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Computational Imaging 
Computed tomography Seismic imaging

Computational microscopyCoded-aperture imaging

Light-field / plenoptic imaging Single-pixel imaging
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Radar Imaging Basics

•All-weather
•Day and night operation
•Superposition of response 
from scatterers – tomographic 
measurements

•Synthetic aperture radar (SAR)
•Computational imaging problem: 
Obtain a spatial map of reflectivity from radar returns
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Outline

• Sparsity and compressed sensing for radar imaging

• Machine learning for radar imaging
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Initial motivation for our work

• Accurate localization of dominant scatterers

– Limited resolution

– Clutter and artifact energy

Some challenges for automatic decision-making from SAR images:

• Region separability

– Speckle

– Object boundaries

• Low SNR, limited apertures
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Sparsity and Compressibility of Signals
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Underdetermined Linear Inverse Problems

• A simple example:

– : “band-limited”

DFT operator

– : identity matrix
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Underdetermined Linear Inverse Problems, 
Sparsity, Compressed Sensing

• Basic problem: find an estimate of     , where

• Underdetermined -- non-uniqueness of solutions
• Additional information/constraints needed for a unique 

solution
• If we know       is sparse (i.e., has few non-zero elements)?

• Intractable combinatorial optimization problem
• Past work on sparse signal representation (including ours) 

has produced principled and feasible alternatives
– lp relaxations or greedy methods 

[ ]

Number of non-zero elements in f
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SAR Ground-plane Geometry

• Scalar 2-D complex reflectivity field 

• Transmitted chirp signal:

• Received, demodulated return from circular patch:
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SAR Observation Model

• Observations are related to projections of the field:

• SAR observations are band-limited slices from the 2-D Fourier 
transform of the reflectivity field:

• Discrete tomographic 

SAR observation model:
(combining all measurements)

Observed data

SAR Forward 
Model Unknown field

Noise



Müjdat Çetin IEEE WNYISPW 2019

Conventional Image Formation

• Given SAR returns, create an estimate of the reflectivity field f

Polar format algorithm:

• Each pulse gives slice of 2-D Fourier transform of field

• Polar to rectangular resampling

• 2-D inverse DFT

Support of observed data 
in the spatial frequency domain

Sample Conventional Image
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Sparsity-Driven Radar Imaging – basic version

• Bayesian interpretation: MAP estimation problem with 
heavy-tailed priors

• Complex-valued data and image

• Magnitude of complex-valued field admits sparse 
representation

• No informative prior on reflectivity phase

• Typical choices for L: 
– identity (point-enhanced imaging) 

– gradient (region-enhanced imaging)

• Optimization problem structure is different from 
common sparse representation problems

(f | y) (y | f) (f)p p p
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One way to solve the optimization problem

• Alternating Direction Method of Multipliers (ADMM)

• An augmented Lagrangian method developed in 1970s, 
with roots in 1950s -- rediscovered recently!

• Contains ideas involving dual decomposition, method 
of multipliers, proximal methods, variable splitting 

• Enables decoupling terms related to data and priors

• Suited to distributed optimization
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A basic ADMM for l1 minimization 

• Cost function:

• Augmented Lagrangian with variable splitting:

• Iterative solution:
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Point-Enhanced Imaging

Synthetic scene

Original Conventional Point-Enhanced
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Sparsity-Driven SAR Imaging Results

Point-enhanced Region-enhanced Wavelet dictionary
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Conventional Sparsity-driven, ADMM-based

Sparsity-Driven SAR Imaging Results
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Dictionary Learning 
for Sparsity-Driven SAR Imaging

Training Images

K-SVD

Learned 

dictionary

Conventional Learning-based
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Deep Learning-based Priors 
for SAR Imaging

• A new SAR image reconstruction framework 
utilizing Plug-and-Play (PnP) priors
– Optimization-based reconstruction - regularized 

inversion, MAP estimation

– Decoupling the data and the prior through ADMM

– Deep learning-based prior
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Problem Formulation

• Discretized SAR observation model:

𝐲 = 𝐀𝐟 + 𝐧

• Retrieve 𝐟 using a regularized cost function:

 𝐟 = argmin
𝐟

{𝔇 𝐟 + 𝜆ℜ(𝐟)}

where 𝔇 𝐟 = 𝐲 − 𝐀𝐟 2
2 and ℜ(𝐟) is the regularizer
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Problem Formulation

• Prior information or regularization constraints on the
magnitude of 𝐟

• Rewrite 𝐟 = 𝚯 𝐟 where  is 𝚯 a diagonal matrix 
containing the phase of 𝐟 in the form 𝑒𝑗𝜙(𝐟)

• Cost function becomes:

 𝐟 ,  𝚯 = argmin
𝐟 ,𝚯

𝐲 − 𝐀𝚯 𝐟 2
2 + 𝜆ℜ(𝐟)
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Variable Splitting and ADMM

• Introduce an auxiliary variable with a constraint:
 𝐟 ,  𝚯,  𝐡 = argmin

𝐟 ,𝚯,𝐡
𝐲 − 𝐀𝚯 𝐟 2

2 + 𝜆ℜ 𝐡

𝑠. 𝑡. 𝐟 − 𝐡 = 0

• Augmented Lagrangian (in scaled form):
 𝐟 ,  𝚯,  𝐡,  𝐮 = argmin

𝐟 ,𝚯,𝐡,𝐮
𝐲 − 𝐀𝚯 𝐟 2

2 + 𝜆ℜ 𝐡

+
𝜌

2
𝐟 − 𝐡 + 𝐮 2

2 +
𝜌

2
𝐮 2

2
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Variable Splitting and ADMM - details

