
6/11/2014 © David I. Heimann 1

• Introduction to IEEE 730 and SQA

• SQA Process Implementation

• Product Assurance

• Process Assurance

• Annexes and Summary

6/11/2014 2 © David I. Heimann

Contents

6/11/2014 © David I. Heimann 3

• Gives guidance and establishes requirements for
Software Quality Assurance in a software project.

• The very first published software engineering
standard – 1979.

• Gives the whole story for the Software Quality
Assurance tasks outlined in IEEE 12207 -- Software
Life Cycle Processes.

• IEEE 730-2014 greatly expands on the previous
version of 2002; more like a whole new standard than
a revision!

6/11/2014 4 © David I. Heimann

What is IEEE 730?

• Easy to use, very informative

– Easy to follow, like a handbook

– Gathers all the current SQA information in one place

– Provides a clear checklist of what to do to organize the

production of quality software

• Fulfills important quality purposes for an organization

– Demonstrating conformance to the official standard for SQA

– As a reference for developing an effective and consistent SQA

process specifically pertinent to the organization

– Obtaining information and guidance for specific questions

 6/11/2014 5 © David I. Heimann

Why use IEEE 730?

• A set of activities that →

1. defines and assesses the adequacy of software

processes to →

2. provide evidence for a justified statement of

confidence that →

3. the software processes will produce software

products that →

4. conform to their established requirements.

6/11/2014 6 © David I. Heimann

What Is Software Quality Assurance?

6/11/2014 7 © David I. Heimann

SQA Links These Plans, Processes, and Products

• Fewer defects in the processes used to develop

software.

• Fewer defects in business rules and requirements.

• Fewer defects in the software products.

• Defects are found much earlier in lifecycle and so

cost far less to address.

• Reduce and eliminate waste.

• Generate confidence throughout the lifecycle that

activities will go well.

6/11/2014 8 © David I. Heimann

Why SQA?

6/11/2014 9 © David I. Heimann

You Don’t Want This

http://www.amazingonly.com/cartoon/software-bugs-life/

• Testing

• Reviewing or Auditing

• Done only at the end of development

• Reactive

• A gate or ꞌꞌpoliceꞌꞌ

• An organizational unit (though some units may be

named ꞌꞌSQAꞌꞌ)

6/11/2014 10 © David I. Heimann

SQA Is Not

6/11/2014 © David I. Heimann 11

I. SQA Process Implementation

II. Product Assurance

III. Process Assurance

There are 16 SQA tasks in these 3 activity areas

6/11/2014 12 © David I. Heimann

SQA Activity Areas

1. Establish the SQA Processes

2. Coordinate with related software processes

3. Plan SQA activities

4. Execute the SQA Plan

5. Manage SQA records

6. Evaluate organizational objectivity

6/11/2014 13 © David I. Heimann

Process Implementation Tasks

7. Evaluate plans for conformance

8. Evaluate products for conformance

9. Evaluate products for acceptability

10.Evaluate product lifecycle support for conformance

11.Measure products

6/11/2014 14 © David I. Heimann

Product Assurance Tasks

12. Evaluate lifecycle processes for conformance

13. Evaluate environments for conformance

14. Evaluate subcontractor processes for conformance

15. Measure processes

16. Assess staff skill and knowledge

6/11/2014 15 © David I. Heimann

Process Assurance Tasks

6/11/2014 © David I. Heimann 16

6/11/2014 17 © David I. Heimann

I. Process Implementation

Dilbert, by Scott Adams, via http://madhusudhan.info/Comics/Dilbert/

Define an effective SQA process that identifies what to

do and how to:

1. Do it well

2. Confirm it is done right

3. Measure and track it

4. Manage and improve it

5. Encourage using it to improve quality

6/11/2014 18 © David I. Heimann

Task 1 – Establish the SQA Process

Enable SQA to integrate activities with other software

processes, such as:

1. Verification, Validation, Review, and Audit

2. Project Planning

3. Technical Processes

4. Implementation Processes

5. Reuse Processes

6. Agreement

6/11/2014 19 © David I. Heimann

Task 2 – Coordinate with Related

Software Process

• Adapt the generic SQA processes to the specific

needs of the project.

• Results are documented in the Software Quality

Assurance Plan (SQAP).

• This is where SQA is adapted to the specific nature

of the project (e.g., Agile, CMMI, embedded, etc.)

