Issues and Approaches to Management of Sensor Networks

Kang G. Shin Real-Time Computing Laboratory Department of EECS University of Michigan

Outline of Talk

- Generics, issues, and approaches of sensor networks
 - Hardware
 - Communication
 - Software
- Examples of research on sensor networks at:
 - University of Michigan
 - UC Berkeley
 - University of Virgina
 - UCLA

Characteristics of Sensor Networks

- Large # of small, resource-limited sensor nodes, operating *in aggregate*
- Usually battery-powered, hence *energy-constrained*
- Wide range of sensing capabilities
 - Temperature, light, sound, magnetic fields, motion, vision
- Low-power wireless networking
- Unattended, inaccessible, prolonged deployment
- Requires in-network processing
- Time-varying functions/roles
- => Must be self-organized, self-maintaining and programmed *in situ* to operate at very low duty cycle

Uses of Sensor Networks

Commercial

- Manufacturing plant monitoring, integrated robotics, vehicle/object tracking, security/safety monitoring, inventory control and manuals/instructions (RFIDs), etc.
- Research
 - Environmental monitoring (habitat and agricultural studies)
- Military
 - Tracking, intrusion detection
- Homeland security
 - Surveillance of public/critical infrastructures such as buildings, bridges, utility distribution and water supply systems

Typical Sensor Node: X-Bow Mica Mote

MICA Architecture

2xAA form factor Cost-effective power source

Sensor Board Device Placement

1.25 in

Mica Mote with Sensor Board

Research Areas/Issues

- Sensing and architecture
 - Sensor hardware design (MEMS)
 - Signal/Data processing
 - Rich interfaces and simple primitives allowing cross-layer optimization
 - Low-power processor, ADC, radio, communication, encryption
- Resource management (operating system)
 - Limited computational power, memory, code space, electrical power
 - Node computation & communication, and their scheduling
- Networking and distributed services
 - Medium Access Control & routing
 - Clock synchronization, localization, and data aggregation
- Programming
 - Software component models and middleware
 - Describe global behavior, synthesize local rules that have correct, predictable global behavior
- Applications
 - Long-lived, self-maintaining, dense instrumentation of previously unobservable phenomena
 - interaction with a computational environment

Networking

- Medium Access Control (MAC)
 - Main issues with wireless communication
 - Collisions
 - Limited range
 - Hidden node/terminal problem
 - Transmission errors
 - Motes use CSMA (Carrier Sense Multiple Access)
 - Cannot send and receive at the same time
 - Cannot detect collision
 - Work is being done to create inherently collision-free MAC protocols
 - TDMA in a region; may be closely-coupled with applications
 - ... or to reduce the probability of collision
 - Implicit acknowledgements
 - S-MAC coordinates sleep cycles to save energy and avoid collisions
 - Non-Mote systems (esp. simulations and more powerful sensors) use 802.11 MAC or its variations: Stargate and Stareast

Super Node I: Stargate Board

Super node II: Stareast Boards

Routing Protocols

- Spanning tree within a cluster/region
- Geographic routing
 - Route messages to a specific location
 - Each node knows its location
 - No routing tables maintained

Cluster-based routing

- Use simple table-based routing protocols to route to cluster head (e.g., dynamic source routing, ad-hoc on demand distance vector routing)
- Use higher-level protocol (e.g., geographic) to route between cluster heads
- Landmark routing
 - Similar to cluster-based routing, but without the cluster formation overhead
 - Messages are routed to known landmarks, from which they are routed to their final destination

Routing Protocols, cont'd

- Gradient Routing
 - Requires only local information at each node
 - An "interest" is propagated outward by a sink node
 - Each node receiving the interest remembers it and passes it along
 - Different topologies arise due to forwarding policies
 - Data from a source traces back links to the sink
 - Preferred data paths may be reinforced
 - Lowest energy
 - Shortest path
 - Least latency

Spanning Tree

Directed Acyclic Graph

Sensor Network Programming

- Embedded systems
 - Lightweight OS, e.g., tinyOS, EMERALDS
 - OS and application software are compiled and linked together, then downloaded to the node
 - Programmed once and deployed
 - Some work is being done on network reprogramming
 - Expensive in terms of energy
 - Takes a node out of service while reprogramming
 - Scalability issues
- Software structured using component models
 - Support modularity
 - Only essential components are compiled into the system
 - Easy to upgrade/replace components during development

