# Renewable Energy Opportunities and Challenges for Entrepreneurs

May 8, 2010

Charles Brumlik, J.D., Ph.D.

Nanobiz LLC

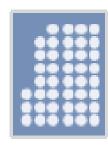


www.nano-biz.com brumlik@nanobizllc.com (973) 400-0081



#### Who We Are

Our Principals (with over 50 years nanotech experience)


- Charles Brumlik, J.D., Ph.D.
- Dana Durham, Ph.D.
- Samuel Brauer, Ph.D.

#### Focus

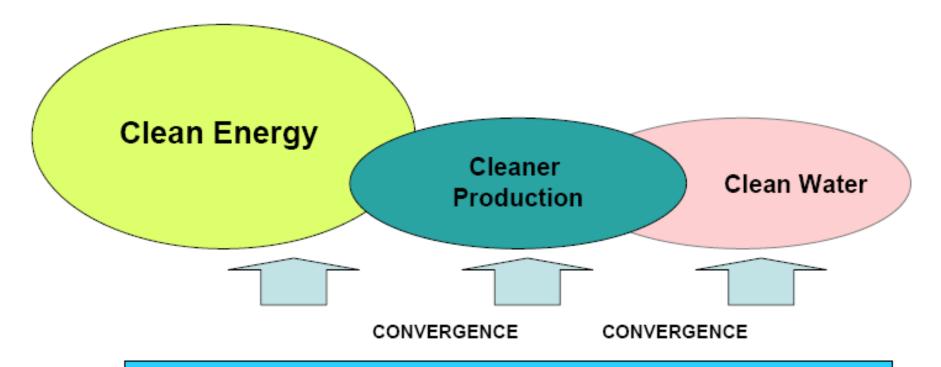
- Commercialization of advanced materials
- Interdisciplinary technology

#### Industry sectors:

- Materials / Chemistry
- Coatings
- Electronics / Photonics
- Energy
- Cleantech / Sustainable
- Water



NANOBIZ, LLC growing global businesses


#### **Our Clients**

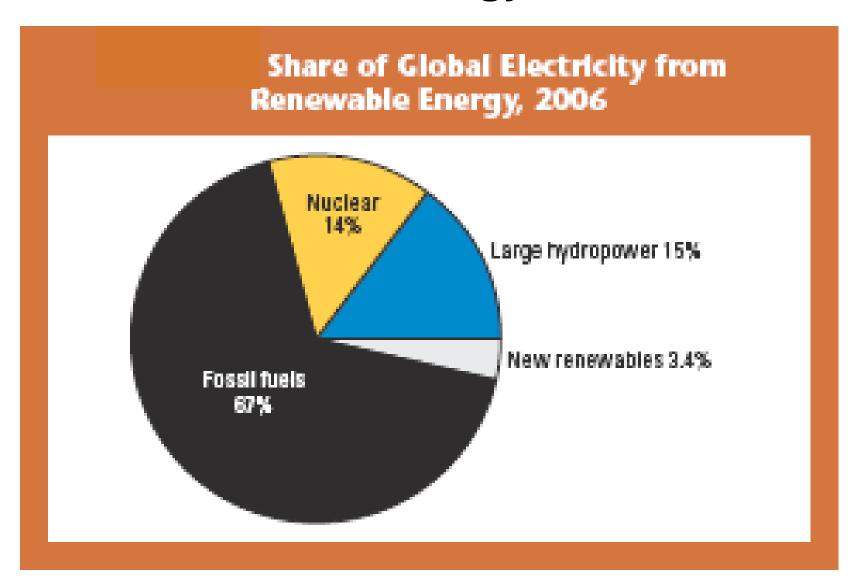
- Fortune 500 Companies
- Japan & Asia-based Multinationals
- Governments
- Investment Groups
- Typical Projects for M&A, licensing, partnering
  - Identifying and comparing potential partners
  - Identifying commercializable technology
  - Technology due diligence
  - Market and industry evaluations
  - Corporate due diligence
  - Cross border collaborations
  - Patent portfolio analysis in a business context

#### **Outline**

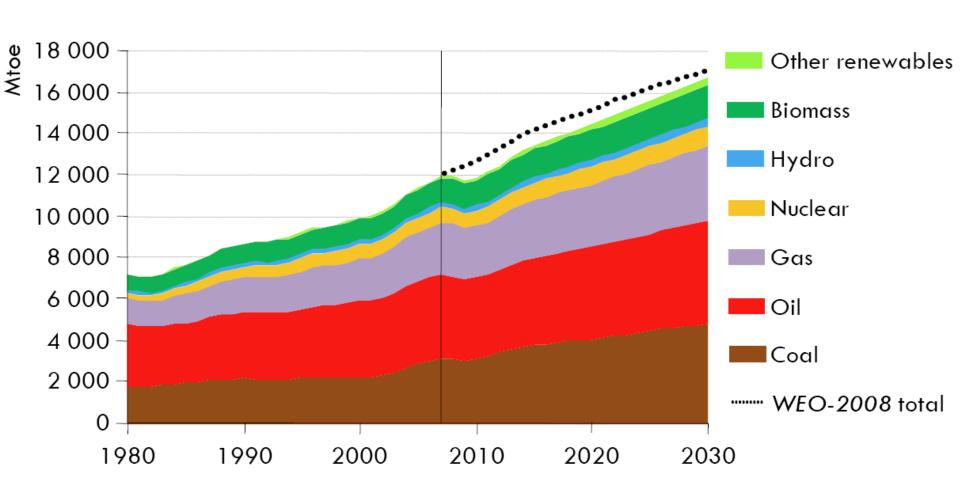
- Overview of Renewable Energy
  - Generation
  - Distribution
  - Storage
  - Efficient Use
- Commercial Reality vs. Opinion
- Show me the Money
- Opportunities & Risks
  - Future Employee / Student
  - Current Employee
  - Entrepreneur / Investor
- Resources

