

Distinguished Lecture Colloquia, October 2014

Low-Power, High-Bandwidth, and Ultra-Small Memory Module Design

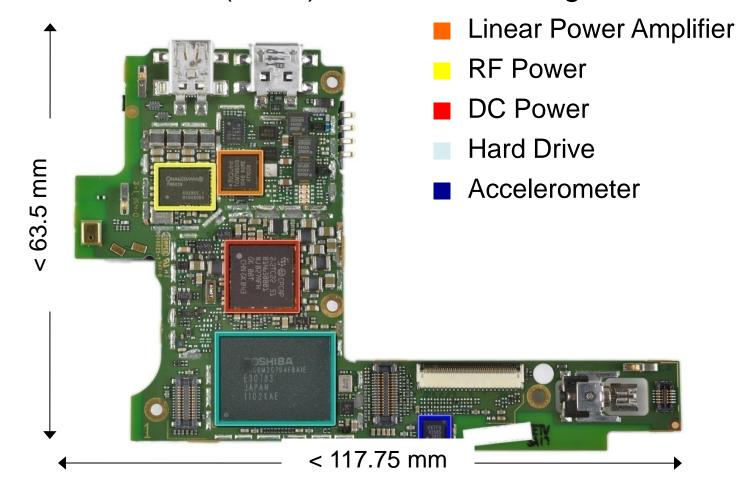
R. Jacob Baker rjacobbaker@gmail.com

Overview: This work proposes a novel DRAM module and interconnect architectures in an attempt to improve computing energy use and performance. A low cost advanced packaging technology is used to propose an 8 die and 32-die memory module. The 32-die memory module measures less than 2 cm³. The size and packaging technique allow the memory module to consume less power than conventional module designs. A 4 Gb DRAM architecture utilizing 64 data pins is proposed. The DRAM architecture is inline with ITRS roadmaps and can consume 50% less power while increasing bandwidth by 100%. The large number of data pins are supported by a low power capacitive-coupled interconnect. The receivers developed for the capacitive interface were fabricated in 0.5 μm and 65 nm CMOS technologies. The 0.5 μm design operated at 200 Mbps, used a coupling capacitor of 100 fF, and consumed less than 3 pJ/bit of energy. The 65 nm design operated at 4 Gbps, used a coupling capacitor of 15 fF, and consumed less than 15 fJ/bit and order of magnitude smaller consumptions than previously reported receiver designs.

Distinguished Lecture Colloquia, October 2014

Why is Power Such a Big Deal?

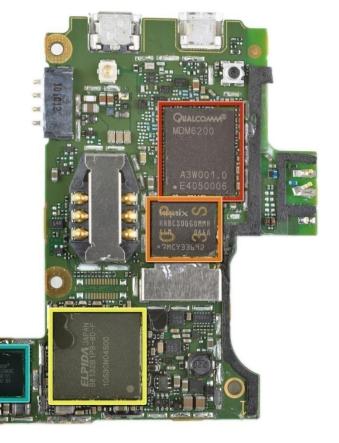
- Let's say that at any given time there are, at least, 1,000,000 people playing World of Warcraft (WoW, a very reasonable assumption)
- Further let's say that the power consumed by each of these players for: processor, memory (DRAM), computer fan, hard disk drive, monitor(s), modem, remote servers, communication channels (e.g., satellites links), cooling, etc. is 1000 Watts (again a very reasonable assumption)
- More than 1 GW of power is needed at any time for people to play WoW. This is the amount of power generated by a small nuclear power plant!



Distinguished Lecture Colloquia, October 2014

Mobile Platform

Motorola Atrix (Front) found in the Google Droid



Distinguished Lecture Colloquia, October 2014

Mobile Platform

- Motorola Atrix (Back)
- Memory (DSP)
- Memory & CPU
- HSPA+ DSP
- 802.11n & Bluetooth
- Compass

Distinguished Lecture Colloquia, October 2014

Server Platform

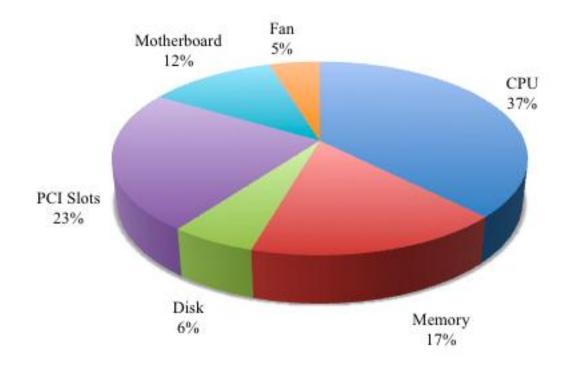
Intel Server Board S5502UR

Memory Slots

Distinguished Lecture Colloquia, October 2014

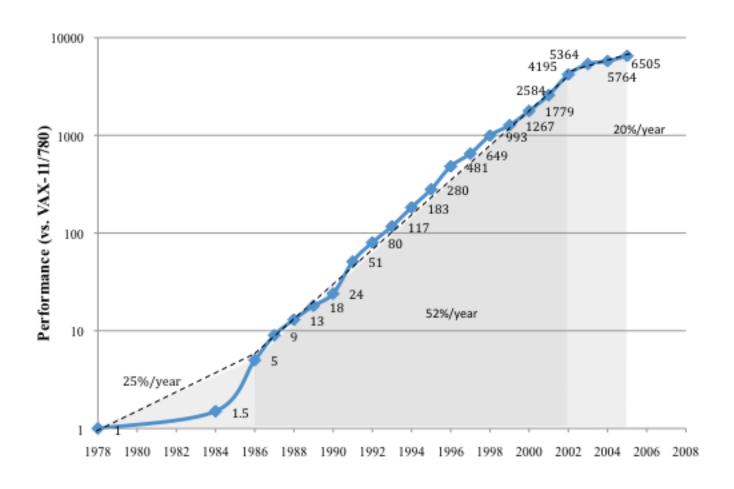
Organization

- Main Memory Limitations
- Nano-Module
- Wide I/O DRAM Architecture
- High Bandwidth Interconnect
- Hybrid Memory Cube


Distinguished Lecture Colloquia, October 2014

- Datacenter sparsity masked power limitations
 - Power trend: Energy consumption doubled every 5 years
- Histotrical server power
 - ~50 W in 2000
 - ~250 W in 2008
- Server power breakdown
 - CPU: 37%, Memory: 17%
 - Trend is Memory power > CPU power
- Main memory power
 - More die per module
 - Less modules per channel
 - Higher bandwidth

