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ANNIE Outline

• Permutation problems for GA’s to solve.

• The N Queens problem.

• Introducing Ordered Greed.

• Creating permutations.

• Representing permutations with signatures.
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ANNIE Outline

• Crossovers with signatures.

• MOX: merging crossover.

• Even preceed odds: a toy problem to compare crossovers.

• Comparing crossovers with N Queens.

• Coloring random planar Hamiltonian graphs.

• Ordered Greed application areas.
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N Queens—an Illustration of Permutation-Based GA

Place N mutually un-attacking Queens on an N ×N chess board.

(Queens attack on rows, columns, and diagonals.)

((Noise on the Internet: NP complete, indeed!))
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Permutation Is Placement

Let the GA creatures be permutations of (0, 1, · · · , N − 1):

Individual = (c0, c1, · · · , cN−1).

Interpret this as a Queens placement:

The Queen in row k is in column ck.

Fitness: number of Queens unattacked by Queens on previous rows.
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How to Make a Permutation

for i = 0 to N−1 do
Pi = i

end for
for i = 0 to N−1 do
k = random int(N − i)
Interchange Pi with Pi+k

end for

This uniformly generates permutations of {0, · · · , N − 1}
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First Example of Ordered Greed (OG)

Permutations Order Placement
The GA creatures are permutation of (0, 1, · · · , N − 1):

individual = (c0, c1, · · · , cN−1).
Interpret this as a placement ordering:

for i = 0 to N−1 do
Place the Queen in row cj
in the left-most safe column

end for

Fitness: the number of successfully placed Queens.
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Ordered Greed in Action

Permutation individual: 3 4 1 5 7 0 6 2

Row 3, col 0
Row 4, col 2
Row 1, col 1
Row 5, col 4
Row 7, col 3
Row 0, col 5
Row 6, col 7
Row 2, col 6

Fitness = 8 = 100%
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Greed Ordered by 3 4 1 5 7 0 6 2

0 1 2 3 4 5 6 7

0 6
1 3
2 8
3 1
4 2
5 4
6 7
7 5
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Fitnesses of 20,000 Random 642 Boards

Successfully placed Queens’ histograms.
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Note the efficacy of Ordered Greed vs. random placement.
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Fitnesses of Some Random 2562 Boards
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Note the efficacy of Ordered Greed vs. random placement.
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Crossing Over: the Problem

Cross over the two permutations

6 7 4 3 1 0︸ ︷︷ ︸ 5 2

0 1 2 3 4 5︸ ︷︷ ︸ 6 7

by swapping the indicated substrings.

The results are not permutations:

6 7 2 3 4 5 5 2

0 1 4 3 1 0 6 7
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Repairing the Crossover Damage

• PMX: “partially matched crossover”

• OX: “ordered crossover”

• CX: “cycle crossover”
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PMX: Partially Matched Crossover

Pick an arbitrary position in two parent permutations:

8 2 4 3 7 5 1 0 9 6
4 1 7 6 2 8 3 9 5 0

That choice means to interchange 5 with 8 in both parents.

5 2 4 3 7 8 1 0 9 6
4 1 7 6 2 5 3 9 8 0

Perform this operation several times, creating children with characteristics
of both parents.
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OX: Ordered Crossover

Pick about half of the elements of the first parent, (here, we choose 2, 4,
5, 1, and 6) and copy them to the child, preserving the positions.
Choose the remaining values (0, 3, 7, 8, and 9) from the second parent,
and copy them to the child, preserving the order.

8 2 4 3 7 5 1 0 9 6
4 1 7 6 2 8 3 9 5 0

7 2 4 8 3 5 1 9 0 6

This preserves the some orderings of elements in both parents and position
of some in the first parent.
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CX: Cycle Crossover

This crossover preserves the position and value of everything.
Follow the reasoning: if the first position of C1 is 4, then the first position
of C2 must be 3.
Then the 3 in C1 must agree with P1, so the 6 in C2 must agree with P2.
And so on.

4 1 7 6 2 8 3 9 5 0
3 9 0 1 2 4 6 8 7 5

The consequences of the 4 in the first position of C1 is:

4 1 7 6 2 8 3 9 5 0
3 9 0 1 2 4 6 8 7 5
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CX: Cycle Crossover, Cont.

Both parents have 2 in the same position, so that is fixed.

The 7–0 pair can be interchanged, with consequences for 5.