#### Cleantech




Advanced Materials & Nanotechnology (e.g. catalysts and membranes)

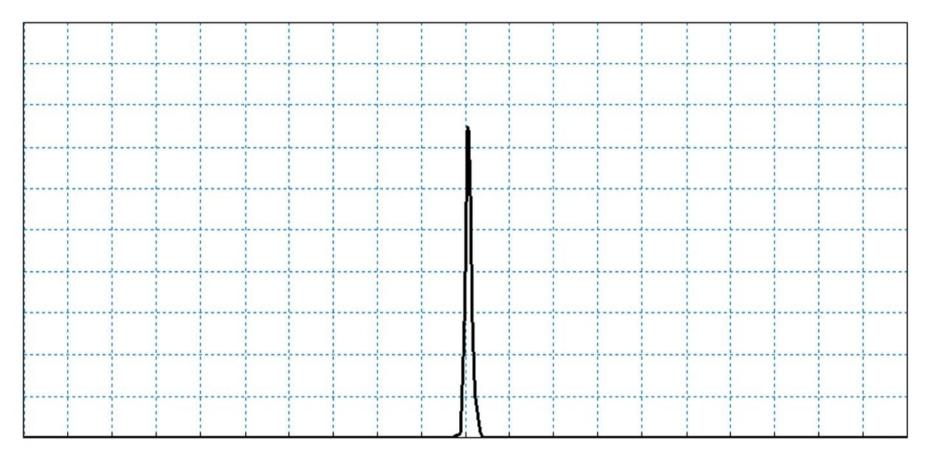
Information Technology & Internet (e.g. advanced meters and sensors)


Biotech "CleanBio" (e.g. biopolymers and biofuels)

Source: Cleantech Group, 2007

## Renewable Energy Market




## World Energy Demand by Fuel

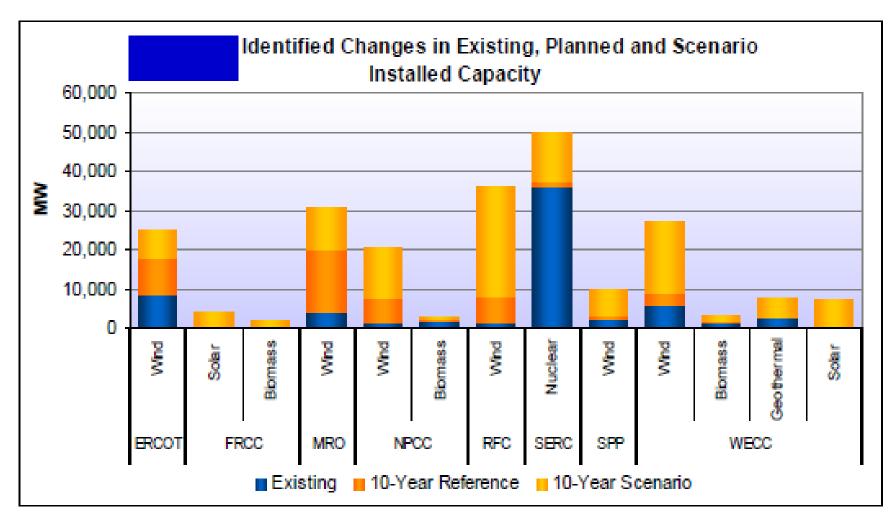


Source: OECD

#### **Fossil Fuel Use**

#### A brief episode in the world's history




-8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

#### **Renewable Power Generation**

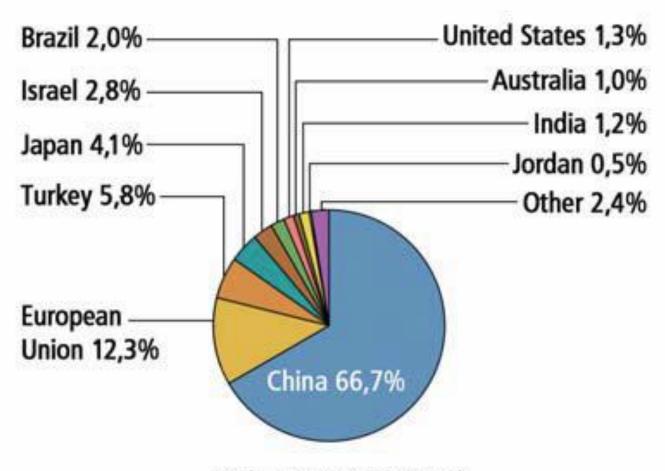
- Wind
- Solar
  - Photovoltaic (PV)
  - Thermal & hot water
- Hydro
  - Low head
- Waste capture
  - Heat
  - Mechanical
  - Chemical