6/11/2014 20 © David I. Heimann

Task 3 – Planning the SQA Activities

6/11/2014 21 © David I. Heimann

Outline for the SQA Plan

• Execute the SQAP.

• Revise the SQAP as appropriate.

• Raise non-comformances when products or

processes do not conform to their requirements.

• Create and use SQA records to improve quality.

6/11/2014 22 © David I. Heimann

Task 4 – Executing the SQA Plan

• Records are created, maintained, and made available

to project personnel and management.

• Records aim to document that project activities:

– Are performed in accordance with project plans.

– Comply with the contract.

– Support the identification and rectification of problems, causes,

and improvements.

– Enable information sharing.

6/11/2014 23 © David I. Heimann

Task 5 – Manage SQA Records

• Those who perform SQA activities must have the

organizational objectivity and authority to make

objective evaluations and verify problem resolutions.

• Three important aspects of objectivity are:

– Technical Independence: Not involved in the development of the

products being evaluated.

– Managerial Independence: Not reporting to individuals responsible

for product development/project management.

– Financial Independence: Budget not controlled by individuals

responsible for product development/project management.

6/11/2014 24 © David I. Heimann

Task 6 – Evaluate Organizational Objectivity

6/11/2014 © David I. Heimann 25

6/11/2014 26 © David I. Heimann

II. Product Assurance

http://www.amazingonly.com/cartoon/software-bugs-life/

• Product Assurance

 Software products conform to established
requirements

6/11/2014 27 © David I. Heimann

Product & Process Assurance

1. Identify plans required by the contract.

2. Raise non-conformances when plans do not

conform to the contract (or when the contractural

requirements are inadequate).

3. Raise non-conformances when plans are not

mutually consistent.

6/11/2014 28 © David I. Heimann

Task 7 – Evaluate Plans for Conformance

1. Identify products/documentation required by the

contract.

2. Identify allocated requirements and ensure adequacy.

3. Ensure that evaluations of software

products/documentation for conformance against the

requirements are performed.

6/11/2014 29 © David I. Heimann

Task 8 – Evaluate Products for Conformance

• Determine project’s understanding of conditions for

product acceptance.

• Prior to delivery, evaluate the level of confidence

that the software products and related

documentation will be acceptable to the acquirer.

Note -- Depending on contractual agreements (e.g., Agile

environments), the customers themselves may make

some acceptability determinations prior to delivery.

6/11/2014 30 © David I. Heimann

Task 9 – Evaluate Product for Acceptability

• Have acquirer’s expectations for product support

and cooperation been established and documented?

• Have they been met?

• If the SQA process ends at delivery, how is suitable

support ensured?

6/11/2014 31 © David I. Heimann

Task 10 – Evaluate Product Support

• Do the project measures accurately and objectively

represent the quality of the software products?

• Are improvements done as a result of the product

measurements effective in improving product

quality?

• Do the measurements of software products satisfy

the measurement requirements and conform to the

measurement plans?

6/11/2014 32 © David I. Heimann

Task 11 – Measure Products

6/11/2014 © David I. Heimann 33

6/11/2014 34 © David I. Heimann

III. Process Assurance

http://softwaretestingandqa.blogspot.com/ (and Calvin & Hobbes)

https://softwaretestingandqa.blogspot.com/

• Process Assurance

 Project activities conform to accurate and
effective defined processes

6/11/2014 35 © David I. Heimann

Process Assurance

• Does the software development life cycle conform to

project plans and fit with contractural requirements?

• Does the execution of project activities conform to

the project plans?

• Does the execution of project activities yield

products that conform to requirements?

6/11/2014 36 © David I. Heimann

Task 12 – Evaluate Life Cycle Processes

• Do the software development environments conform

to project plans?

• Do the software test environments conform to

project plans?

6/11/2014 37 © David I. Heimann

Task 13 – Evaluate Environments

• Do subcontractor processes conform to

requirements passed down?

• Have acquisition needs, goals, product, and service

criteria been identified? Have they been met?

6/11/2014 38 © David I. Heimann

Task 14 – Evaluate Subcontractor Processes

• Do the project measures support effective

management of the software processes?

• Do the project measures meet the information needs

necessary for managing effective processes?

• Does the executed measurement process satisfy the

measurement requirements and conform to the

measurement plans?

6/11/2014 39 © David I. Heimann

Task 15 – Measure Processes

• Do the staff, including SQA staff, assigned to the

project have the knowledge, skills, and abilities to

perform their assigned roles?