4 1 7 6 2 8 3 9 5 0
3 9 0 1 2 4 6 8 7 5

The consequences of the 4 in the first position of C1 is:

4 1 0 6 2 8 3 9 7 5
3 9 7 1 2 4 6 8 5 0

This looks a lot like uniform crossover—but only certain swaps are allowed.
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An Example of Many Cycles

0 1 2 5 3 10 6 4 11 7 8 12 13 9 14 15
1 0 3 6 4 11 7 2 12 8 9 13 14 5 15 10

This pair of parents has four cycles:
{0, 1}, {2, 3, 4}, {5, 6, 7, 8, 9}, {10, 11, 12, 13, 14, 15}

Hence they can create a 24 = 16 possible children.

For example, the pattern below can be copied to children right-side-up or
up-side-down:

- - - 5 - - 6 - - 7 8 - - 9 - -
- - - 6 - - 7 - - 8 9 - - 5 - -
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An Efficiency Challenge for PMX, OX, and CX

How can these operations be performed without resorting to multiple scans
of the strings?

Try for O(N) not O(N2) steps!
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Representing Permutations

A permutation’s signature is a list of places.

{p0, p1, p2, · · · , pN−1} satisfying: 0 ≤ pk < N − k

Meaning: “Try to put k in position pk”

(There are exactly N ! lists.)
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Creating a Signature

for i = 0 to N−1 do
Si = random int(N − i)

end for

This procedure uniformly generates permutation signatures.
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Manipulating Signatures

Preserve the rule: 0 ≤ sk < N − k

Mutate:
• Increment or decrement sk mod N − k
• Replace sk with random value mod N − k

Crossover, as usual:
• One point.
• Two point.
• Uniform.
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Converting a Signature to a Permutation

for i = 0 to N−1 do
Pi = i

end for
for i = 0 to N−1 do

Interchange Pi with Pi+Sk

end for

We require that Pi+Si
does not precede Pi. i.e.: 0 ≤ Si < N − i

This decoding only costs O(N).
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Inverting: Given a Permutation, What is Its Signature?

A problem for the interested student.

This will demonstrate the 1-1 correspondence between signatures and
permutations.
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Merging Crossover: MOX

Randomly merge two parents into a 2N -element list, L
(this operation is similar to a riffle shuffle of cards).

The first instance of each value in L gives the first child,
and the second instance gives the second child.

Example parents: p1 = {3 9 0 1 2 4 6 8 7 5}, p2 = {2 6 7 1 4 8 0 3 5 9}

Merge p1 and p2: L = { 2 3 6 7 1 4 9 0 8 0 1 2 3 4 6 5 8 7 5 9 }
(the elements from p1 are shown in bold).

Extract children: c1 = {2 3 6 7 1 4 9 0 8 5}, c2 = {0 1 2 3 4 6 8 7 5 9}
(the p1 contribution is still shown in bold).
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Notes and Properties of MOX

The intermediate list, L, is not needed, except conceptually.

All we need is a one-element buffer, X, that is filled from the initial elements
of the two parents, treated as queues, chosen at random.

X is appended to the first child, if X is not already present, otherwise it is
appended to the second child.
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MOX Pseudocode

for i = 1 to 2N do
if random choice = 1 and p1 not depleted then

X ← next element of p1
else
X ← next element of p2

end if
if X is not already in c1 then

add X to c1
else

add X to c2
end if

end for
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Notes and Properties of MOX

OG seeks good precedence orders among permutation elements.

Let “a ≺ b” denote that “a precedes b” in a given permutation.

MOX seems particularly suitable for OG because:

a ≺ b in both parents ⇒ a ≺ b in both children

If a ≺ b in one parent and b ≺ a in the other, then both children can have
a ≺ b, both can have b ≺ a, or the two children can be mixed.

Other permutation crossovers (signatures, CX, OX, PMX) can fail to
preserve two parents’ a ≺ b.
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Adam and Eve

Any permutation and its reverse can produce any permutation as an eventual
descendant.

(Binary string one-point crossover can do this starting with any string and
its complement.)
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MOX and Generalizations of Permutations

OG can deal with permutations of multisets
i.e., sets in which some elements appear more than once.

Application: assign several workers (e.g., faculty) to several jobs (classes).

In advance, determine how many jobs each person will do.

A person who must get k jobs appears k times in a list.

MOX can breed such lists.
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Even Precedes Odds: A Toy Problem

A permutation-based analogy to the problem
maximize the number of 1’s in a binary string.

A perfect string has all the even numbers in the left half.

Partial credit (gives a pretty good gradient towards solutions):
if k < N/2 and Pk with the right parity contributes N/2− k
if k > N/2 and Pk with the right parity contributes 1 + k −N/2

Use this problem with N = 100, population=100, mutation rate=0.001
to compare MOX, PMX, and signatures.