#### **Capacity Expansion**

Scenario Reliability Assessment Summary



Source: 2009 NREL Scenario Reliability Assessment


#### **Wind Power**



Source: www.wwindea.org

#### **Solar Hot Water**

Share of Solar Hot Water/Heating Capacity Existing, Top 10 Countries, 2007



Total = 126 gigawatts-thermal

## **Storage**

- Battery
  - Hybrids
  - -Fuel Cell
- Super Capacitor
- Pumped Hydro
- Flywheel

## **Energy and Power**

| Storage technology      | Energy density                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lead-acid batteries     | 100 kJ/kg (30 W-h/kg)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lithium-ion batteries   | 600 kJ/kg                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Compressed air, 10 MPa  | 80 kJ/kg (not including tank) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Conventional capacitors | 0.2 kJ/kg                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ultracapacitors         | 20 kJ/kg                      | CELLES ON PARKET PROPERTY OF THE PROPERTY OF T |
| Flywheels               | 100 kJ/kg                     | NOMERICANIA NA SERVICIO NA SER |
| Gasoline                | 43000 kJ/kg                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## **Energy Density**

- Lead-acid battery energy density is only about 1% of the usable energy in gasoline.
- Sample test car: 275 kg battery pack → equivalent to 4 L of gas!





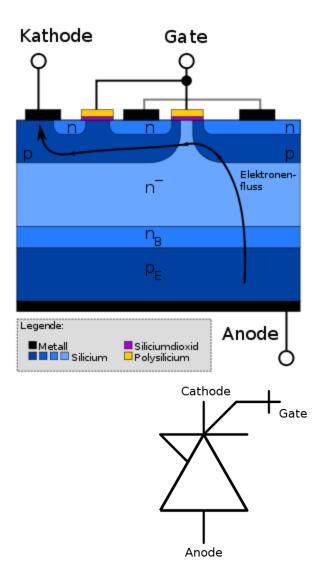


## Markets for Nano-enabled Batteries 2008-2013 (\$ Millions)

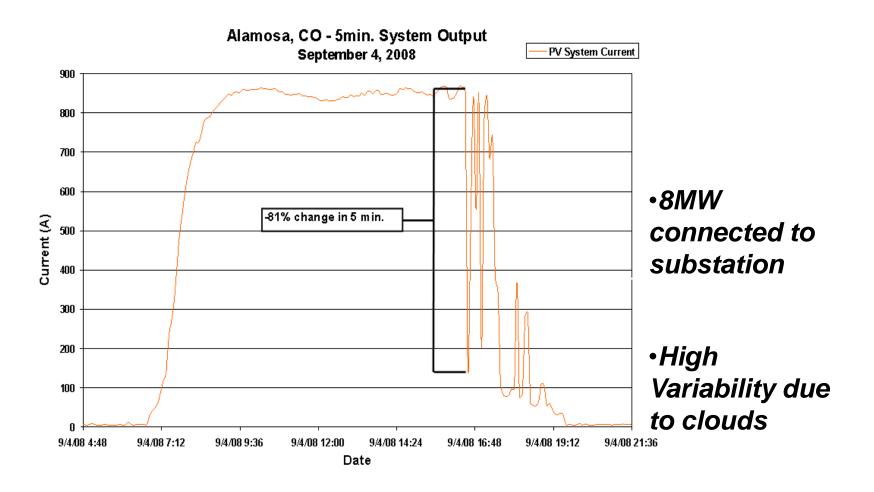
| Type                                                      | 2008 | 2013  | AAGR %<br>2009-2013 |
|-----------------------------------------------------------|------|-------|---------------------|
| Large Format Modules                                      | 64   | 960   | 71.8                |
| Customized Battery Packs for<br>Cordless Tools            | 100  | 123   | 4.2                 |
| Fast Charging Customized Nano<br>Safe Battery for Laptops | 5    | 50    | 58.4                |
| Total                                                     | 160  | 1,133 | 46.3                |

Source: iRAP, Inc. Report En-102 Nano-enabled Batteries – A Global Industry and Market Analysis

## **FUEL CELL TECHNOLOGIES**


|                |              |             | Efficiency (%)    |         |
|----------------|--------------|-------------|-------------------|---------|
| Fuel Cell      |              | Operating   |                   |         |
| Technology     | Electrolyte  | Temperature | <b>Electrical</b> | Overall |
|                | Ion exchange |             |                   |         |
| PEMFC          | membrane     | 50 C        | 30-35             | 50-60   |
| AFC            | КОН          | 80 C        | Low               | Low     |
|                | Phosphoric   |             |                   |         |
| PAFC           | Acid         | 200 C       | 36                | 80      |
|                | Alkali       |             |                   |         |
| MCFC           | carbonates   | 650 C       | 45-55             | 75-80   |
| SOFC - High    | Solid metal  |             |                   |         |
| Temp.          | oxide        | 980 C       | 45-47             | 75-80   |
| SOFC - Reduced | Solid metal  |             |                   |         |
| Temp.          | oxide        | 660 C       | 42-45             | 60-70   |