• Have education and training plans been developed?

Are they effective?

6/11/2014 40 © David I. Heimann

Task 16 – Assess Staff Skill & Knowledge

6/11/2014 © David I. Heimann 41

A. Mapping between IEEE 12207 and IEEE 730

B. Mapping between SQA Plan outlines in IEEE

730-2002 and IEEE 730-2104

C. Guidance for Creating Software Quality

Assurance Plans

D. Mapping between IEEE 730 and SPICE

E. Industry-Specific Guidance for IEEE 730

F. IEEE 730 and the Agile Development Process

6/11/2014 42 © David I. Heimann

Annexes

G. IEEE 730 and Very Small Entities (Std 29110)

H. Software Tool Validation

I. Assessing Product Risk: Software Integrity

Levels and Assurance Cases

J. Corrective and Proventive Action Processes

and Root Cause Anallysis Process

K. Cross-reference

L. Bibliography

6/11/2014 43 © David I. Heimann

Annexes

• In Agile, the product backlog plays a role of the ꞌꞌcontractꞌꞌ. 730
shows how to use the product backlog in its role as a contract.

• The product SQA portion of SQA Plan specifies the Agile
ꞌꞌdoneꞌꞌ criteria.

• Non-conformances are inserted into the backlog and
addressed in the appropriate sprints.

• Evaluation of product for acceptance is a continual process in
Agile, not just at end of project.

• IEEE 730 has an annex on Agile with further details.

6/11/2014 44 © David I. Heimann

IEEE 730 and Agile

• CMMI has 16 core process areas. The two that relate to quality
are PPQA (Product and Process Quality Assurance) and VER
(Verification).

• Since CMMI does not specify a particular process flow, CMMI-
conforming organizations need to design their own PPQA
process.

• IEEE 730 provides details for this process design.

• VER process area implements product quality assurance
according to the plan in PPQA. 730 covers both product and
process quality assurance.

• 730 has associated materials with maps between 730 and CMMI.

6/11/2014 45 © David I. Heimann

IEEE 730 and CMMI

• IEEE 730 provides a foundation for Software Quality

Assurance, which in turns provides confidence that

software products will conform to their established

requirements and satisfy the customer.

• IEEE 730 addresses the three areas of SQA: Process

Implementation, Product Assurance, and Process

Assurance.

• IEEE 730 can be used to prove conformance where

SQA conformance is required, and to provide

guidance where SQA conformance is desired.

 6/11/2014 46 © David I. Heimann

Summary

6/11/2014 © David I. Heimann 47

Available Articles (see sign-up sheet)
SQA Activities and Their Relationship to the Agile Development Process

1. Introduction

Agile methods, such as Scrum, Extreme Programming, Dynamic Systems Development Methodology (DSDM),

Adaptive Software Development, Lean Methodology, and Feature Driven Development (FDD) are approaches to

building software to adapt to rapidly changing customer requirements. These methods provide software suppliers the

ability to respond in an agile manner.

These approaches typically follow the twelve principles below (See www.agilemanifesto.org/principles.html for

more information.)

1) Our highest priority is to satisfy the customer through early and continuous delivery of valuable

software.

2) Welcome changing requirements, even late in development. Agile processes harness change for the

customer's competitive advantage.

3) Deliver working software frequently, from a couple of weeks to a couple of months, with a preference

to the shorter timescale.

4) Business people and developers work together daily throughout the project.

5) Build projects around motivated individuals. Give them the environment and support they need, and

trust them to get the job done.

6) The most efficient and effective method of conveying information to and within a development team is

face-to-face conversation.

7) Working software is the primary measure of progress.

8) Agile processes promote sustainable development. The sponsors, developers, and users are expected to

be able to maintain a constant pace indefinitely.

9) Continuous attention to technical excellence and good design enhances agility.

10) Simplicity—the art of maximizing the amount of work not done—is essential.

11) The best architectures, requirements, and designs emerge from self-organizing teams.

12) At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its

behavior accordingly.

Agile approaches include but are not limited to the following elements:

 Burndown charts

 Collaborative development

 Collective code ownership

 Continuous feedback

 Continuous integration

 Customer involvement

 Pair programming

 Refactoring

 Small development teams

 Small releases

 Sprint/Timeboxes

 Test-driven development

6/11/2014 © David I. Heimann 48