Each problem ran 100 times with different random seeds.
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Even Precedes Odd Results: MOX Wins!

xover min Q1 median Q3 max

MOX 3,769 5,647 6,392 7,347 11,028
PMX 5,239 17,069 30,012 59,263 –

Sig. 1 Pt. 15,824 31,325 44,534 70,175 –
Sig. 2 Pt. 12,514 29,298 45,928 68,969 –
Sig. Unif. 8,648 23,764 38,847 61,547 –

Fitness evaluation counts to solve “evens preceed odds” for five crossovers.

100 tries for each crossover. We report minimum, first quartile, median,
third quartile, and maximum number of fitness evaluations.

“–”: Max > 100,000, so the process was stopped.
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500 Queens Results: MOX Wins! (Mostly)

xover min Q1 median Q3 max

MOX 162 974 1,444 2,049 5,005
PMX 184 988 1,722 2,573 7,862

Sig. 1 Pt. 128 766 1,144 1,627 29,706
Sig. 2 Pt. 30 763 1,142 1,726 10,885
Sig. Unif. 204 1,079 1,551 2,539 25,423

The number of fitness evaluations needed to solve the 500-Queens problem
for five crossover techniques.
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Warnsdorff’s Knight Heuristic

See: W. W. Rouse Ball & H. S. M. Coxeter,
Mathematical Recreations & Essays,
University of Toronto Press, 1974.

They refer to: H. C. Warnsdorff
Des Rösselsprunges einfachste und
allgemeinste Lösung, Schamlkalden, 1823.

A knight can tour the chess-board by visiting hardest-to-visit locations first.

A Hamiltonian graph path attempt should try low-degree vertices first.
(Degrees decrease as neighbors are visited.)
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Warnsdorff’s N Queens Heuristic

Place the hardest-to-place Queen next.

In case of tie, use our permutation.
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Histograms: W/ & W/O Heuristics

256 Queens Fitnesses
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Histograms: The 2 Heuristics

256 Queens Fitnesses
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Warnsdorff Uses 2 0 7 6 4 5 1 3

Row 2 has 8 chances
Row 2, col 0

Row 0 has 6 chances
Row 0, col 7

Row 7 has 5 chances
Row 6 has 4 chances

Row 6, col 6
Row 7 has 4 chances
Row 4 has 2 chances

Row 4, col 5
Row 7 has 3 chances
Row 5 has 1 chances

Row 5, col 1
Row 7 has 1 chances

Row 7, col 4
Row 1 has 1 chances

Row 1, col 3
Row 3 has 1 chances

Row 3, col 2

New hero indiv. #1 fitness = 8 = 100.00%
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Warnsdorff Uses 2 0 7 6 4 5 1 3

0 1 2 3 4 5 6 7

0 2
1 7
2 1
3 8
4 4
5 5
6 3
7 6
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Warnsdorff Uses 1 2 4 5 6 7 0 3

Row 1 has 8 chances

Row 1, col 0

Row 2 has 6 chances

Row 2, col 7

Row 4 has 4 chances

Row 4, col 6

Row 5 has 3 chances

Row 6 has 2 chances

Row 6, col 1

Row 5 has 1 chances

Row 5, col 3

Row 7 has 1 chances

Row 7, col 4

Indiv. #5 fitness = 6
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Warnsdorff Uses 1 2 4 5 6 7 0 3

0 1 2 3 4 5 6 7

(0)
1 1
2 2

(3)
4 3
5 5
6 4
7 6

Rows 0 and 3 received no Queen.
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GA Results

We used the following parameters:

uniform 1

POP_SIZE 50

LOOPS 1000

tournament_size 2

MUT_RATE 0.001

N 256

We ran the algorithms 100 times: seed = 1.1, 2.2, · · · , 100.100.
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GA Results, N = 256, Using OG

We only allowed 1,000 loops!
The OG GA succeeded in 57% of the trials

count tries fitness
14 277 256
10 331 256
10 593 256

9 637 256
14 948 256
43 2050 255

Allowing up to 2,050 trials, random search succeeded in 16% of 100 trials.
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GA Results, N = 256

Ordered Greed with Warnsdorff
(all solutions in initial population)

count tries fitness
16 5 256
14 10 256
10 14 256
14 19 256
27 23 256
10 25 256
9 26 256
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Results, N = 256 (without OG)

Permutations (total failure)

count tries fitness
14 2050 178
10 2050 180
36 2050 181
9 2050 182

16 2050 185
15 2050 187
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GA Results, N = 8

Ordered Greed
(all solutions in initial population)

count tries fitness
14 1 8
22 2 8
16 3 8
14 7 8
15 13 8
9 14 8

10 16 8
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GA Results, N = 8

Ordered Greed with Warnsdorff
(all solutions in initial population)

count tries fitness
50 1 8
22 3 8
14 6 8
14 7 8

pg. 47



GA Results, N = 8 (without OG)

Permutations (the GA worked 65%)

count tries fitness
10 54 8
15 58 8
16 144 8
10 190 8
14 302 8
35 2050 7

This is marginally better than random search.
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Graph Coloring Problems

• G = (VG, EG) is a set of vertices, VG, and a set of edges, EG.