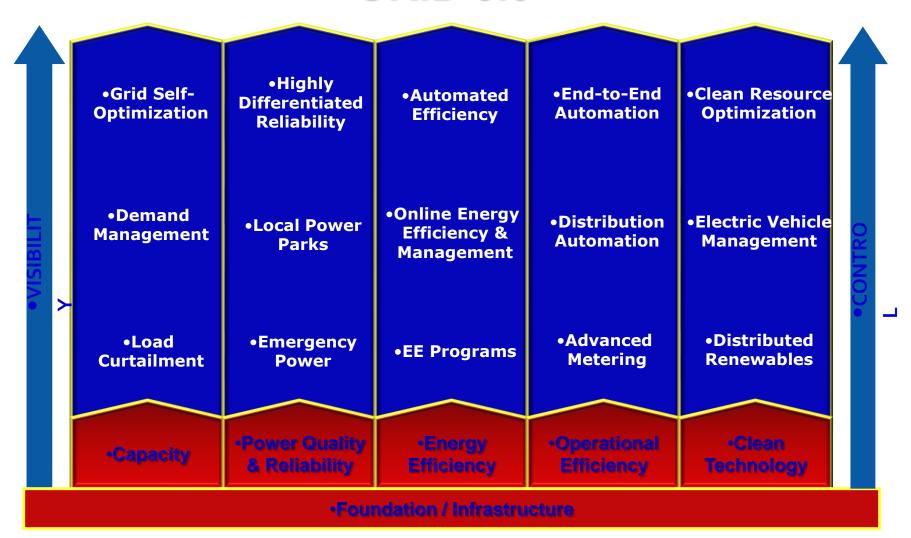
#### **Grid**


- Efficiency
- HV DC
- Smart Metering, Net Metering
- Reselling back to the utility
- Security
- Intermittent sources
  - Wind
  - -Solar (clouds)

## Integrated gated control thyristor (IGCT) - ABB





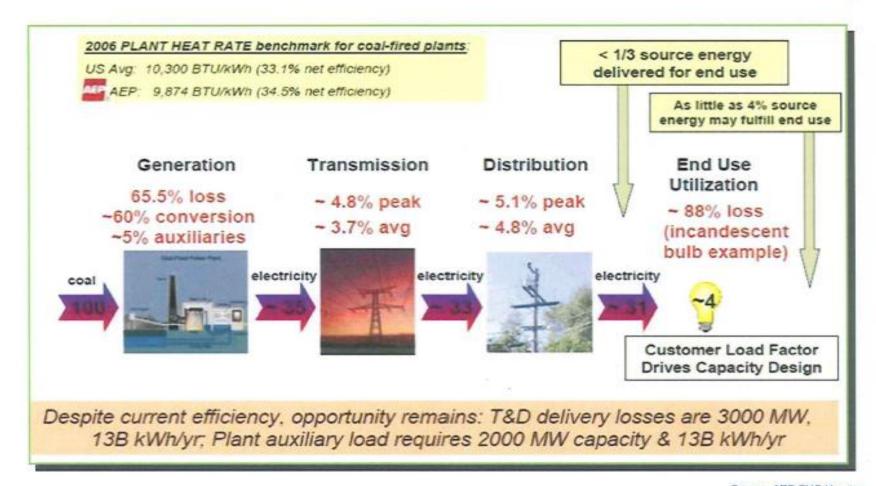

## **Accommodating Variability**



Source: Xcel Energy – Alamosa System

#### **Electricity System Framework**

**GRID 3.0** 




Source: NREL

## **Efficiency**

- LED & solid state lighting
- Electric Motors
  - Rare earth magnets
- Materials
  - Insulation
  - Lightweight Materials
- Power management
- Sensors and control systems

## Grid inefficiency





#### Pushing a Bright Idea

Wal-Mart is promoting consumer use of compact fluorescent light bulbs over incandescents. Here's how the bulbs compare.

| the bulbs compare.              |                  |                    |
|---------------------------------|------------------|--------------------|
|                                 | INCANDESCENT     | FLUORESCENT        |
| Energy used (watts)             | 60               | 13                 |
| Light output (lumens)           | 850              | 800                |
| Average cost (dollars)          | \$0.25 to 0.60   | \$2 to 4           |
| Annual savings (dollars)        | \$0              | \$8                |
| Annual carbon savings (pounds)  | 0                | roughly 100        |
| Life (hours)                    | 1,000            | 5,000 to 10,000    |
| Mercury in the bulb (miligrams) | none             | 4                  |
| Mercury emissions (miligrams)   | 10               | 2.4                |
| Number of bulbs sold annually*  | 1.5 to 2 billion | 130 to 150 million |

<sup>\*</sup>Includes all wattages

#### **LED Light Bulbs**

Beautiful warm color, highly

energy efficient, will last 35 years.