Example University Research Efforts

- University of Michigan
- UC Berkeley
- University of Virginia
- UCLA
- •

Efforts at UMICH

- DARPA:
 - SMILE: Service Models for Integration of reaL-time Embedded systems
 - Security Tradeoffs (with UMass and ASU)
- ONR, NRL, NSF, Cisco:
 - LiSP (Lightweight Security Protocol), PIV, DKMP, SyKeeper
- NSF:
 - Lightweight and Flexible Sensor Network Management
- Project personnel: 1 faculty, 1 full-time research scientist, and 9 grad students
- Project URLs: http://kabru.eecs.umich.edu/{smile,security}

Sensor Network Testbed

Sample Projects at UM

- Adaptive Query Processing (AQP)
- Content-aware metadata creation in a heterogeneous mobile environment
- Network routing
- Distributed location service
- Sensor network security
- Self-management

AQP Middleware

- Provides an abstraction that forms the basis for service & application development on a platform
 =>Higher-level domain services are implemented as queries and query-triggered functions
- Is based on a data-centric view of networked embedded systems
- Provides basic data access and management
- Is based on a data model that includes type, time, location, and quality parameters

Service Development on Motes

- Sensor database (SensorDB)
- Energy-aware Query Processing
 - Declarative Query Interface to
 - provide transparent adaptation and optimization
 - Energy savings in
 - communication and query processing
- Techniques proposed to increase lifetime
 - Utility/cost in query allocation by each coordinator
 - Energy-efficient (i.e., computationally-efficient) query indexing at each node

Relational Model for WSNs

- Tuples include sensor readings and associated sensor types, node ID, timestamp, energy balance, etc.
- Append-only and distributed across multiple nodes, thus supporting streamed, distributed data
- Query is *persistent* and *periodically* evaluated
- Queries themselves are treated as data upon which other queries may operate, i.e., recursive query.

Hierarchical Architecture

- Roles
 - Super coordinator
 - Coordinator
 - Member
- Cluster
 - Nodes in a small region
 - One-hop communication
 - Redundancy
 - Sensing
 - Communication

Filters and Aggregators

A Simple SQL-like Interface

Queries that operate on queries

- Insert, Delete, Update, Select, and Estimate

Energy-aware AQP

- Distribute workload using utility/cost model
- Given a local cluster of *n* substitutable nodes, adaptively distribute workload to a subset of the nodes
- Utility: accuracy of the query result
 - More nodes give better estimate of sensor value
- Cost
 - Cost associated with selecting and aggregating data
 - Models: balanced, greedy, hybrid

Comparison of Cost Models

Cost Model	Description
Balanced	Cost = 1/(Residual Energy) Balances nodes' energy consumption
Greedy	Cost = Additional Energy Consumption <u>Minimize</u> energy consumption by adding a new query
Hybrid	A combination of Greedy+Balanced <u>Greedy</u> to allocate incoming queries and <u>Balanced</u> to exchange existing query sets

Network Lifetime

Per-node Residual Energy

- Selects four nodes per query out of 15 possible
- Remaining energy is measured at the end of network lifetime
- Hybrid model achieves a longer lifetime by distributing power usage more evenly over available nodes

Online Query Optimization

- Why?
 - Queries may be submitted at any time
 - Availability of sensor nodes may change
- Main focus of query optimization is to save energy
 - Maximize sharing of communication and sensing costs among queries

AQP Demonstration

- Implemented support for the "Pursuer-Evader Game" scenario
 - Tracks an enemy evader through a field
 - Location estimate is used to pursue the evader
- Steps
 - Energy-aware Coordinator election
 - Energy-aware, geographically-distributed Sentry assignment
 - Detection and aggregation for estimation
 - Adaptive estimation
 - Re-election of Coordinators and Sentries

Content-Aware Metadata Creation and Access

- Wireless handheld devices and sensors are becoming everywhere!
- Amount of digital media data is rapidly increasing and becoming burdensome to manage
 =>Difficult to find, edit, share, and reuse media because computers don't understand media content
 - Media is opaque and data-rich and lacks structured representations

Designed a framework to:

- Collect environmental information from wirelessly-enabled devices
- Associate the collected information, or "metadata," with digital media files
- Metadata facilitates easy search, categorization, and organization of files.

