 800-88

✓ ITAR Registered facilities have enhanced security requirements in place

✓ Confirm your E-Recycler is working towards R2:2013 compliance

✓ Services including witnessed / remote destruction & certificates of information destruction assure end of use electronics are traceable and handled in accordance with customer needs

✓ Refurbishment is an option to reduce waste reclamation Costs, Work With a Certified Microsoft asset refurbishment organization

✓ Equivalency Reports SUPPORT corporate EHS “Green” Initiatives
Acknowledgments

The presenter / co-author would like to thank the following from Technology Conservation Group for providing background & inputs for this presentation:

Morgan Deptola- (Quality Control & Inventory Manager; Components division) Peer review, security procedures / protocol, supply chain examples & supporting images

Steve Craig- (EHS Corporate Compliance Director) Shredding Facility & data destruction tours, review of corporate security protocol & assurance measures, RIOS / R2 & ISO-14001 overview

Hamilton Rice- (CEO) Knowledge sharing for industry awareness & training, facility host & tour
Acronyms, Definitions

AT&L: Acquisition, Technology & Logistics; DoD undersecretary (OSD)

AD: Authorized Distributor

BU: Business Unit

CAT: Counterfeit Avoidance Team (Enterprise wide)

COTS: Commercial Off The Shelf (components, products)

CB: Certification Body

CPB: Customs Protection & Borders

CPI/CI: Critical Program Information / Counterintelligence

CTN: Components Technology Network (Enterprise wide)

DFARS: Defense Federal Acquisition Regulation Supplement

DHS: Department of Homeland Security

DLA: Defense Logistics Agency

DLAD: Defense Logistics Acquisition Directive

DMS: Diminishing Manufacturing Supply (source)

DoD: Department of Defense (U.S.)

DoJ: Department of Justice (U.S.)

ECA: Electronics Components Association Standards

EHS: Environmental Health & Safety

EOL: End Of Life (System Refurbishment / Upgrades)

ERAI: Electronic Resellers Association Incorporated

ETMA: Engineering Technology & Mission Assurance

FD: Franchised Distributor

GAO: Government Accountability Office (U.S.)

GIDEP: Government-Industry Data Exchange Program

GIFAS: French Aerospace Industries Association

ICE: Immigration & Customs Enforcement

IEC: International Electrotechnical commission

IC: Integrated Circuit

ID: Independent Distributor

IDEA: Independent Distributors of Electronics Association

iNEMI: International Electronics Manufacturing Initiative

Infringement: Describes a violation of rights on intellectual property, copyright or patent

IP: Intellectual Property, patented or trade secret body of work

ITAR: International Traffic in Arms Regulations

KPA: Key Process Area

Legacy: Previous generation system (Military / Aerospace)

LF: Lead Free

LMS: Learning Management System, Raytheon Training tool

LTB: Last Time Buy

MDA: Missile Defense Agency

MIL Spec: Military Specifications

MIL-STD: Military Standard (specifications)

NDAA: National Defense Authorization Act, Implemented Annually

NHA: Next Higher Assembly

OCM: Original Component Manufacturer

OEM: Original Equipment Manufacturer (Systems)

OSD: Office of the Secretary of Defense (U.S.)

PCN: Product Change Notice

PLCP: Product Life Cycle Process

POC: Point Of Contact

PPP: Program Protection Plan

Prime: System Design Lead / Provider

QC: Quality Control

RESA: Raytheon Enterprise Supplier Assessment

RoHS: Reduction of Hazardous Substances

RTN: Raytheon

SAE: Society of Automotive & Aerospace Engineering

SEM-edx: Scanning Electron Microscopy-energy dispersive x-ray spectroscopy

SASC: Senate Armed Services Committee

SIA: Semiconductor Industry Association

SME: Subject Matter Expert

SMT: Surface Mount Technology

Supplier: Sub-system component provider, Sub-Contractor

WEEE: Waste Electrical & Electronic Equipment Directive

WG: Working Group

XRF: X-ray fluorescence