•Input: 4W (Output 40W)

Original Price:\$ 69.00

•Sale Price: \$ 39.95



#### Free Websites & Newsletters

#### Renewable Energy & Grid

- Greentech Media <u>www.greentechmedia.com</u>
- Renewable Energy World <u>www.renewableenergyworld.com</u>

#### PV

- Solar Industry <u>www.solarindustrymag.com</u>
- PV Times <u>www.electroig.com/index/photovoltaics</u>

#### Wind

- World Wind Energy Association <u>www.wwindea.org</u>
  - Online book at <a href="https://www.wwindea.org/technology/ch01/en/">www.wwindea.org/technology/ch01/en/</a>

#### **LED**

LED Magazine - <u>www.ledsmagazine.com</u>

#### **Finance**

Renewable Energy Stocks Directory - <u>www.renewableenergystocks.com</u>

## **Energy Organizations & Meetings**

#### Local

- · Cleantech Corridor- www.cleantechcorridor.org
- NJTC <u>www.njtc.org</u>
- Farleigh Dickinson <a href="http://JumpstartGreen.org">http://JumpstartGreen.org</a>
- NJ's Clean Energy Program www.njcleanenergy.com

#### **National**

- IEEE PV Conference www.ieee-pvsc.org
- CSTI <u>www.techconnectworld.com</u>





#### Symposium on



## Power Electronics and Machines in Wind Applications

#### **PFMWA 2009**

#### Topics of interest include, but are not limited to:

- Generator design
- Control of wind turbine induction & permanent magnet generators
- Power electronics converter topologies for wind turbine systems
- Modeling and simulation of wind power converters
- Residential applications and other small wind turbine systems
- Low wind-speed technologies
- Wind forecasting for siting & dispatching of distributed generation sources
- Islanding and protection capabilities
- Grid connection issues
- Energy storage technologies for use with wind generating sources
- Rural development associated with wind applications

#### Dates for Symposium: June 24-26, 2009

5-page digest submission deadline is February 15, 2009

#### Location:

University of Nebraska-Lincoln Lincoln, Nebraska USA

#### Sponsors:

- IEEE Power Electronics Society, Distributed Generation and Renewable Energy Technical Committee
- Nebraska Center for Energy Sciences Research
- Nebraska Wind Applications Center
- IEEE Power and Energy Society, Technical Co-Sponsor

#### For Further Information, Please Contact:

Symposium Co-Chairs: Jerry L. Hudgins, University of Nebraska

j.hudgins@ieee.org

Dean J. Patterson, University of Nebraska

patterson@ieee.org

Technical Program Co-Chairs: Dionysios Aliprantis, Iowa State University dali@iastate.edu

