

Compressed Sensing and Machine Learning for Radar Imaging

Müjdat Çetin

Associate Professor, Department of Electrical and Computer Engineering Interim Director, Goergen Institute for Data Science

University of Rochester, Rochester, NY

<u>Contributors:</u> Burak Alver, Ammar Saleem, Sadegh Samadi, Abdurrahim Soğanlı, Emre Güven, Alper Güngör, W. Clem Karl.

Müjdat Çetin

IEEE WNYISPW 2019

IEEE WNYISPW 2019

Radar Imaging Basics

All-weather
Day and night operation
Superposition of response from scatterers – tomographic measurements

Synthetic aperture radar (SAR)
Computational imaging problem: Obtain a spatial map of reflectivity from radar returns

Outline

- Sparsity and compressed sensing for radar imaging
- Machine learning for radar imaging

REFERENCE Initial motivation for our work

- 20 40 **88 °° 8 °°** 80 100
- Accurate localization of **dominant scatterers**
 - Limited resolution
 - Clutter and artifact energy

• Region separability

- Speckle
- Object boundaries
- Low SNR, limited apertures

Müjdat Çetin

ROCHESTER

IEEE WNYISPW 2019

Müjdat Çetin

IEEE WNYISPW 2019

KOCHESTER Underdetermined Linear Inverse Problems, Sparsity, Compressed Sensing

• Basic problem: find an estimate of **f***, where

 $\mathbf{y} = \mathbf{A}\mathbf{f}^*$ (A: $M \times N, N > M$) \frown A

- Underdetermined -- non-uniqueness of solutions
- Additional information/constraints needed for a unique solution
- If we know **f*** is sparse (*i.e.*, has few non-zero elements)?

$${f \widehat{f}}_{\ell_0}=$$
 arg min $\|{f f}\|_0^0~$ subject to ${f y}={f A}{f f}$

Number of non-zero elements in f

- Intractable combinatorial optimization problem
- Past work on sparse signal representation (including ours) has produced principled and feasible alternatives
 - l_p relaxations or greedy methods

SAR Ground-plane Geometry

- Scalar 2-D complex reflectivity field f(x, y)
- Transmitted chirp signal: $s(t) = \Re \left[e^{j(\omega_0 t + \alpha t^2)} \right], |t| \le \frac{T_p}{2}$
- Received, demodulated return from circular patch:

Band-limited Fourier transform of $q_{\theta}(u)$

$$r_{\theta}(t) = \int_{\substack{|u| \leq L \text{ Projection of field } f(x,y)}} \exp\left\{-j\frac{2}{c}\left[\omega_0 + 2\alpha\left(t - \frac{2R}{c}\right)\right]u\right\} du$$

SAR Observation Model

• Observations are related to projections of the field:

$$r_{\theta}(t) = \int_{|u| \le L \text{ Projection of field}} \underbrace{q_{\theta}(u)}_{f(x, y) \text{ at angle } \theta} \exp \left\{ -j \underbrace{\frac{2}{c} \left[\omega_0 + 2\alpha \left(t - \frac{2R}{c} \right) \right]}_{\Omega(t)} u \right\} du$$
Spatial frequency

- SAR observations are band-limited slices from the 2-D Fourier transform of the reflectivity field: $r_{\theta}(t) = \iint_{x^2+y^2 \le L^2} f(x, y) \exp\{-j\Omega(t) (x \cos \theta + y \sin \theta)\} dx dy$ $= F[\Omega(t) \cos \theta, \Omega(t) \sin \theta]$
- Discrete tomographic SAR observation model: (combining all measurements)
 Observed data
 SAR Forward Model
 Unknown field

IEEE WNYISPW 2019

Conventional Image Formation

• Given SAR returns, create an estimate of the reflectivity field **f**

Support of observed data in the spatial frequency domain

ROCHESTER

Sample Conventional Image

Polar format algorithm:

- Each pulse gives slice of 2-D Fourier transform of field
- Polar to rectangular resampling
- 2-D inverse DFT

Sparsity-Driven Radar Imaging – basic version

$$J(\mathbf{f}) = \|\mathbf{y} - \mathbf{A}\mathbf{f}\|_2^2 + \lambda \|\mathbf{L}\|_p^p$$

- Bayesian interpretation: MAP estimation problem with heavy-tailed priors $p(f | y) \propto p(y | f) p(f)$
- Complex-valued data and image
- Magnitude of complex-valued field admits sparse representation
- No informative prior on reflectivity phase
- Typical choices for L:

CHESTER

- identity (point-enhanced imaging)
- gradient (*region-enhanced imaging*)
- Optimization problem structure is different from common sparse representation problems

One way to solve the optimization problem

- Alternating Direction Method of Multipliers (ADMM)
- An augmented Lagrangian method developed in 1970s, with roots in 1950s -- rediscovered recently!
- Contains ideas involving dual decomposition, method of multipliers, proximal methods, variable splitting
- Enables decoupling terms related to data and priors
- Suited to distributed optimization