Distinguished Lecture Colloquia, October 2014

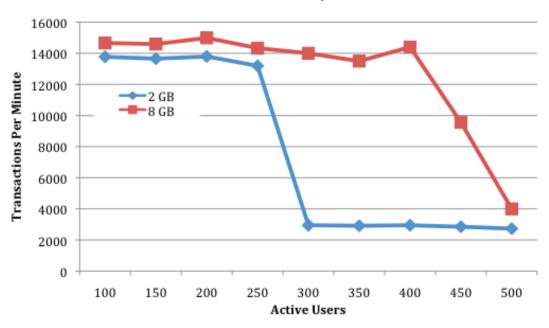

Distinguished Lecture Colloquia, October 2014

- CPU power wall
 - Voltage scaling reached its limit
 - Multiple cores supplement performance gains
 - No "multi-core" for DRAM
- DRAM voltage scaling reaching its limit
 - Current rate increase > voltage reduction rate
 - Power increasing
- DRAM pre-fetch
 - Memory core operates at slower frequency
 - High power I/O devices and data-path

Distinguished Lecture Colloquia, October 2014

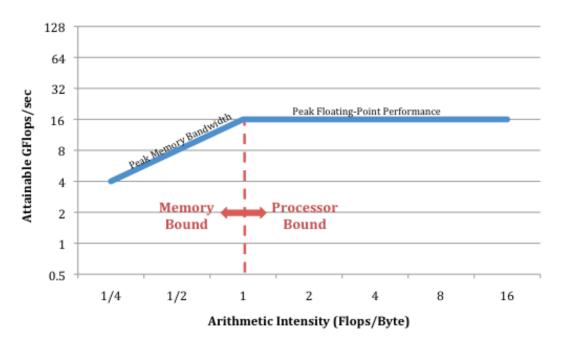
Distinguished Lecture Colloquia, October 2014

- DRAM inefficiencies increase cost and power
 - Processor cache increasing
 - Intel Nehalem processor
 - DRAM would need to have L3 BW and latency
 - "...create the illusion of a large memory that we can access as fast as a very small memory." – Patterson & Hennessy


Local	L1	L2	L3	RAM
Read BW [GB/s]	45.6	31.1	26.2	10.1
Write BW [GB/s]	45.6	28.8	19.9	8.4
Latency [ns] (cycles)	1.3 (4)	3.4 (10)	13.0 (38)	65.1 (191)

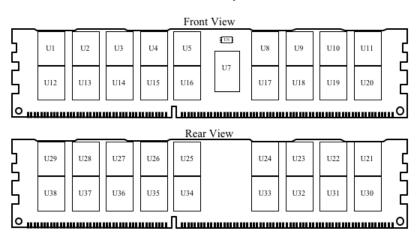
Distinguished Lecture Colloquia, October 2014

- DRAM efficiencies increase performance
- Capacity versus Performance
- Capacity costs power
 - Multiple memory channels
 - Each additional module increases power



Distinguished Lecture Colloquia, October 2014

- Bandwidth versus performance
- Bandwidth costs power
 - Buffer on board
 - Multiple channels



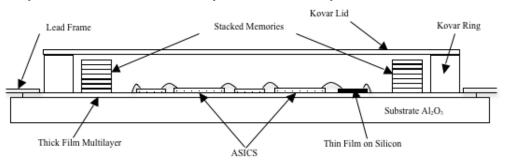
Distinguished Lecture Colloquia, October 2014

- DRAM inefficiencies in practice
- Typical video/web server motherboard
 - 20+ layer PCB
 - 6 memory channels
- RDIMM
 - 10+ layer PCB
 - Maximum comp. count

Distinguished Lecture Colloquia, October 2014

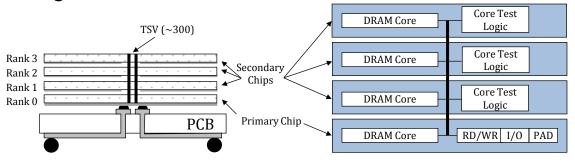
- 12 RDIMM
 - Termination
 - 36 components per DIMM
 - 8 I/O per component
 - 2.7 W of termination power for a read/write per module
 - 32.4 W total termination power
 - Wordline firing
 - 100 ns activation rate
 - 8126 page size
 - 200 fF per bitline
 - 11.2 W total bitline sense amplifier power
- Sustaining performance gains through capacity and bandwidth increases power and cost – innovation required.

Distinguished Lecture Colloquia, October 2014


- Goals
 - Purpose was to move labs into prototype generation
 - Required low cost, high bandwidth, and low power memory solution that can be used with capacitive coupled interconnects in advanced server architectures
- Module component count trends required a new approach
- Nano-module proposed
 - Low cost advanced packaging technology
 - Off-the-shelf memory components
- Results can be leveraged
 - NAND
 - Mobile

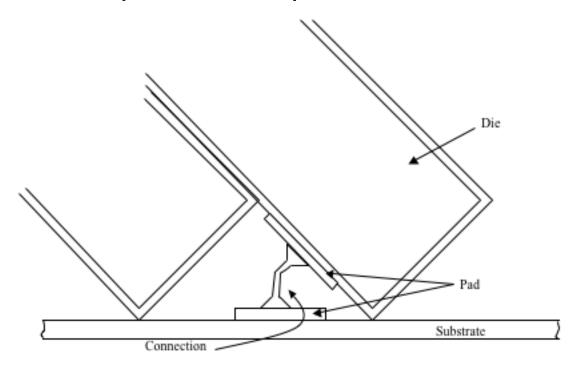
Distinguished Lecture Colloquia, October 2014

- Literature review of high capacity memory stacks
- 1990's
 - Multichip Modules
 - Realized planar space limitations
 - Val & Lemione
 - Irvine Sensors
- Solutions proposed in research
 - No industry due to memory hierarchy effectiveness



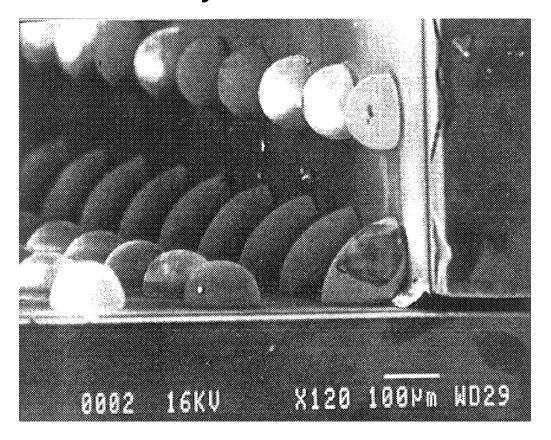
Distinguished Lecture Colloquia, October 2014