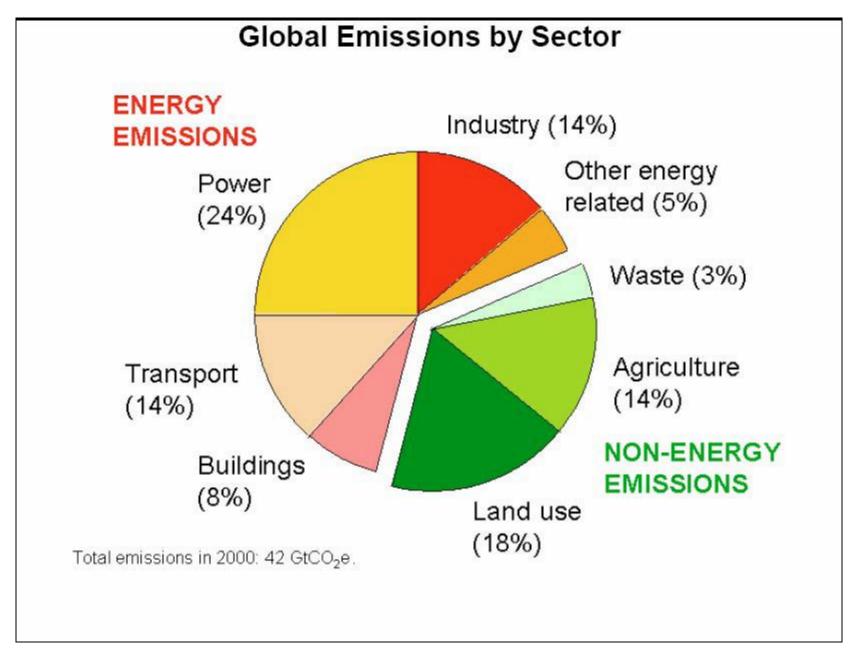
Wei Qiao, University of Nebraska

w.qiao@ieee.org



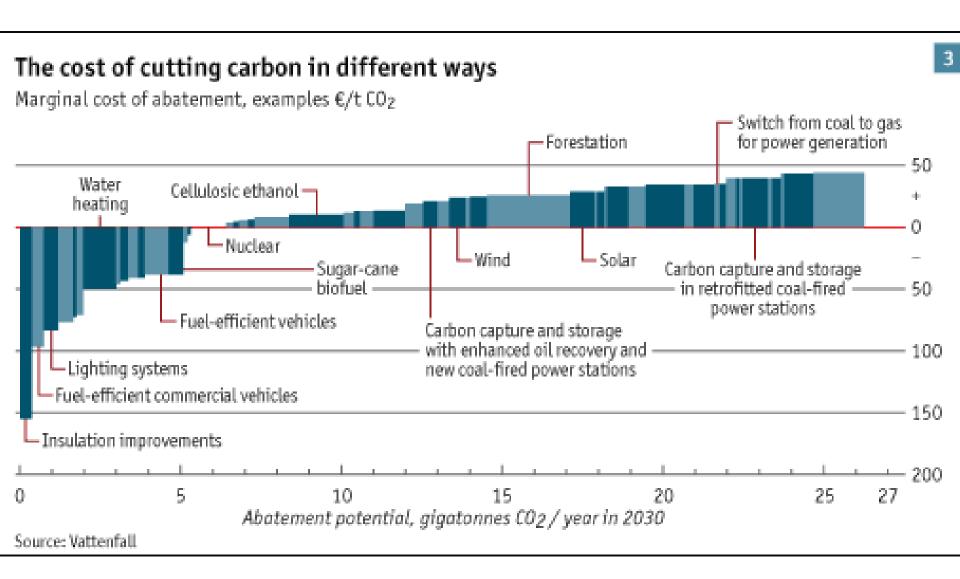





## Clean vs. Renewable Energy

#### Clean

- Emissions
  - Gas (air)
    - Carbon Dioxide
    - Particulate
    - Sox
  - Liquid (water, groundwater)
  - Solid (landfill)


#### Renewable

- Uses less material
  - Unused energy
    - Sun
  - Efficiency
  - Recycle & reuse



Source: Cleantech Group, 2007

## **Emission Reductions - Cost or Savings?**



## **Opportunities & Funding**

- Government
- Venture Capital
- Sales
- Licensing
- Joint Development

## Raising Money: the beginning

Most Early Stage Investments (<\$1 to 2M for precommercialization) come from founders, friends & family, angels, and regional governments

| Stage      | Pre-Seed                              | Seed/Start-<br>Up         |                                                                                          | Early         | Later                |
|------------|---------------------------------------|---------------------------|------------------------------------------------------------------------------------------|---------------|----------------------|
| Source     | Founders,<br>Friends<br>and<br>Family | Individual<br>Angels      | Funding Gap between<br>\$500,000 and<br>\$2,000,000/\$5,000,000<br>(depending on region) | Venture Funds |                      |
| Investment | \$25,000 to<br>\$100,000              | \$100,000 to<br>\$500,000 |                                                                                          |               | /\$5,000,000<br>d up |

## **Grants & Bootstrapping**

- Federal & State grants, loans, & incentives
- University collaboration
- Incubators
- Stock for \$ and work
- Consult for cash flow if necessary
- Contract manufacture for cash flow
- Keeping very low overhead
- Used equipment

