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Radar Imaging Basics

e All-weather

*Day and night operation

* Superposition of response
from scatterers — tomographic
measurements

e Synthetic aperture radar (SAR)
e Computational imaging problem:
Obtain a spatial map of reflectivity from radar returns
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Outline

* Sparsity and compressed sensing for radar imaging

* Machine learning for radar imaging
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Initial motivation for our work

Some challenges for automatic decision-making from SAR images:

e Accurate localization of dominant scatterers
et — Limited resolution
— Clutter and artifact energy

* Region separability
— Speckle

— Object boundaries

 Low SNR, limited apertures
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Sparsity and Compressibility of Signals
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Underdetermined Linear Inverse Problems
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Underdetermined Linear Inverse Problems,

Sparsity, Compressed Sensing
e Basic problem: find an estimate of f*, where

y=Af* (A:MxN, N>M) [—a—]

* Underdetermined -- non-uniqueness of solutions

e Additional information/constraints needed for a unique
solution

e If we know f* is sparse (i.e., has few non-zero elements)?

f,, = arg min ||f|h\% subject to y = Af

Number of non-zero elements in f

e Intractable combinatorial optimization problem

e Past work on sparse signal representation (including ours)
has produced principled and feasible alternatives
— 1, relaxations or greedy methods
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SAR Ground-plane Geometry

qe(u)

e Scalar 2-D complex reflectivity field f(z,y)
e Transmitted chirp signal: s(t) = ®[e/(wotteat)] ¢ < 22

* Received, demodulated return from circular patch:

Band-limited Fourier transform of gy(u)

~

] 2 2R
ro(t) = / go(u)  exp {—j— [wo + 2a (t — —)] u} du
lu|<L Projection of ¢ ¢

field f(z,y)
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SAR Observation Model

e Observations are related to projections of the field:

2 2R
ro(t) = / qp(u) exp§ —j = [wo + 20 (t —~ —)] w p du
lu|<L Projection of field < - c 72
~ f(z,y) at angle 6 Q(t)

Spatial frequency
e SAR observations are band-limited slices from the 2-D Fourier

transform of the reflectivity field: ! |
ro(t) = // flx,y)exp {—7Q(t) (xcosh + ysinh)} dx dy ‘
:132—|-y2§L2 mEa 34
= F[Q(t)cosh, Q(t)sinb]

e Discrete tomographic /Ly — /Af; + n

SAR observation model:

(combining all measurements) Observed data / \ Noise

SAR Forward _
Model Unknown field
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Conventional Image Formation

* Given SAR returns, create an estimate of the reflectivity field f

Support of observed data -
in the spatial frequency domain Ll CaniEhitons. Lhkse

Polar format algbrithm:

e Each pulse gives slice of 2-D Fourier transform of field
¢ Polar to rectangular resampling
* 2-Dinverse DFT
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Sparsity-Driven Radar Imaging — basic version

— 2
J(£) = lly = Af]l2 + L[]l
* Bayesian interpretation: MAP estimation problem with

heavy-tailed priors p(f|y) oc p(y|f) p(f)

* Complex-valued data and image
* Magnitude of complex-valued field admits sparse

representation
* No informative prior on reflectivity phase
e Typical choices for L: -
— identity (point-enhanced imaging) o
— gradient (region-enhanced imaging)

e Optimization problem structure is different from
common sparse representation problems
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One way to solve the optimization problem

e Alternating Direction Method of Multipliers (ADMM)

* An augmented Lagrangian method developed in 1970s,
with roots in 1950s -- rediscovered recently!

e Contains ideas involving dual decomposition, method
of multipliers, proximal methods, variable splitting

* Enables decoupling terms related to data and priors
e Suited to distributed optimization
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e (Cost

A basic ADMM for I, minimization

1
function: J(f)= EHY - AfH; + ﬂ,”f”l

 Augmented Lagrangian with variable splitting:
1
L, (f.9.0) = |y - Af[; + 2]g], + pu" (F ~9) + 7 [f -,

e Jterative solution:

Data

fl=(ATA+pl) (ATy+p(g" —u"))

Prior

gk+1 _ Sg/p (.I:k+1 n Uk)

uk+l _ uk +(.|:k+1 _gk+1)
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Point-Enhanced Imaging
Synthetic scene
Original Conventional Point-Enhanced
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Sparsity-Driven SAR Imaging Results

Conventional

Sparsity-driven
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Sparsity-Driven SAR Imaging Results

Conventional Sparsity-driven, ADMM-based
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Dictionary Learning
for Sparsity-Driven SAR Imaging

Conventional Learning-based

I— = mm mm ==Training Images™= === == - -l
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Deep Learning-based Priors
for SAR Imaging

* A new SAR image reconstruction framework
utilizing Plug-and-Play (PnP) priors
— Optimization-based reconstruction - regularized
inversion, MAP estimation

— Decoupling the data and the prior through ADMM
— Deep learning-based prior
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Problem Formulation

e Discretized SAR observation model:
y =Af + n

e Retrieve f using a regularized cost function:

f = argmin{D(f) + AR(f)}
f

where D(f) = ||y — Af||5 and R(f) is the regularizer
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Problem Formulation

e Prior information or regularization constraints on the
magnitude of f

e Rewrite f = O|f| where is © a diagonal matrix
containing the phase of f in the form e/

e (Cost function becomes:

{|ﬂ, @} = argmin|ly — A®|f|||5 + AR(f)
],
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Variable Splitting and ADMM

* Introduce an auxiliary variable with a constraint:

{‘ﬂ, 0, B} = argmin|ly — A®|f|||5 + AR(h)
|f],0,h

s.t.|fl—h=0
e Augmented Lagrangian (in scaled form):

{|ﬂ, 0, h, ’li} = argmin|ly — A®|f|||5 + AR(h)
|f],0,h,u

p p
+Z 1l = h +ull3 +lull3
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Variable Splitting and ADMM - details

e Let 8 € CV*! be a vector containing the diagonal
elements of the phase matrix ©

e Invoke the constraint that the magnitudes of the
elements of 8 should be 1, since they contain phases
in the form e/#®

* Let B be a matrix whose diagonal elements contain
the reflectivity magnitudes

o Letf=fl—uandil=|f|+u
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Variable Splitting and ADMM

e Each iteration of the ADMM algorithm performs the following
steps enabling the use of a Plug-and-Play (PnP) prior approach:

Data | O = argmin|ly — ABO||3 + g Yie.(16;] — 1)?
0

Data |f = argmin|ly — AO|f]||5 + g ” fl —f |z
|f]
Prior h = argmin AR (h) + g | h-h |2
h

d=u+|f[—h

where Aq is a hyperparameter
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Convolutional Neural Network (CNN)-based
Prior

e Architecture: modified version of the network used in [1]
e 20 convolutional modules

e First and even numbered modules: 64 3x3 filters with
padding 1, stride 1

* Remaining modules: 64 5x5 filters with padding 2, stride 1
e Each module has batch normalization and ReL.U layers

[1] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep
CNN for image denoising,” IEEE Transactions on Image Processing, 26(7):3142-3155, 2017.
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Training the CNN - Synthetic Scenes

Using 64x64 ground truth images for CNN training;:
¢ Add random phase to training images and obtain the phase histories.

e Apply complex-valued additive noise to the phase histories.

— Magnitude uniformly distributed over [0, 0, ], where o, is the standard deviation
of the magnitude of the phase history data

— Phase uniformly distributed over [—m, 7]
o Perform conventional reconstructions.

e Extract 16x16 overlapping gatches from these conventional images and
their corresponding ground truths, to construct input-output pairs.

* Augment the pairs of images through rotation by [90°, 180°,270°].

* Train the network using these augmented pairs of images, with image
reconstructed from noisy data as input and ground truth image as
output.
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Synthetic Data Experiments --Training Set
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Test Set

o 5 ditferent phase history data availability levels:
100%, 87.89%, 76.56%, 56.25%, 25%
* 2 different noise levels (o, € {0.1, 1}5,))

¢ Rectangular band-limitation for data reduction
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Qualitative Results: Image 7, g,, = 0.10,, and full data

Ground truth
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Qualitative Results: Image 7, 0, = 0.10,, and 87.89% data

Ground truth

PnP-based
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Qualitative Results: Image 7, 0, = 0.10,, and 76.56% data

Ground truth
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Qualitative Results: Image 7, g, = 0.10,, and 56.25% data

Ground truth

FFT-based
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Qualitative Results: Image 7, g,, = 0.10,, and 25% data

Ground truth

PnP-based
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Table: SNRs for selected images at various noise & data availability levels
Available Data Method SNR (dB)
0.10y, Image 7 oy, Image 2

FFT-based Reconstruction 36.539 14.980

100% Feature-enhanced Regularization [3] 36.968 15.069
Proposed Framework 38.075 23.235

FFT-based Reconstruction 10.960 8.883

87.89% Feature-enhanced Regularization [3] 22.484 13.502
Proposed Framework 36.754 22.460

FFT-based Reconstruction 8.659 6.878

76.56% Feature-enhanced Regularization [3] 12.402 10.518
Proposed Framework 35.465 18.730

FFT-based Reconstruction 6.393 4.432

56.25% Feature-enhanced Regularization [3] 7.886 5.568
Proposed Framework 25.199 9.604

FFT-based Reconstruction 3.951 2.481

25% Feature-enhanced Regularization [3] 4.692 2.770
Proposed Framework 13.579 2.955
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Preliminary Results
on Real Scenes from TerraSAR-X

e Training based on the Netherlands Rotterdam Harbor Staring
Spotlight SAR image (1041 x 1830)

— Split into 448 non-overlapping 64 X 64 “windows”
— 1075648 overlapping 16 X 16 patches extracted from windows
— Patches augmented with rotations of 90°, 180°, 270°

o Test set: 751 selected windows extracted from the Panama High
Resolution Spotlight SAR image (2375 X 3375)
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Qualitative Results: Image 608, o,, = gy, full data

Reference image

PnP-based
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Qualitative Results: Image 608, g, = 0,,, 87.89% data

Reference image

PnP-based
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Qualitative Results: Image 608, o,, = gy, 76.56% data

Reference image

PnP-based
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Qualitative Results: Image 608, g, = gy, 56.25% data
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Reference image

FFT-based FE-based [3] PnP-based
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Qualitative Results: Image 608, 0, = gy, 25% data

Reference image

FFT-based FE-based [3] PnP-based
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Conclusion

* A line of inquiry that lies at the intersection of several domains:
— Radar sensing
— Computational imaging
— Signal representation, compressed sensing
— Machine learning

e Sparsity is a useful asset for radar imaging especially in
nonconventional data collection scenarios
(e.g., when the data are sparse, irregular, limited)

* Deep learning methods may have the potential to learn
complicated spatial patterns and enable their incorporation as
priors into computational radar imaging
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