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Network Science analytics

Online social media Internet Clean energy and grid analytics
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> Network as graph G = (V,£): encode pairwise relationships

> Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
= Use G to study graph signals, data associated with nodes in V

» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Graph signal processing (GSP)

X2 X4
» Graph G with adjacency matrix A € RV*N ° °
= Aj = proximity between i and j x1

» Define a signal x € R" on top of the graph o
= x; = signal value at node i ° °
X3 X5
» Graph Signal Processing — Exploit structure encoded in A to process x
= Our view: GSP well suited to study (network) diffusion processes

» Q: Graph signals common and interesting as networks are?

» Q: Why do we expect the graph structure to be useful in processing x?
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Network of economic sectors of the United States

» Bureau of Economic Analysis of the U.S. Department of Commerce
» A; = Output of sector i that becomes input to sector j (62 sectors)

Oil and Gas Services Finance
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Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)
Administrative services (AS), Professional services (MP)
Credit intermediation (FR), Securities (SC), Real state (RA), Insurance (IC)
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Only interactions stronger than a threshold are shown
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Network of economic sectors of the United States

» Bureau of Economic Analysis of the U.S. Department of Commerce
» Aj = Output of sector i that becomes input to sector j (62 sectors)

04 » A few sectors have widespread
strong influence (services,
finance, energy)

» Some sectors have strong
indirect influences (oil)
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» This is an interesting network =- Signals on this graph are as well
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Disaggregated GDP of the United States

» Signal x = output per sector = disaggregated GDP

= Network structure used to, e.g., reduce GDP estimation noise
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» Signal is as interesting as the network itself. Arguably more

> Same is true for brain connectivity and fMRI brain signals, ...
> Gene regulatory networks and gene expression levels, ...
> Online social networks and information cascades, ...
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Graph signals are ubiquitous
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Importance of signal structure in time

» Signal and Information Processing is about exploiting signal structure
®-
» Discrete time described by cyclic graph Xs Xz
= Time n follows time n — 1
= Signal value x, similar to x,_1
X5 X3
» Formalized with the notion of frequency e e
O
» Cyclic structure = Fourier transform = % = F"x

» Fourier transform =- Projection on eigenvector space of cycle
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Covariances and principal components

» Random signal with mean E [x] = 0 and covariance C, = E [xx"]

= Eigenvector decomposition C, = VAV"

» Covariance matrix A = C, is a graph X

= Not a very good graph, but still

» Precision matrix C;! a common graph too
= Conditional dependencies of Gaussian x o @

» Covariance matrix structure = Principal components (PCA) = % = V/x

» PCA transform = Projection on eigenvector space of (inverse) covariance

» Q: Can we extend these principles to general graphs and signals?
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Graph Fourier Transform

» Adjacency A, Laplacian L, or, generically graph shift S = VAV !
= Sjj =0for i #jand (i,j) ¢ € (captures local structure in G)

» The Graph Fourier Transform (GFT) of x is defined as
%=V 'x
> While the inverse GFT (iGFT) of X is defined as

x = VX
= Eigenvectors V = [vy, ..., vy] are the frequency basis (atoms)

» Additional structure
= If S is normal, then V=1 = V# and %, = vlix =< v\, x >

= Parseval holds, ||x||? = ||%]|?

» GFT = Projection on eigenvector space of graph shift operator S
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Frequency modes of the Laplacian

» Total variation of signal x with respect to L

N
TV(x) =x"Lx = Z Ai(x — x)?

hj=1j>i
= Smoothness measure on the graph G

» For Laplacian eigenvectors V = [vy, - ,vy] = TV(vg) = A«
= Can view 0 = A\; < --- < Ay as frequencies

» Ex: gene network, N=10, k=1, k=2, k=9
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Is this a reasonable transform?

» Particularized to cyclic graphs = GFT = Fourier transform

> Also for covariance graphs = GFT = PCA transform

> But really, this is an empirical question. GFT of disaggregated GDP
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» Spectral domain representation characterized by a few coefficients
— Notion of bandlimitedness: x = 37 v

=- Sampling, compression, filtering, pattern recognition
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Predicting law practice

» Working relationships among lawyers [Lazega’01]
» Graph: 36 partners, edges indicate partners worked together

» Signal: various node-level attributes x = {x;},cy including

= Type of practice, i.e., litigation (red) and corporate (cyan)

» Suspect lawyers collaborate more with peers in same legal practice

= Knowledge of collaboration useful in predicting type of practice
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Graph frequency analysis of brain signals

» GFT of brain signals during a visual-motor learning task [Huang et al'16]

= Decomposed into low, medium and high frequency components

> Brain: Complex system where regularity coexists with disorder [Sporns'11]
= Signal energy mostly in the low and high frequencies

= In brain regions akin to the visual and sensorimotor cortices
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Learning graphs from data

» Learning graphs from nodal observations

> Key in neuroscience

= Functional network from fMRI signals

» Most GSP works: how known graph S affects signals and filters

> Here, reverse path: how to use GSP to infer the graph topology?

> Gaussian graphical models [Egilmez et al’16], [Rabbat'17], ...
Smooth signals [Dong et al'15], [Kalofolias'16], [Sardellitti et al’17], ...
Graph filtering models [Shafipour et al'17], [Thanou et al'17], ...
Stationary signals [Pasdeloup et al'15], [Segarra et al'16], ...
Directed graphs [Mei-Moura'15], [Shen et al'16], ...
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Connecting the dots

» Recent tutorials on learning graphs from data
> |EEE Signal Processing Magazine and Proceedings of the IEEE
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» IEEE Trans. on Signal and Information Processing over Networks
» Forthcoming issue on Network Topology Inference (Jan. 2020)
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Concluding remarks

» Network science and big data pose new challenges
= GSP can contribute to address some of those challenges

= Well suited for network (diffusion) processes
» GSP pillars: graph-shift operator, filters and Fourier transform

» GSP tools can be applied to solve practical problems
= Signal representation and compression
= Sampling, interpolation (network control)
= Source localization on graphs (fake news, epileptic seizures)
= Network topology inference
= Geometric deep learning and graph CNNs
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Application domains

Visualization / Compression

Denoising
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Envisioned application domains

v

Gene regulatory and protein interaction networks

Online social media

v

v

Smart infrastructure networks, loT

v

Economics, finance, social sciences

v

Neuroimaging data analysis
= Extensive literature on brain network analysis
= Classifying neural disorders, predicting learning ability
= Analyzed networks because they could not study signals
= GSP: Integration of structural and functional perspectives
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PyGSP: Graph Signal Processing in Python

» PyGSP is a Python package to ease SP on graphs. Free software
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