## **Government Funding & Resources**

DOE - www.doe.gov

NREL - <u>www.nrel.gov</u>

ARPA-E - <a href="http://arpa-e.energy.gov/">http://arpa-e.energy.gov/</a>

DoD Energy Security Task Force -

www.dod.gov/ddre/doc/DoD\_Energy\_Security\_Tas

k\_Force.pdf

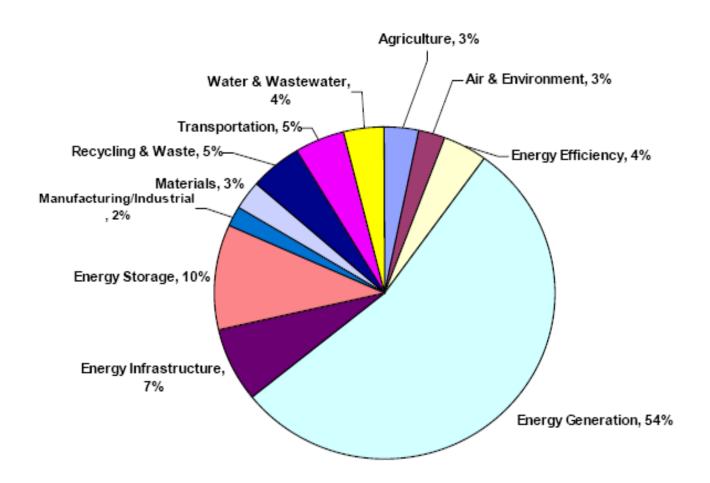
EPA - www.epa.gov/cleanenergy/

Ben Franklin Energy Commercialization Institute - www.sep-energy.org/eci.html

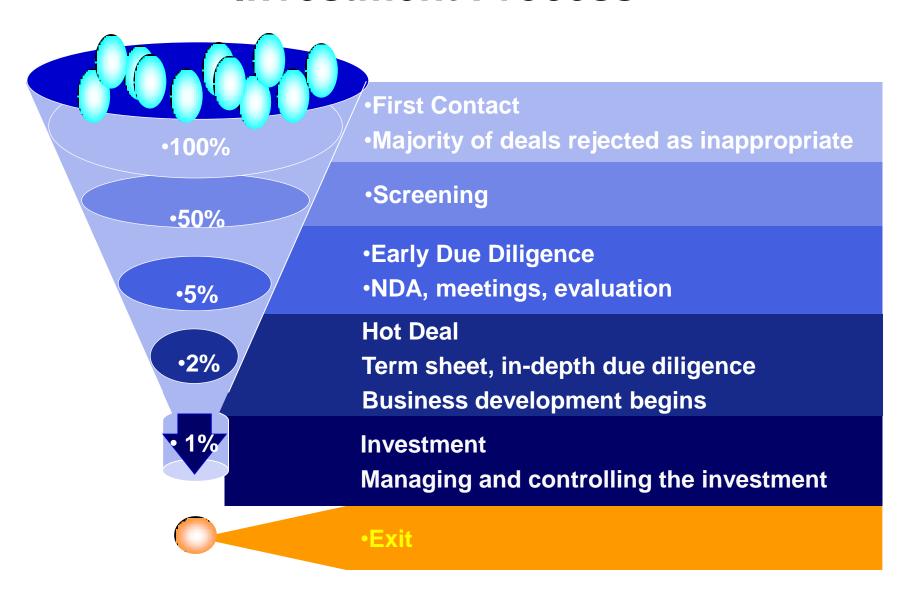


NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy in Golden, Colorado

## **Energy Data Sources**


- Department of Energy Data Explorer
  - <a href="http://www.osti.gov/dataexplorer/">http://www.osti.gov/dataexplorer/</a>
- National Renewable Energy Laboratory
  - http://www.nrel.gov/gis/data\_analysis.html
- USGS Energy Program Publications and Data
  - http://energy.usgs.gov/search.html
- UNEP World Solar and Wind Energy Assessment
  - <a href="http://na.unep.net/swera\_ims/map/">http://na.unep.net/swera\_ims/map/</a>
- MIT Geoweb and the Geodata Repository
  - <a href="http://web.mit.edu/geoweb/">http://web.mit.edu/geoweb/</a>
- MassGIS Transmission Lines
  - <a href="http://www.mass.gov/mgis/trnslns.htm">http://www.mass.gov/mgis/trnslns.htm</a>

## Venture Capital 2009-2010


- Global investment fell 36% to \$29.4 billion in 2009
- Cleantech Shift to energy efficiency deals with lower capital requirements
- Since 2000, actively investing firms fell 32% in the U.S., but grew in China
- Global M&A activity is growing again
- Median time to exit in the U.S.
  - M&A = 5 years
  - IPO = 8 years (few IPOs but restarting now, e.g., A123)
- There are now 880 venture backed cleantech companies

Source: Ernst & Young

# Cleantech VC by Segment: 2006 & Q1 2007 Worldwide (China, North America & Europe/Israel)



#### **Investment Process**





- 110Wh/kg specific energy >150A pulse current
- 2000 cycles @100% depth of discharge
- >300,000 hybrid pulse power cycles
- · Extremely low impedance growth





Raised \$378 million in 2010 IPO

- Manufactures batteries for DeWalt, Chrysler, Navistar and Fisker (in return for \$23M)
- Asian competition
- US and state funding, yet moved manufacturing to China
- Promises \$6,500/car (\$350/kWh) by 2016 Competitors:
- SK (Korea)
- LG Chem (Korea) for Chevy Volt
- Bosch (Germany) / Samsung (Korea)



## New Enterprise Associates – Energy VC

Scale and Capital Commitment

One of the largest VC portfolios in energy technology \$1 Billion committed; already helped 21 portfolio companies raise \$1.5Bn

**Energy Technology** Relationships















Government & Research









**Utilities** 

Key Industry Partners

**Domain Expertise** 

Core team of 10 investment professionals with deep technology expertise across the US and abroad (China, India)

Diversified Strategy

Portfolio spans both the supply side (generation, storage) and the demand side (efficiency, conservation) of the energy equation, across electricity and clean fuels

- •New Enterprise Associates (NEA) closed its thirteenth fund in Q1 2010, with nearly \$2.5 billion.
- •The new fund represents about 17% of all US VC funds raised in 2009 and is the largest single fund raised since 2007.

## Many Areas to Innovate and Invest

|             | 1. HVAC, lighting, appliance   | 1. Solar                 | 7. Geothermal |
|-------------|--------------------------------|--------------------------|---------------|
| Electricity | 2. Grid demand response        | 2. Fuel cell             | 8. Batteries  |
|             | 3. Data center                 | 3. Wind                  |               |
|             | 4. Waste energy recovery       | 4. Nuclear               |               |
|             | 5. Public awareness            | 5. Biomass               |               |
|             | 6. More efficient motors       | 6. Clean coal            |               |
|             |                                | 4 51 6 1                 |               |
| Fuel        | 1. More efficient motors       | 1. Biofuel               |               |
|             | 2. Electric or hybrid vehicles | 2. Enhanced oil          |               |
|             | 3. Building materials          | 3. Enhanced gas recovery |               |
|             | 4. Bio-based chemicals         | 4. Coal to fuel and gas  |               |
|             |                                |                          |               |