- Memory stack technology gaining new attention
- Proposed in 2010 (more later about developments)
 - Samsung quad die with TSV
 - 80 µm pitch, 30 µm diameter, 300 TSV
 - $R_{TSV} = 5 \Omega$, $C_{TSV} = 300 fF$
- Pros:
 - Lower power, higher bandwidth
- Cons:
 - Cost, integration



Distinguished Lecture Colloquia, October 2014

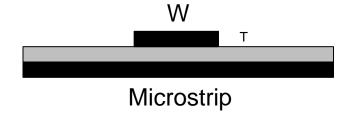
- Literature review revealed novel solutions
- Slant the die!
- Applicable to capacitive-coupled interconnects



Distinguished Lecture Colloquia, October 2014

Nano-Module

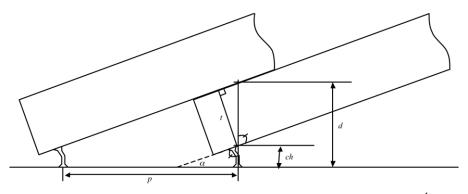
Not the first to try it:

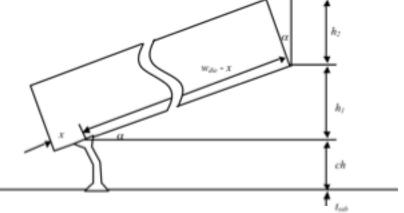


Distinguished Lecture Colloquia, October 2014

- Controlled Impedance
 - All Signals 50 Ω controlled impedance
 - DQS and CLK 120 Ω differential impedance
- Trace Length Matching
 - All Data matched to worst case
 - All CLK matched to worst case
 - All Address/Command matched to worst case

$$Z_0 = \frac{87}{\sqrt{\varepsilon_r + 1.41}} \ln \left(\frac{5.98H}{0.8W + T} \right)$$



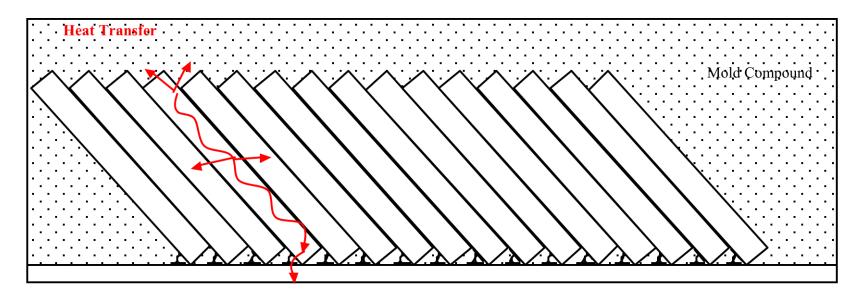

Distinguished Lecture Colloquia, October 2014

Nano-Module

Size calculations

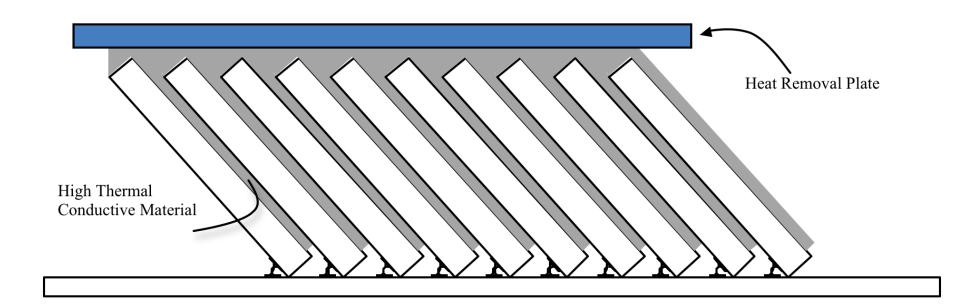
$$height = t_{sub \ thickness} + t_{connection} + \frac{t_{die \ thickness}}{\cos \alpha} + \left(t_{die \ width} - t_{die \ pad \ to \ edge}\right) \sin \alpha$$

$$width = (no.\,signals - 1)t_{con\,pitch} + t_{con\,diameter} + 2(t_{die\,to\,pad\,edge} + t_{wb_1} + t_{wb_2})$$


$$length = 2\left(t_{wb_1} + t_{wb_2}\right) + \sin\alpha \cdot t_{die\ thickness} + \frac{\left(\#\ die\ -1\right)t_{die\ thickness}}{\sin\alpha} + \cos\alpha \cdot t_{die\ width}$$

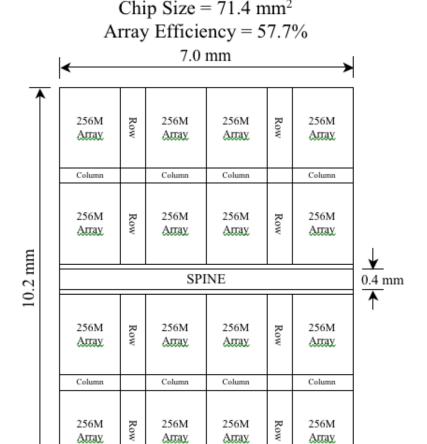
Distinguished Lecture Colloquia, October 2014

- Thermal option
 - Thermal conductivity
 - Silicon, Metals >> Mold Compound
 - Hot spots
 - Temperature gradient



Distinguished Lecture Colloquia, October 2014

- Thermal option
 - Heat plate



Distinguished Lecture Colloquia, October 2014

Wide I/O DRAM Architecture

- 4 Gb DRAM
 - Meets ITRS predictions
- Edge aligned pads
- Page size reduction
- Low cost process
 - < 4 levels of metal</p>
 - No impact to die size
 - No impact to array efficiency
- Move to 64 data pins
 - Report challenges
 - Propose innovations

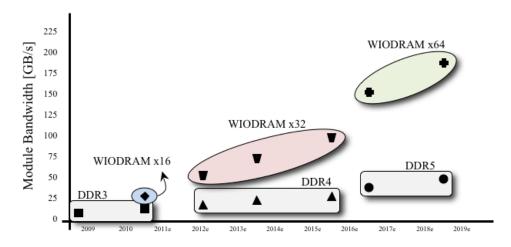
Distinguished Lecture Colloquia, October 2014