A basic ADMM for l_1 minimization

- Cost function: $J(\mathbf{f}) = \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{f}\|_{2}^{2} + \lambda \|\mathbf{f}\|_{1}$
- Augmented Lagrangian with variable splitting: $L_{\rho}(\mathbf{f}, \mathbf{g}, \mathbf{u}) = \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{f}\|_{2}^{2} + \lambda \|\mathbf{g}\|_{1} + \rho \mathbf{u}^{T}(\mathbf{f} - \mathbf{g}) + \frac{\rho}{2} \|\mathbf{f} - \mathbf{g}\|_{2}^{2}$
- Iterative solution:

Data
$$\mathbf{f}^{k+1} = \left(\mathbf{A}^T \mathbf{A} + \rho \mathbf{I}\right)^{-1} \left(\mathbf{A}^T \mathbf{y} + \rho \left(\mathbf{g}^k - \mathbf{u}^k\right)\right)$$
Prior
$$\mathbf{g}^{k+1} = S_{\lambda/\rho} \left(\mathbf{f}^{k+1} + \mathbf{u}^k\right)$$

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \left(\mathbf{f}^{k+1} - \mathbf{g}^{k+1}\right)$$

ROCHESTER Sparsity-Driven SAR Imaging Results Conventional Sparsity-driven, ADMM-based

IEEE WNYISPW 2019

Deep Learning-based Priors for SAR Imaging

- A new SAR image reconstruction framework utilizing Plug-and-Play (PnP) priors
 - Optimization-based reconstruction regularized inversion, MAP estimation
 - Decoupling the data and the prior through ADMM
 - Deep learning-based prior

Problem Formulation

• Discretized SAR observation model:

 $\mathbf{y} = \mathbf{A}\mathbf{f} + \mathbf{n}$

• Retrieve **f** using a regularized cost function:

$$\hat{\mathbf{f}} = \underset{\mathbf{f}}{\operatorname{argmin}} \{\mathfrak{D}(\mathbf{f}) + \lambda \Re(\mathbf{f})\}$$

where $\mathfrak{D}(\mathbf{f}) = \|\mathbf{y} - \mathbf{A}\mathbf{f}\|_2^2$ and $\Re(\mathbf{f})$ is the regularizer

Problem Formulation

- Prior information or regularization constraints on the magnitude of **f**
- Rewrite $\mathbf{f} = \Theta |\mathbf{f}|$ where is Θ a diagonal matrix containing the phase of \mathbf{f} in the form $e^{j\phi(\mathbf{f})}$
- Cost function becomes:

$$\{|\hat{\mathbf{f}}|, \widehat{\mathbf{\Theta}}\} = \underset{|\mathbf{f}|, \mathbf{\Theta}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{A}\mathbf{\Theta}\|\mathbf{f}\|_{2}^{2} + \lambda \Re(\mathbf{f})$$

Variable Splitting and ADMM

• Introduce an auxiliary variable with a constraint: $\{|\hat{\mathbf{f}}|, \widehat{\mathbf{\Theta}}, \hat{\mathbf{h}}\} = \underset{|\mathbf{f}|, \mathbf{\Theta}, \mathbf{h}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{A}\mathbf{\Theta}\|\mathbf{f}\|_{2}^{2} + \lambda \Re(\mathbf{h})$

$$s.t.|\mathbf{f}| - \mathbf{h} = 0$$

• Augmented Lagrangian (in scaled form): $\left\{ \left| \hat{\mathbf{f}} \right|, \widehat{\mathbf{\Theta}}, \widehat{\mathbf{h}}, \widehat{\mathbf{u}} \right\} = \underset{|\mathbf{f}|, \mathbf{\Theta}, \mathbf{h}, \mathbf{u}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{A}\mathbf{\Theta} \|\mathbf{f}\|_{2}^{2} + \lambda \Re(\mathbf{h}) + \frac{\rho}{2} \|\|\mathbf{f}\| - \mathbf{h} + \mathbf{u}\|_{2}^{2} + \frac{\rho}{2} \|\|\mathbf{u}\|_{2}^{2}$

Variable Splitting and ADMM - details

- Let θ ∈ ℂ^{N×1} be a vector containing the diagonal elements of the phase matrix Θ
- Invoke the constraint that the magnitudes of the elements of θ should be 1, since they contain phases in the form $e^{j\phi(\mathbf{f})}$
- Let **B** be a matrix whose diagonal elements contain the reflectivity magnitudes

• Let
$$\tilde{\mathbf{f}} = \hat{\mathbf{h}} - \mathbf{u}$$
 and $\tilde{\mathbf{h}} = \left| \hat{\mathbf{f}} \right| + \mathbf{u}$

Variable Splitting and ADMM

• Each iteration of the ADMM algorithm performs the following steps enabling the use of a Plug-and-Play (PnP) prior approach:

Data
$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \| \mathbf{y} - \mathbf{AB}\boldsymbol{\theta} \|_{2}^{2} + \lambda_{\mathbf{\theta}} \sum_{i=1}^{N} (|\boldsymbol{\theta}_{i}| - 1)^{2}$$

Data $|\widehat{\mathbf{f}}| = \underset{|\mathbf{f}|}{\operatorname{argmin}} \| \mathbf{y} - \mathbf{A}\mathbf{\Theta} |\mathbf{f}| \|_{2}^{2} + \frac{\rho}{2} \| |\mathbf{f}| - \widetilde{\mathbf{f}} \|_{2}^{2}$
 $\widehat{\mathbf{h}} = \underset{\mathbf{h}}{\operatorname{argmin}} \lambda \Re(\mathbf{h}) + \frac{\rho}{2} \| \widetilde{\mathbf{h}} - \mathbf{h} \|_{2}^{2}$
 $\widehat{\mathbf{u}} = \mathbf{u} + |\widehat{\mathbf{f}}| - \widehat{\mathbf{h}}$

where λ_{θ} is a hyperparameter

Müjdat Çetin

Convolutional Neural Network (CNN)-based Prior

- Architecture: modified version of the network used in [1]
- 20 convolutional modules
- First and even numbered modules: 64 3×3 filters with padding 1, stride 1
- Remaining modules: 64 5×5 filters with padding 2, stride 1
- Each module has batch normalization and ReLU layers

[1] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," IEEE Transactions on Image Processing, 26(7):3142-3155, 2017.

Training the CNN - Synthetic Scenes

Using 64×64 ground truth images for CNN training:

- Add random phase to training images and obtain the phase histories.
- Apply complex-valued additive noise to the phase histories.
 - Magnitude uniformly distributed over $[0, \sigma_y]$, where σ_y is the standard deviation of the magnitude of the phase history data
 - Phase uniformly distributed over $[-\pi, \pi]$
- Perform conventional reconstructions.
- Extract 16×16 overlapping patches from these conventional images and their corresponding ground truths, to construct input-output pairs.
- Augment the pairs of images through rotation by [90°, 180°, 270°].
- Train the network using these augmented pairs of images, with image reconstructed from noisy data as input and ground truth image as output.

ROCHESTER

Synthetic Data Experiments -- Training Set

- 2 different noise levels ($\sigma_n \in \{0.1, 1\}\sigma_y$)
- Rectangular band-limitation for data reduction

IEEE WNYISPW 2019

IEEE WNYISPW 2019

Ground truth

FFT-based

ROCHESTER.

PnP-based

Quantitative Results

Table: SNRs for selected images at various noise & data availability levels

Available Data	Method	SNR (dB)	
		$0.1 \sigma_y$, Image 7	σ_y , Image 2
100%	FFT-based Reconstruction	36.539	14.980
	Feature-enhanced Regularization [3]	36.968	15.069
	Proposed Framework	38.075	23.235
87.89%	FFT-based Reconstruction	10.960	8.883
	Feature-enhanced Regularization [3]	22.484	13.502
	Proposed Framework	36.754	22.460
76.56%	FFT-based Reconstruction	8.659	6.878
	Feature-enhanced Regularization [3]	12.402	10.518
	Proposed Framework	35.465	18.730
56.25%	FFT-based Reconstruction	6.393	4.432
	Feature-enhanced Regularization [3]	7.886	5.568
	Proposed Framework	25.199	9.604
25%	FFT-based Reconstruction	3.951	2.481
	Feature-enhanced Regularization [3]	4.692	2.770
	Proposed Framework	13.579	2.955

ROCHESTER

Preliminary Results on Real Scenes from TerraSAR-X

- Training based on the Netherlands *Rotterdam Harbor Staring* Spotlight SAR image (1041 × 1830)
 - Split into 448 non-overlapping 64 × 64 "windows"
 - 1075648 overlapping 16 × 16 patches extracted from windows
 - Patches augmented with rotations of 90°, 180°, 270°
- Test set: 751 selected windows extracted from the *Panama High Resolution Spotlight SAR image* (2375 × 3375)

Müjdat Çetin

Reference image

PnP-based

Reference image

FFT-based

PnP-based

Müjdat Çetin

ROCHESTER.

 $\mathsf{FFT}\operatorname{-}\mathsf{based}$

FE-based [3]

PnP-based

Conclusion

- A line of inquiry that lies at the intersection of several domains:
 - Radar sensing
 - Computational imaging
 - Signal representation, compressed sensing
 - Machine learning
- Sparsity is a useful asset for radar imaging especially in nonconventional data collection scenarios (e.g., when the data are sparse, irregular, limited)
- Deep learning methods may have the potential to learn complicated spatial patterns and enable their incorporation as priors into computational radar imaging

IEEE Computational Imaging Technical Committee

Müjdat Çetin

ROCHESTER

IEEE WNYISPW 2019

Müjdat Çetin

IEEE WNYISPW 2019