Communication Model

Heterogeneous Networks

- Mobile users (iPAQs & Stargates)
 - User input simulates taking pictures
 - 802.11 WLAN communication
- Environmental sensors (motes & RFIDs)
 - Measure temperature, light, and location
 - RF communication
- Logical sensors (laptops quipped with motes/RFIDs)
 - Communicate with mobile users and environmental sensors
 - 802.11 WLAN communication
 - RF & Bluetooth communication

Metadata Association

procedure Metadata_Association

mark photo-shoot time; wait 1 association period after photo; determine relevant time interval; associate file name and timestamp; while (Pop *the smallest offset* Data within relevant time interval) if (!duplicated (Data) && !filtered (Data)) write Data to metadata;
Context-Aware Image Creation

Database and GUI

 Images and associated metadata are transferred to a desk/lap-top PC server

• XML parsed and loaded into the database

• GUI application allows for flexible search and edit

Prototyping and Experimentation

Testbed

- -2 mobile nodes (iPAQs)
- 3 logical nodes
- -13 environmental sensors
- Users walk around, take pictures, and collect environmental data
 - 1-hour simulation
 - Two users at a time, total of 9 users
- Data collection
 - On-demand
 - Periodic

Experimental Setup

Distributed Location Service

A Typical Scenario:

- Mobile nodes issue queries to the ``static'' sensor network
 - Query results are returned to the requester mobiles

When query results are generated:

- Mobile nodes which issued query may have moved away
- Need to route sensed data to a mobile sink!

DLSP: Distributed Location Service Protocol

- What does it do?
 - provides the updated location information of mobile sinks to static sensor nodes
- How?
 - Each mobile independently elects location servers
 - Location info of mobiles is sent to their location servers
 - Other nodes contact the location servers to obtain the location of mobile sinks

Grid Construction

Location Server Election

- Level-0 Servers
 - All the nodes within the same level-1 square
- Level-k Servers
 - One from each of neighboring level-k squares
 - Relative location: H(id,k)
- Denser near M and sparser away from M

- Mobile Node M
- $DLS_0(M)$ $DLS_1(M)$
- $DLS_2(M)$ $DLS_3(M)$

Location Query

- Sink node issues a query if it needs the location of M
- Query is recursively passed to the higher- level (presumed) server

- Mobile Node M Source node
- $DLS_0(M)$ $DLS_1(M)$
- $DLS_2(M)$ $DLS_3(M)$

Overhead of DLSP

- Location Query
 - d: distance between src and dst
 - # of msg/query: O(d)
 - delay/query: O(d)
- Location Information Maintenance
 - N: # of sensor nodes, M: # of mobile nodes, L: network size (distance)
 - Mem requirement per sensor node: O(M*log (N)/N)
 - # of msg/mobile node/period: O(L*log (N))

Comparison with Others

- MIT's GLS
 - GLS: Every node is assumed mobile
 - DLSP: Only a small portion of nodes are mobile
 => more efficient
- Landmark routing
 - DLSP: No need to maintain landmark hierarchy (when nodes move, die, etc.)
- TTDD
 - No overhead for query forwarding, double agent, and local query re-flooding

Security in Networked Embedded Systems

Sensor Network

- Self-organizing, self-healing
- Battery-powered
- Unattended, not rechargeable
- A large number of nodes

Threat Model

OUTSIDER

Data Attacks

- Traffic capture/replay
- Spoofing if unencrypted
- Man-in-the-middle (limited)

Radio Attacks

- High-power jamming
- Radio source detection

Physical Attacks

- Reprogram as malicious
- Destroy device
- Extract key materials

INSIDER

Data Attacks

- Traffic injection/flooding
- Unlimited spoofing
- DoS, Man-in-the-middle

Service Disruption on

- Routing (altered/selective)
- Clock synchronization
- Localization

Miscellaneous

- Service/data to adversary
- Malicious service to net

Why LiSP?