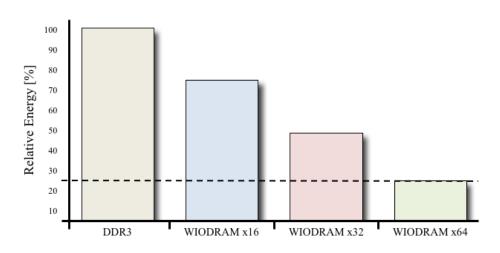
Wide I/O DRAM Architecture

- 4 Gb Edge DRAM
 - Centralized Row and Column
 - Smaller die
 - Higher efficiency
 - < 4 levels of metal</p>

Chip Size = 68.88 mm^2 Array Efficiency = 59.9% 12.3 mm 6.0 mm 512M Bank 512M Bank 2.4 mm 512M Bank 512M Bank COLUMN COLUMN 512M Bank 512M Bank 512M Bank 512M Bank Edge I/O Interface

Distinguished Lecture Colloquia, October 2014

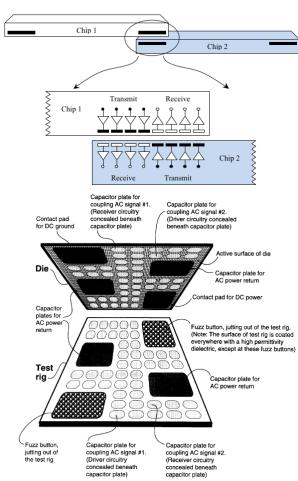

Wide I/O DRAM Architecture


Challenges

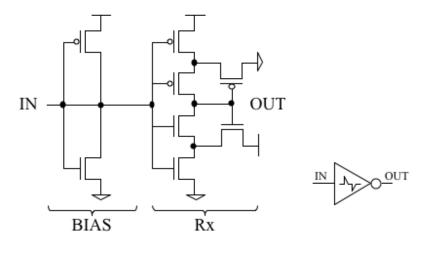
- Number of metal layers
- Global data routing
- Local data routing

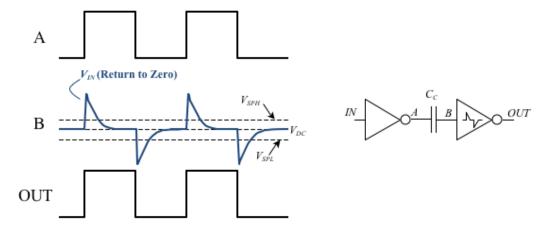
Proposals

- Split bank structure
- Data-path design
- Through bitline routing
- SLICE architecture
- Capacitive-coupled I/O



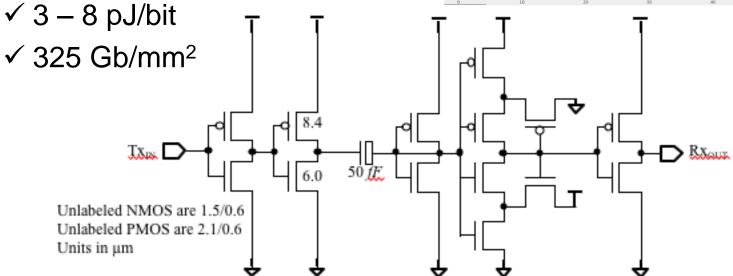
Distinguished Lecture Colloquia, October 2014

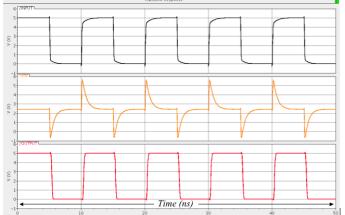

- Capacitive-coupling
 - Increased bandwidth
 - Reduced ESD capacitance
 - Smaller I/O channel = more I/O
 - Removal of inductive channel
 - Low power
 - Reduced ESD capacitance
 - Low power Tx & Rx
 - Low cost
 - Simple
 - Alignment required
- Literature review
 - Revealed inefficiencies and lack of application



Distinguished Lecture Colloquia, October 2014

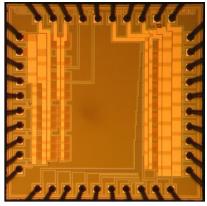
- Proposed receiver design
 - Extreme low power
 - ~1 gate delay latency
 - 'DC' transmission
 - RTZ → NRZ

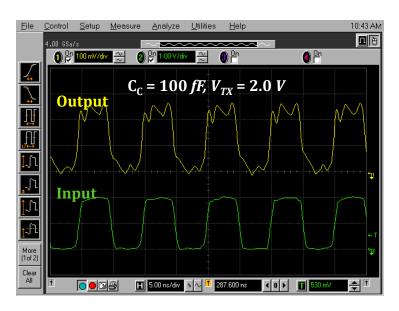




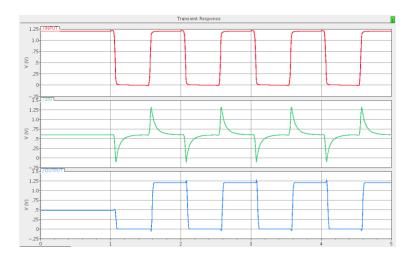
Distinguished Lecture Colloquia, October 2014

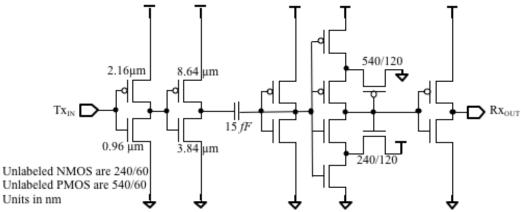
- □ 0.5 µm CMOS design (proof of concept)
 - ✓ 5.0 V process
 - √ 50 fF poly-poly capacitor
 - √ 200 Mbps




Distinguished Lecture Colloquia, October 2014

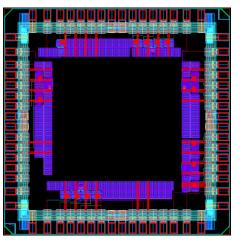
- Chip micrograph
 - 1.5 mm x 1.5 mm
 - 9 structures