• An edge, (v, w), connects the vertices v and w.
Vertices v and w, are adjacent in G.

• A coloring of G is a function c : VG → K
(K is the set of colors)
such that (v, w) ∈ EG ⇒ c(v) 6= c(w)
G is k-colorable if it has a coloring: |K| = k.

• The smallest k is the chromatic number of G.
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Graph Coloring

Famous graph coloring problem: map coloring.

Vertices are countries. Edges connect countries touch.

Touching countries must be colored differently.

Graph coloring also models:
exam scheduling, process scheduling, memory allocation, ...

Graph coloring is NP-complete: there is no known efficient algorithm. Fast
approximations are desirable.

We color random 3-colorable graphs with edge density p = 0.1.
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Kubale’s Sequential Coloring Algorithm

Given: a permutation of VG: v0, v1, v2, · · · , vN−1

for k = 0 to N−1 do
Color vk: use the smallest color number
not assigned to a vertex adjacent to vk.

end for

Different permutations of VG can give different color assignment.
The best coloring is clearly achievable!
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Heuristics?

Warnsdorff may improve the performance:

First color the hardest-to-color vertices.

A vertex is hard to color if its neighbors use many colors.

Break ties with the vertex permutation.
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1,000,000 Tries to Color G100 by the Sequential Method

Fitness is the number of vertices colored with three colors.
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100,000 Tries to Color G3000 by the Sequential Method
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Building Random Graphs G100 and G3000

Build a graph with VG = {0, 1, 2, 3, · · · , N − 1}.

for v = 0 to N − 2 do
for w = v + 1 to N − 1 do

if v 6≡ w (mod 3) then
(v, w) ∈ EG with probability p

end if
end for

end for

Edge density is p = 0.1 for all 3-coloring experiments.

pg. 55



Why Density p = 0.1?

We did 10,000 coloring attempts with graphs of 100 vertices & edge
densities of 0.01–0.40.

Small density graphs have many small connected components, thus easy to
color.

Large density graphs have many triangles. An easy coloring strategy: locate
and color the vertices in a triangle, then color the vertices in triangles with
edges in common with a colored triangle.
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Why p = 0.1? The Experiments: p = 0.01 · · · 0.40
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The Experiments

Use 3-colorable G100 (100 vertices, edge density p = 0.1)

Vary the population size.

Vary the tournament size.

Color the 3-colorable G3000.

pg. 58



Ordered Greed: Fitness Evals for Pop Sizes 10–999
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Tournament Sizes 2–99 to Color G100

Average = 2,674. Population size = 200.
Doesn’t tournament size matter?
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Proof of the Pudding: Color G3000
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1,658 fitness evaluations. Population size = 200. Tournament size = 5.
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Coloring Hamiltonian Planar Graphs

The vertices are on a sphere’s equator.

The edges are randomly drawn to triangulate each hemisphere.

Type 1 graphs: only use the edges in the northern hemisphere.
These are 3-colorable, uniquely.

Type 2 graphs: use the edges in both hemispheres.
These are 4-colorable, right?

Type 1 graphs proved harder to color!
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Experiments & Results

190 random graphs of each type, 11 ≤ N ≤ 200.
21 attempts to color each.

MOX, pop=20, mut-rate=0.01, max 100,000 fitness evaluations.

Type 1 graphs
11 ≤ N ≤ 30 all success
31 ≤ N ≤ 64 most success
65 ≤ N ≤ 110 < half success
111 ≤ N ≤ 200 all failed

Type 2 graphs
11 ≤ N ≤ 50 all success
59 ≤ N ≤ 171 most success
172 ≤ N ≤ 200 < half success
Every type 2 graph was colored.

pg. 63



Using Warnsdorff to Help Color Graphs

OG + Warnsdorff: color the hardest-to-color first.

Break ties using the permutation.

Result for type 1 graphs: The first attempt to color each one worked.

Type 2 graphs: work in progress.
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An OG Applications Sampler

O. G. is natural & appropriate for a variety of problems.

A necessary condition: The optimal solution can be found by a greedy
algorithm and the right permutation.

Many permutations will produce the same, or equivalent, answer.
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An OG Applications Sampler

• N Queens

• Graph vertex & edge coloring

• Scheduling in general

• Exam scheduling

• Sports tournaments scheduling

• Multiprocessors scheduling

• Faculty teaching assignments

• Job assignments

• Matching

• Traveling salesman

• Bin packing

• 2D board cutting

• Pentominos

• SAT, 3SAT
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