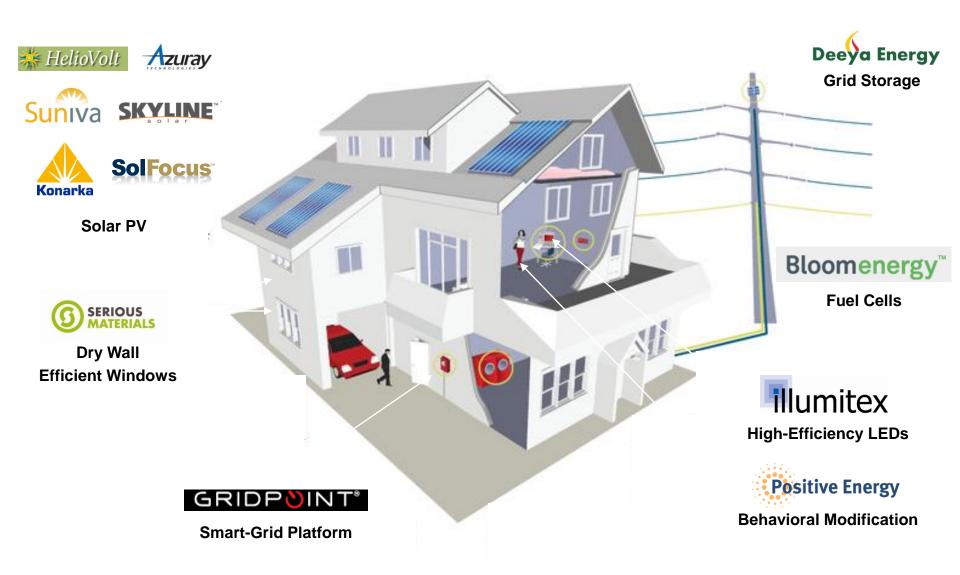
**Supply** 

(Generation & Storage)

Source: New Enterprise Associates

**Demand** 

(Efficiency)


## **NEA Energy Technology Portfolio**



Demand (Efficiency, Conservation)

Supply (Generation & Storage)

## Renewable Energy Applications



Source: New Enterprise Associates

## **Local VC Organizations & Meetings**

- NJEF www.njef.org
- NJEN <u>www.njen.com</u>
- VANJ <u>www.vanj.com</u>
- Ben Franklin www.sep.benfranklin.org
  - Renewable Energy Group www.sep-energy.org
- SFJ Ventures <u>www.cleantechinvesting.com</u>
- Young Startup www.youngstartup.com
- Meeting Notices
  - NJ Entrepreneur newsletter www.njentrepreneur.com
  - NJBIZ www.njbiz.com
  - US-1 www.princetoninfo.com

# Intellectual Property License Agreements 9/15/2009 – 1/1/2010

- Princeton-based Universal Display licensed solution processed white OLED technology to Showa Denko (Japan)
- Unidym licensed fullerene derivatives for solar cells to Nano-C
- Harvard University licensed STORM super resolution microscopy to Nikon (Japan)

# Partnership and Supply Agreements 9/15/2009 – 1/1/2010

 Joint Development between Unidym and a major LCD manufacturer (Asia) for CNTs for use in glass based LCD displays

 Joint Development between Unidym and Samsung Electronics (Korea) for CNTs for flexible displays

## **Partnership Types**

- International finance
  - M&A
  - Investor
  - Joint Venture
- Customer
- Joint Development
- Vendor
- Outsourcing
- Branch Office
- License

### Resources

- Trade Councils, Embassies & Consulates
  - U.S. helping you locally in each country
  - Foreign helping you benefit their country (JETRO, KOTRA)
- U.S. Government
  - Department of Commerce
  - Export Assistance Office <u>www.export.gov</u>
- States
  - SBA U.S. Export Assistance Center
- Professional Organizations (ACS, IEEE)
- International Firms
  - Law
  - Accounting
  - Consulting

## **Accounting & Valuations**

#### Find the right people

- If you are in transition
  - how do you balance between your job search and building a business or buying a business?
- If you are considering starting a business
  - what structural pieces do you need to put into place?
- If you are creating, acquiring, or selling Intellectual Property
  - how would you value it?

#### Resources:

Lloyd F. George, CPA/ABV/CFF, CVA, CLU, ChFC Valuation and Forensic Accounting Services Business and Career Consulting Lloyd.George@LFGCPA.com
Ph. (609) 799-5863

## **Opportunities (EE)**

- Efficiency
- Grid
  - but who pays
- Inverters & chargers
  - plug in hybrids, solid state lighting, PV
- Batteries
  - but not made in US
- Printed PV
  - faster cost, emissions and energy payback
- Building integrated PV (BIPV) solar roof tiles
- PV without storage or grid connection
  - for shaving peak demand loads

## **Risks**

#### Global

- Oil/gas price
- Warming/cooling & ability to affect
- War/unrest
- Govt. regulation & uncertainty (e.g., incandescent in EU/US, Cadmium)
- Commodity price (e.g., Indium)

#### **Business**

- Is there a market?
- Time to market
- Competitors PV glut
- Funding, Cost of capital

#### **Technology**

- Complexity
- Legal, regulatory, IP, environmental (CdTe)
- Costs (development, manufaturing)

### **Conclusions**

- You have to guess the future
- You can help influence the future IF there is an eventual need
  - Can you show a return on investment (ROI)?
  - Will people pay for it?
  - Is there a real advantage over the competition?
  - Is it sustainable?
- Do not rely on government subsidies for more than a few years
- Know your entire chain
  - What is your optimal part (value chain, development stage)
  - Payback time (financial, energy, environmental)
- Partner!