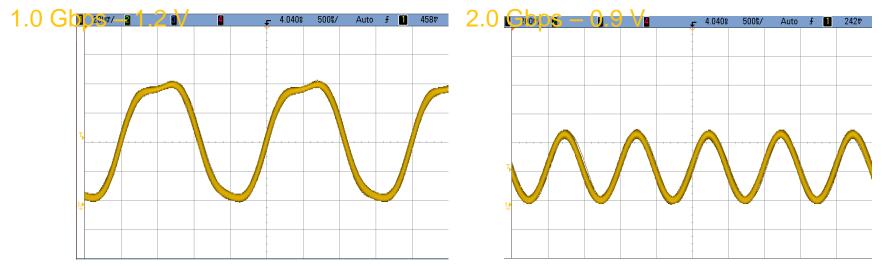

- Experimental results
 - Operate at V_{TX} = 2.0 V
 - 3 pJ/bit at 200 Mbps



Distinguished Lecture Colloquia, October 2014

- 65 nm CMOS design (proof of scalability)
 - -1.2 V process
 - 15 fF metal-metal capacitor
 - -4 Gbps
 - $-17 \mu m^2$
 - 227 Tbps/mm²



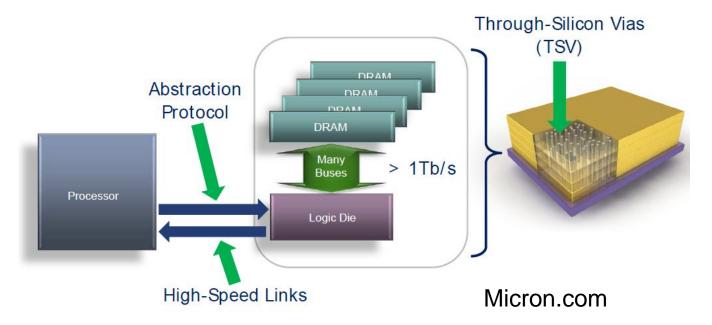


Distinguished Lecture Colloquia, October 2014

- Die micrograph
 - 2 mm x 2 mm
- Experimental results
 - 2 Gbps @ 0.9V
 - 50 fF coupling capacitor

Distinguished Lecture Colloquia, October 2014

Work	Process	Supply (V)	Data Rate (Gbps)	Coupling (fF)	Bandwidth (Gbps/mm²)	Energy (pJ/bit)	Requires CLK
Kanda 2003 [31]	0.35 µm	3.3	1.27	10	2.117×10^{3}	2.4	Yes
Franzon 2006 [27]	0.18 μm	1.8	3	150	5.55 × 10 ²	5.0	No
Fazzi 2007 [32]	0.13 µm	1.2	1.23	10	1.922×10^4	0.14	Yes
Kim 2009 [33]	0.18 µm	1.8	2	600	6.90×10^{2}	0.8	Yes
This Work	0.5 µm	5.0	0.2	50	3.25×10^{2}	8	No
This Work	65 nm	1.2	4	15	2.268×10^{5}	0.015	No


Distinguished Lecture Colloquia, October 2014

So What is the Industry Moving Towards?

Hybrid Memory Cube

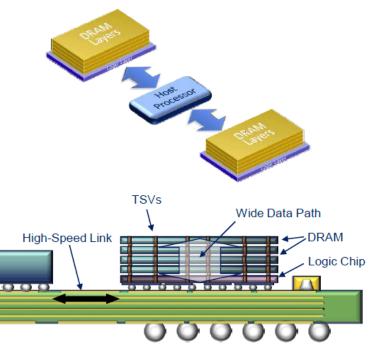
Hybrid Memory Cube (HMC)

Notes: Tb/s = Terabits / second HMC height is exaggerated

CMOSedu.com

Nano Memory Module – by R. Jacob Baker

Distinguished Lecture Colloquia, October 2014



Hybrid Memory Cube

HMC Near Memory – MCM Configuration

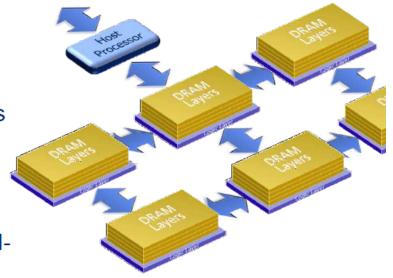
- All links are between host CPU and HMC logic layer
- Maximum bandwidth per GB capacity

CPU

Notes: MCM = multi-chip module

Illustrative purposes only; height is exaggerated

Micron.com



Distinguished Lecture Colloquia, October 2014

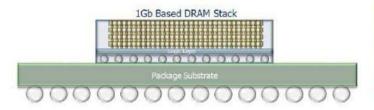
HMC "Far" Memory

- Far memory
 - Some HMC links connect to host, some to other cubes
 - Serial links form networks of cubes
 - the memory = the network
 - Scalable to meet system requirements
 - Can be in module form or soldereddown
 - Can form a variety of topologies
 e.g., tree, ring, double-ring, mesh
- Future interfaces
 - Higher speed electrical (SERDES)
 - Optical
 - Whatever the most appropriate interface for the job

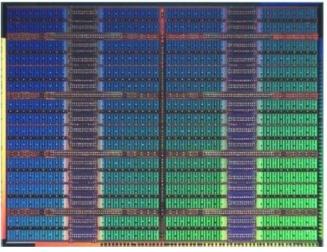
Micron.com

Distinguished Lecture Colloquia, October 2014

HMC_{Gen1}: Technology Comparison


Generation 1 (4 + 1 memory configuration)

Technology	VDD	IDD	BW GB/s	Power (W)	mW/GB/s	pj/ bit	real pJ/ bit
SDRAM PC133 1GB Module	3.3	1.50	1.06	4.96	4664.97	583.12	762
DDR-333 1GB Module	2.5	2.19	2.66	5.48	2057.06	257.13	245
DDRII-667 2GB Module	1.8	2.88	5.34	5.18	971.51	121.44	139
DDR3-1333 2GB Module	1.5	3.68	10.66	5.52	517.63	64.70	52
DDR4-2667 4GB Module	1.2	5.50	21.34	6.60	309.34	38.67	39
HMC, 4 DRAM w/ Logic	1.2	9.23	128.00	11.08	86.53	10.82	13.7


Simple calculation from IDD7 (SDRAM IDD4)

Real system, some with lower density modules

- 1Gb 50nm DRAM Array
- 90nm prototype logic
- 512MB total DRAM cube
- 128GB/s Bandwidth
- 27mm x 27mm prototype
- Functional demonstrations!
- Reduced host CPU energy