• Let  𝜽 ∈ ℂ𝑁×1 be a vector containing the diagonal 
elements of the phase matrix 𝚯

• Invoke the constraint that the magnitudes of the 
elements of 𝜽 should be 1, since they contain phases 
in the form 𝑒𝑗𝜙(𝐟)

• Let 𝐁 be a matrix whose diagonal elements contain 
the reflectivity magnitudes

• Let  𝐟 =  𝐡 − 𝐮 and  𝐡 =  𝐟 + 𝐮
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Variable Splitting and ADMM

• Each iteration of the ADMM algorithm performs the following
steps enabling the use of a Plug-and-Play (PnP) prior approach:

 𝜽 = argmin
𝜽

𝐲 − 𝐀𝐁𝜽 2
2 + 𝜆𝛉  𝑖=1

𝑁 ( 𝜽𝑖 − 1)2

 𝐟 = argmin
𝐟

𝐲 − 𝐀𝚯 𝐟 2
2 +

𝝆

2
𝐟 −  𝐟

2

2

 𝐡 = argmin
𝐡

𝜆ℜ 𝐡 +
𝝆

2
 𝐡 − 𝐡

2

2

 𝐮 = 𝐮 +  𝐟 −  𝐡

where 𝜆𝛉 is a hyperparameter

Data

Prior

Data
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Convolutional Neural Network (CNN)-based 
Prior

• Architecture: modified version of the network used in [1]

• 20 convolutional modules

• First and even numbered modules: 64 3×3 filters with
padding 1, stride 1

• Remaining modules: 64 5×5 filters with padding 2, stride 1

• Each module has batch normalization and ReLU layers

[1] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep
CNN for image denoising,” IEEE Transactions on Image Processing, 26(7):3142-3155, 2017.
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Training the CNN - Synthetic Scenes

Using 64×64 ground truth images for CNN training:
• Add random phase to training images and obtain the phase histories.
• Apply complex-valued additive noise to the phase histories.

– Magnitude uniformly distributed over [0, 𝜎𝑦], where 𝜎𝑦 is the standard deviation 
of the magnitude of the phase history data

– Phase uniformly distributed over [−𝜋, 𝜋]

• Perform conventional reconstructions.
• Extract 16×16 overlapping patches from these conventional images and 

their corresponding ground truths, to construct input-output pairs.
• Augment the pairs of images through rotation by [90°, 180°, 270°].
• Train the network using these augmented pairs of images, with image 

reconstructed from noisy data as input and ground truth image as 
output.
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Synthetic Data Experiments --Training Set
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Test Set

• 5 different phase history data availability levels:

100%, 87.89%, 76.56%, 56.25%, 25%

• 2 different noise levels (𝜎𝑛 ∈ 0.1, 1 𝜎𝑦)

• Rectangular band-limitation for data reduction
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Qualitative Results: Image 7, 𝜎𝑛 = 0.1𝜎𝑦 and full data
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Qualitative Results: Image 7, 𝜎𝑛 = 0.1𝜎𝑦 and 87.89% data
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Qualitative Results: Image 7, 𝜎𝑛 = 0.1𝜎𝑦 and 76.56% data
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Qualitative Results: Image 7, 𝜎𝑛 = 0.1𝜎𝑦 and 56.25% data
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Qualitative Results: Image 7, 𝜎𝑛 = 0.1𝜎𝑦 and 25% data



Müjdat Çetin IEEE WNYISPW 2019

Quantitative Results
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Preliminary Results 
on Real Scenes from TerraSAR-X

• Training based on the Netherlands Rotterdam Harbor Staring
Spotlight SAR image (1041 × 1830)

– Split into 448 non-overlapping 64 × 64 ‘‘windows’’

– 1075648 overlapping 16 × 16 patches extracted from windows

– Patches augmented with rotations of 90°, 180°, 270°

• Test set: 751 selected windows extracted from the Panama High 
Resolution Spotlight SAR image (2375 × 3375)
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Qualitative Results: Image 608, 𝜎𝑛 = 𝜎𝑦, full data
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Qualitative Results: Image 608, 𝜎𝑛 = 𝜎𝑦, 87.89% data
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Qualitative Results: Image 608, 𝜎𝑛 = 𝜎𝑦, 76.56% data



Müjdat Çetin IEEE WNYISPW 2019

Qualitative Results: Image 608, 𝜎𝑛 = 𝜎𝑦, 56.25% data
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Qualitative Results: Image 608, 𝜎𝑛 = 𝜎𝑦, 25% data
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Conclusion
• A line of inquiry that lies at the intersection of several domains:

– Radar sensing

– Computational imaging

– Signal representation, compressed sensing

– Machine learning 

• Sparsity is a useful asset for radar imaging especially in

nonconventional data collection scenarios 

(e.g., when the data are sparse, irregular, limited)

• Deep learning methods may have the potential to learn 
complicated spatial patterns and enable their incorporation as 
priors into computational radar imaging
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IEEE Computational Imaging 
Technical Committee
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IEEE Transactions on 
Computational Imaging