THREAT	DEFENSE	PROBLEM	SOLUTION
 Attack on Traffic Eavesdropping Traffic replay, modification, injection Service disruption, DoS 	 Key Sharing Globally Group-based Pairwise Re-Keying Periodically Event-triggered 	 Vulnerable to sensor compromises Large re-keying overhead Transcoding per hop 	Group-based Key Management Two-Tier Nets Distributed Key Management P2P Nets
Attack on Program The adversary can • capture • reverse-engineer • re-program • clone sensor device(s)	 H/W Tamper- Resistance S/W Obfuscation Result Checking Self-Decryption 	Protection of program itself → Defenseless once broken	Soft Tamper-Proofing via Program-Integrity Verification

LiSP Architecture

Sensor Networks Research at UCB

Miniaturization – Pister (SmartDust)

54

Low Power RF – Rabaey (PicoRadio)

- CMOS
 - Cheap, Integrated
- mW -> sub mW
- Simple

RF Filter

LNA

• Advantage in Numbers

Env

Det

Env

Det

RF Filter

RF Filter

f_{clock}

RX On: 3 mW

Off: 0 mW

BWRC

System/Networking/Programming – Culler

Structural Monitoring – Glaser, Fenves

- Dense Instrumentation of Full Structure
 - Cost is all in the wires
- Leads to in situ monitoring

Protection – Sastry, Culler, Brewer, Wagner

Detect vehicle entering sensitive area, track using magnetics, pursue and capture by UGV. Components

- 10x10 array of robust wireless, self-localizing sensors over 400 m² area
- Low cost, robust 'mote' device
- Evader: human controlled Rover
- Pursuer: autonomous rover with mote, embedded PC, GPS
- Operation
 - Nodes inter-range (Ultrasonic) and self localize from few anchors, correct for earth mag, go into low-power 'sentry' state
 - Detect entry and track evader
 - Local mag signal processing determines event and announces to neighbors
 - Neighborhood aggregates and estimates position
 - Network routes estimate from leader to tracker (multihop)
 - Pursuer enters and navigates to intercede
 - Motes detect and estimate multiple events
 - Route to mobile Pursuer node
 - Disambiguates events to form map
 - Closed inner-loop navigation control
 - Closed information-driven pursuit control

Sensor Net Databases – Hellerstein, Franklin

- Relational databases: rich queries described by declarative queries over tables of data
 - select, join, count, sum, ...
 - user dictates what should be computed
 - query optimizer determines how
 - assumes data presented in complete, tabular form
- database operations over streams of data
 - incremental query processing
- process the query in the sensor net
 - query processing == contentbased routing?
 - energy savings, bandwidth,

SELECT AVG(light) GROUP BY roomNo

Security - Wagner

VigilNet University of Virginia

Energy Efficient Surveillance Syst

1. An unmanned plane (UAV) deploys motes

Sentry

3.Sensor network detects vehicles and wakes up the sensor nodes

2. Motes establish an sensor network with power management

Diffusion Routing Neighbor Discovery Time **Synchronization Parameterization Sentry Selection Coordinate Grid Data Aggregation Data Streaming Group Management** Leader Election Localization **Network Monitor Tripwire Service** Reconfiguration **Reliable MAC** Leader Migration Scheduling State **Synchronization**

.

Goals

- Develop an operational self-organizing sensor network of size 1000
- Cover an area of 1000m x 100m
- Stealthy
- Lifetime 3-6 months
- Timely detection, track and classification
 - Large or small vehicle
 - Person, person with weapon
- Wakeup other devices when necessary
 - Extend the lifetime of those devices as well
- Exhibit self-healing capabilities

VigilNet Architecture V1.3

Native and Lawrence

Sensing Lave

Tripwire-based Surveillance

- Partition sensor network into multiple sections.
- Turn off all the nodes in dormant sections.
- Apply sentry-based power management in tripwire sections
- Periodically, sections rotate to balance energy.

System Test with 203 Nodes

3-Tier Classification

Concluding Remarks

- Sensor networks provide an inexpensive vehicle for exploring various (old and new) research issues
- Commercial applications with RFIDs as leader
- Current and future directions: query processing using geostatistics, sensor network security; tradeoffs among perf, security, reliability and resource consumption; extreme scaling and other DoD/commerical apps.