HMC Gen 1 DRAM

Micron.com

Distinguished Lecture Colloquia, October 2014

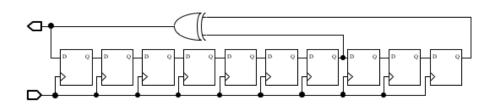
Conclusions

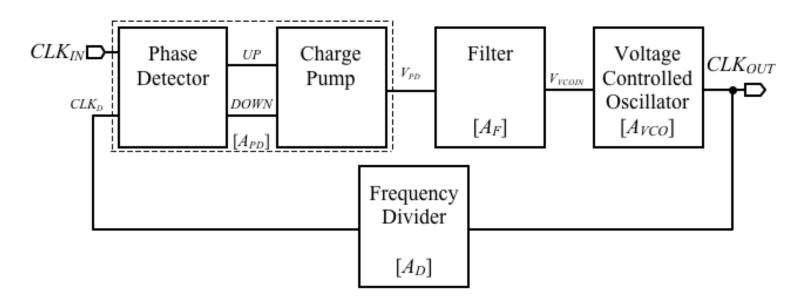
- Nano-Module
 - Developed a new research direction for industry research labs
 - Developed initial motivation
 - Developed initial prototype
- DRAM Architecture
 - Demonstrated benefits of wide I/O topologies
 - Proposed several low power innovations
 - Provided application for novel interconnect technologies
- Capacitive-Coupled Receiver
 - Demonstrated low power receiver designs
 - Achieved 2 Gbps at < 15 fJ/bit in 65 nm
- Summarized industry direction Hybrid Memory Cube

Distinguished Lecture Colloquia, October 2014

Questions

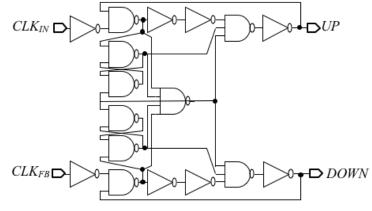
?

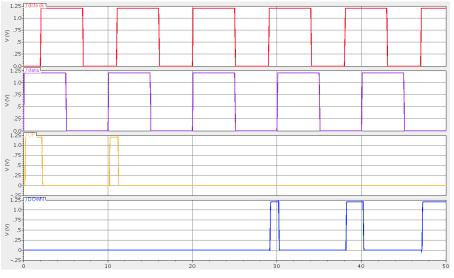



Distinguished Lecture Colloquia, October 2014

Appendix - PLL

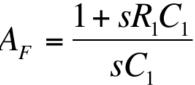
- 65 nm test chip
 - PLL
 - PRBS generator

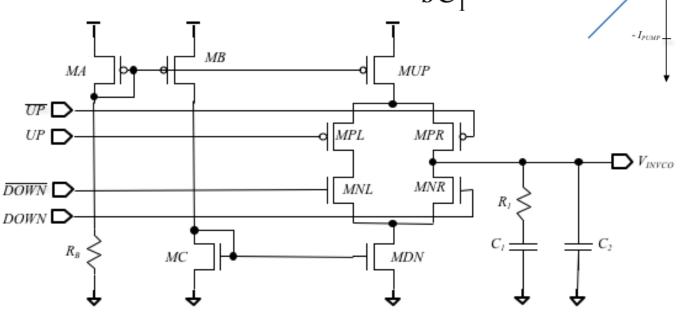



Distinguished Lecture Colloquia, October 2014

Appendix - PLL

- PLL
 - Phase detector

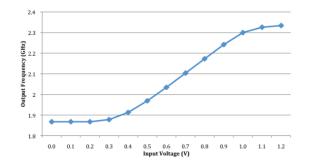

Distinguished Lecture Colloquia, October 2014

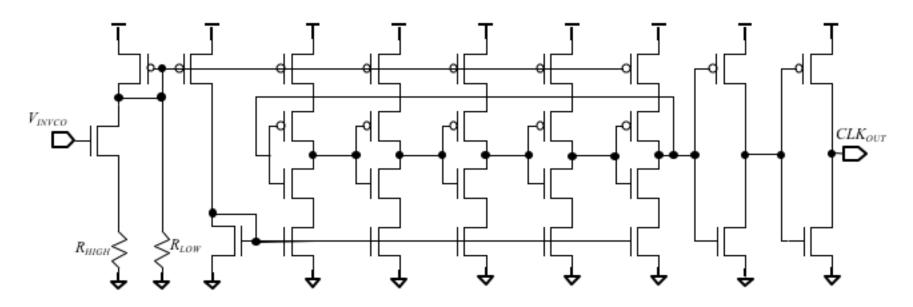


Appendix - PLL

Charge pump

$$A_{PD} = \frac{I_{PUMP}}{2\pi}$$


Distinguished Lecture Colloquia, October 2014



Appendix - PLL

Voltage controlled oscillator

$$A_{VCO} = 2\pi \cdot \frac{f_{MAX} - f_{MIN}}{V_{MAX} - V_{MIN}}$$

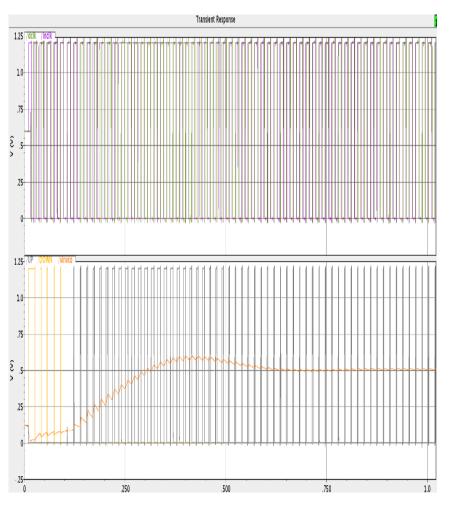
Distinguished Lecture Colloquia, October 2014

Appendix - PLL

$$\phi_{CLK_{OUT}} = V_{INVCO} \cdot \frac{A_{VCO}}{s}$$

$$\phi_{CLK_D} = \frac{1}{N} \cdot \phi_{CLK_{OUT}} = \beta \cdot \phi_{CLK_{OUT}}$$

$$A_{OL} = A_{PD} A_F A_{VCO}$$

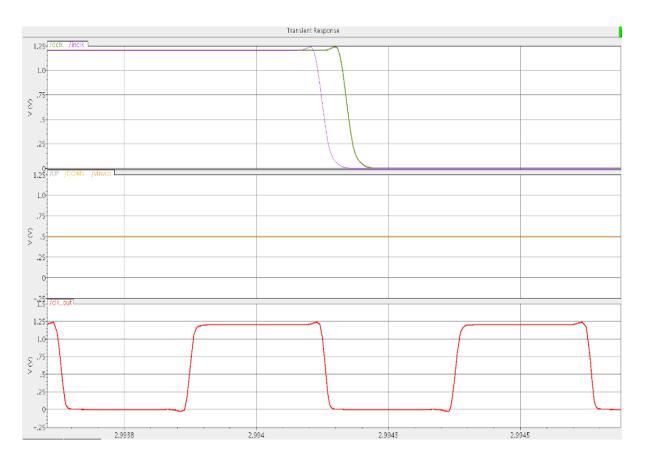

$$H(s) = \frac{\phi_{CLK_{IN}}}{\phi_{CLK_{OUT}}} = \frac{A_{PD}A_{F} \frac{A_{VCO}}{s}}{1 + \beta A_{PD}A_{F} \frac{A_{VCO}}{s}} = \frac{A_{PD}A_{F}A_{VCO}}{s + \beta A_{PD}A_{F}A_{VCO}}$$

$$A_{F} = \frac{1 + sR_{1}C_{1}}{sC_{1}}$$

$$H(s) = \frac{\phi_{CLK_{IN}}}{\phi_{CLK_{OUT}}} = \frac{A_{PD}A_{VCO} \left(\frac{1 + sR_{1}C_{1}}{C_{1}}\right)}{s^{2} + s\left(\frac{A_{PD}A_{VCO}R_{1}}{N}\right) + \left(\frac{A_{PD}A_{VCO}}{NC_{1}}\right)}$$

$$\omega_n = \sqrt{\frac{A_{PD}A_{VCO}}{NC_1}}$$

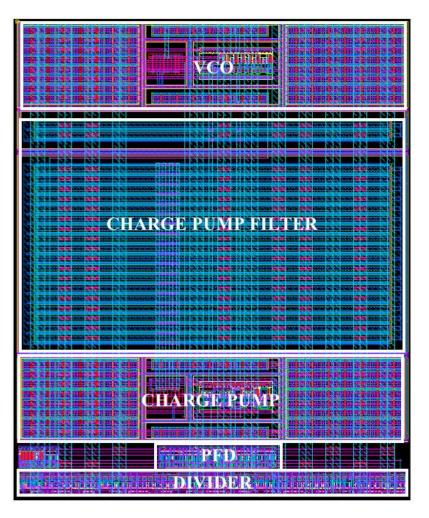
$$\varsigma = \frac{\omega_n}{2} R_1 C_1$$



Distinguished Lecture Colloquia, October 2014

Appendix - PLL

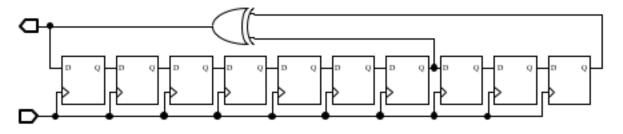
PLL at lock

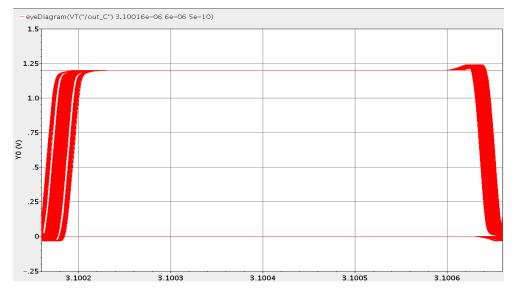


Distinguished Lecture Colloquia, October 2014

Appendix - PLL

PLL layout




Distinguished Lecture Colloquia, October 2014

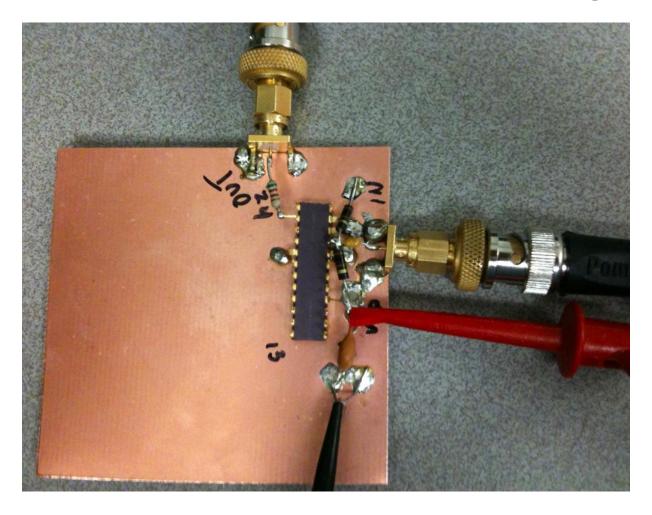
Appendix - PLL

PRBS generator

Distinguished Lecture Colloquia, October 2014

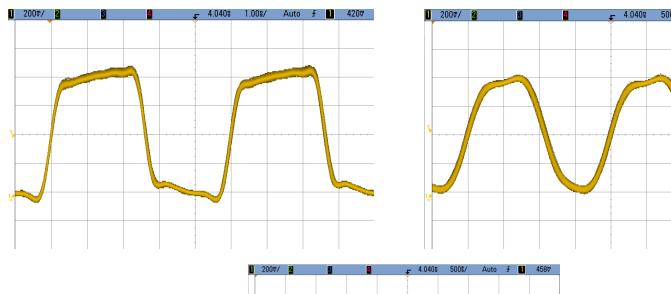
Appendix - PCB

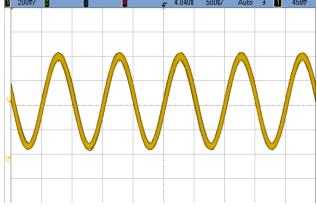
PCB test board



Distinguished Lecture Colloquia, October 2014

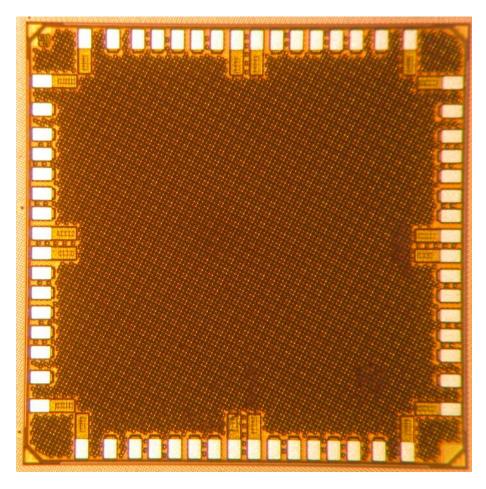
Appendix – Dead Bug





Distinguished Lecture Colloquia, October 2014

Appendix – Dead Bug



Distinguished Lecture Colloquia, October 2014

Appendix – 65 nm Chip

Distinguished Lecture Colloquia, October 2014

References

- [1] Val, C.; Lemoine, T.; , "3-D interconnection for ultra-dense multichip modules," *Components, Hybrids, and Manufacturing Technology, IEEE Transactions on* , vol.13, no.4, pp.814-821, Dec 1990
- [2] Bertin, C.L.; Perlman, D.J.; Shanken, S.N.; , "Evaluation of a three-dimensional memory cube system," *Components, Hybrids, and Manufacturing Technology, IEEE Transactions on*, vol.16, no.8, pp.1006-1011, Dec 1993
- [3] Uksong Kang; Hoe-Ju Chung; Seongmoo Heo; Duk-Ha Park; Hoon Lee; Jin Ho Kim; Soon-Hong Ahn; Soo-Ho Cha; Jaesung Ahn; DukMin Kwon; Jae-Wook Lee; Han-Sung Joo; Woo-Seop Kim; Dong Hyeon Jang; Nam Seog Kim; Jung-Hwan Choi; Tae-Gyeong Chung; Jei-Hwan Yoo; Joo Sun Choi; Changhyun Kim; Young-Hyun Jun; , "8 Gb 3-D DDR3 DRAM Using Through-Silicon-Via Technology," Solid-State Circuits, IEEE Journal of , vol.45, no.1, pp.111-119, Jan. 2010
- [4] Matthias, T.; Kim, B.; Burgstaller, D.; Wimplinger, M.; Lindner, P., "State-of-the-art Thin Wafer Processing," Chip Scale Review, vol. 14, no. 4, pp. 26, July 2010.
- [5] U.S. Enviornmental Protection Agency, "Report to Congress on Server and Data Center Energy Efficiency Public Law 109-431." 2007.
- [6] L. Minask, B. Ellison, "The Problem of Power Consumption in Servers," Intel Press, 2009, http://www.intel.com/intelpress/articles/rpcs1.htm
- [7] D. Patterson, J. Hennessy, Computer Organization and Design, 4th ed., Morgan Kaufmann Publishers, San Francisco, 2009.
- [8] Karp, J.; Regitz, W.; Chou, S.; , "A 4096-bit dynamic MOS RAM," Solid-State Circuits Conference. Digest of Technical Papers. 1972 IEEE International , vol.XV, no., pp. 10- 11, Feb 1972
- [9] Micron Technology Inc. Various Datasheets: http://www.micron.com/products/dram/
- [10] B. Gervasi, "Time to Rethink DDR4," MEMCON 2010, http://discobolusdesigns.com/personal/20100721a_gervasi_rethinking_ddr4.pdf
- [11] Various IBM datasheets. www.ibm.com
- [12] "Power-Efficiency with 2, 4, 6, and 8 Gigabytes of Memory for Intel and AMD Servers," Neal Nelson & Associates, White Paper 2007.
- [13] Rambus, "Challenges and Solutions for Future Main Memory," http://www.rambus.com/assests/documents/products/future_main_memory_whitepaper.pdf, May 2009.
- [14] Intel AMB Datasheet, http://www.intel.com/assets/pdf/datasheet/313072.pdf, pg 38.

Distinguished Lecture Colloquia, October 2014

References

- [15] "Intel Server Board S5520UR and SS5520URT, Technical Product Specification" Rev. 1.6, July 2010, Intel Corporation.
- [16] D. Klein, "The Future of Memory and Storage: Closing the Gap," Microsoft WinHEC 2007, May 2007.
- [17] Cotues, "Stepped Electronic Device Package," U.S. Patent 5,239,447, Aug. 24, 1993.
- [18] G. Rinne, P. Deane, "Microelectronic Packaging Using Arched Solder Columns," U.S. Patent 5,963,793, Oct. 5, 1999.
- [19] R. Plieninger, "Challenges and New Solutions for High Integration IC Packaging," ESTC, July 2006, http://141.30.122.65/Keynotes/6-Plieninger-ESTC_Keynote_20060907.pdf
- [20] Harvard, Q., "Wide I/O Dram Architecture Utilizing Proximity Communication" (2009). *Boise State University Theses and Dissertations*. Paper 72.
- [21] International Technology Roadmap for Semiconductor, 2007 Edition, http://www.itrs.net/Links/2007ITRS/Home2007.htm, 2007.
- [22] K. Kilbuck, "Main Memory Technology Direction," Microsoft WinHEC 2007, May 2007.
- [23] R. Drost, R. Hopkins, I. Sutherland, "Proximity Communication," *Proceedings of the IEEE 2003 Custom Integrated Circuits Conference*, vol. 39, issue 9, pp. 469-472, September 2003.
- [24] Saltzman, D.; Knight, T., Jr., "Capacitive coupling solves the known good die problem," *Multi-Chip Module Conference*, 1994. MCMC-94, Proceedings., 1994 IEEE, vol., no., pp.95-100, 15-17 Mar 1994
- [25] Salzman, D.; Knight, T., Jr.; Franzon, P., "Application of capacitive coupling to switch fabrics," Multi-Chip Module Conference, 1995. MCMC-95, Proceedings., 1995 IEEE, vol., no., pp.195-199, 31 Jan-2 Feb 1995
- [26] Wilson, J.; Mick, S.; Jian Xu; Lei Luo; Bonafede, S.; Huffman, A.; LaBennett, R.; Franzon, P.D.; , "Fully Integrated AC Coupled Interconnect Using Buried Bumps," Advanced Packaging, IEEE Transactions on , vol.30, no.2, pp.191-199, May 2007
- [27] Luo, L.; Wilson, J.M.; Mick, S.E.; Jian Xu; Liang Zhang; Franzon, P.D.; , "3 gb/s AC coupled chip-to-chip communication using a low swing pulse receiver," Solid-State Circuits, IEEE Journal of , vol.41, no.1, pp. 287- 296, Jan. 2006
- [28] R. Baker, CMOS: Circuit Design, Layout, and Simulation, Third Edition, Wiley-IEEE, 2010
- [29] O. Schwartsglass, "PRBS Work," The Hebrew University of Jerusalem, VLSI class notes, 2002. http://www.cs.huji.ac.il/course/2002/vlsilab/files/prbs/PRBS.pdf