Graph Signal Processing: Foundational Advances For Learning From Network Data

Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/

Collaborators: R. Shafipour, S. Segarra, A. G. Marques, and A. Ribeiro Acknowledgment: NSF Awards CCF-1750428 and ECCS-1809356

Rochester, NY, October 4, 2019

Network Science analytics

- Network as graph $G = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- ► Desiderata: Process, analyze and learn from network data [Kolaczyk'09] ⇒ Use G to study graph signals, data associated with nodes in V
- ► Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Graph signal processing (GSP)

- ► Graph *G* with adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$ $\Rightarrow A_{ii} = \text{proximity between } i \text{ and } j$
- ▶ Define a signal x ∈ ℝ^N on top of the graph ⇒ x_i = signal value at node i

- ► Graph Signal Processing → Exploit structure encoded in A to process x ⇒ Our view: GSP well suited to study (network) diffusion processes
- Q: Graph signals common and interesting as networks are?
- ▶ Q: Why do we expect the graph structure to be useful in processing x?

Network of economic sectors of the United States

- Bureau of Economic Analysis of the U.S. Department of Commerce
 - $A_{ij} =$ Output of sector *i* that becomes input to sector *j* (62 sectors)

- Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)
- Administrative services (AS), Professional services (MP)
- Credit intermediation (FR), Securities (SC), Real state (RA), Insurance (IC)
- Only interactions stronger than a threshold are shown

Network of economic sectors of the United States

- Bureau of Economic Analysis of the U.S. Department of Commerce
 - A_{ij} = Output of sector *i* that becomes input to sector *j* (62 sectors)

- A few sectors have widespread strong influence (services, finance, energy)
- Some sectors have strong indirect influences (oil)
- The heavy last row is final consumption

• This is an interesting network \Rightarrow Signals on this graph are as well

Disaggregated GDP of the United States

Signal x = output per sector = disaggregated GDP

 \Rightarrow Network structure used to, e.g., reduce GDP estimation noise

Signal is as interesting as the network itself. Arguably more

- Same is true for brain connectivity and fMRI brain signals, ...
- Gene regulatory networks and gene expression levels, ...
- Online social networks and information cascades, ...

Graph signals are ubiquitous

Importance of signal structure in time

► Signal and Information Processing is about exploiting signal structure

- Discrete time described by cyclic graph
 - \Rightarrow Time *n* follows time n-1
 - \Rightarrow Signal value x_n similar to x_{n-1}
- Formalized with the notion of frequency

• Cyclic structure \Rightarrow Fourier transform $\Rightarrow \tilde{\mathbf{x}} = \mathbf{F}^H \mathbf{x} \left(F_{kn} = \frac{e^{j2\pi kn/N}}{\sqrt{\kappa}} \right)$

Fourier transform \Rightarrow Projection on eigenvector space of cycle

Covariances and principal components

- ▶ Random signal with mean $\mathbb{E}[\mathbf{x}] = 0$ and covariance $\mathbf{C}_{\mathbf{x}} = \mathbb{E}[\mathbf{x}\mathbf{x}^H]$
 - \Rightarrow Eigenvector decomposition $C_x = V \Lambda V^H$
- ► Covariance matrix A = C_x is a graph ⇒ Not a very good graph, but still
- ► Precision matrix C_x⁻¹ a common graph too ⇒ Conditional dependencies of Gaussian x

- ► Covariance matrix structure \Rightarrow Principal components (PCA) $\Rightarrow \tilde{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$
- ▶ PCA transform ⇒ Projection on eigenvector space of (inverse) covariance
- Q: Can we extend these principles to general graphs and signals?

Graph Fourier Transform

- ► Adjacency **A**, Laplacian **L**, or, generically graph shift $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$ $\Rightarrow S_{ij} = 0$ for $i \neq j$ and $(i,j) \notin \mathcal{E}$ (captures local structure in *G*)
- ► The Graph Fourier Transform (GFT) of x is defined as

$$\tilde{\mathbf{x}} = \mathbf{V}^{-1} \mathbf{x}$$

While the inverse GFT (iGFT) of x is defined as

$$\mathbf{x} = \mathbf{V}\tilde{\mathbf{x}}$$

 \Rightarrow Eigenvectors $\mathbf{V} = [\mathbf{v}_1, ..., \mathbf{v}_N]$ are the frequency basis (atoms)

Additional structure

 \Rightarrow If **S** is normal, then $\mathbf{V}^{-1} = \mathbf{V}^H$ and $\tilde{x}_k = \mathbf{v}_k^H \mathbf{x} = \langle \mathbf{v}_k, \mathbf{x} \rangle$

 \Rightarrow Parseval holds, $\|\mathbf{x}\|^2 = \|\mathbf{\tilde{x}}\|^2$

► GFT ⇒ Projection on eigenvector space of graph shift operator S

Frequency modes of the Laplacian

Total variation of signal x with respect to L

$$\mathsf{TV}(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathsf{L} \mathbf{x} = \sum_{i,j=1,j>i}^{N} A_{ij} (x_i - x_j)^2$$

 \Rightarrow Smoothness measure on the graph G (Dirichlet energy)

► For Laplacian eigenvectors $\mathbf{V} = [\mathbf{v}_1, \cdots, \mathbf{v}_N] \Rightarrow \mathsf{TV}(\mathbf{v}_k) = \lambda_k$ ⇒ Can view $0 = \lambda_1 < \cdots \leq \lambda_N$ as frequencies

• Ex: gene network, N = 10, k = 1, k = 2, k = 9

Is this a reasonable transform?

- ▶ Particularized to cyclic graphs \Rightarrow GFT \equiv Fourier transform
- Also for covariance graphs \Rightarrow GFT \equiv PCA transform
- ▶ But really, this is an empirical question. GFT of disaggregated GDP

 \blacktriangleright Spectral domain representation characterized by a few coefficients

- \Rightarrow Notion of bandlimitedness: $\mathbf{x} = \sum_{k=1}^{K} \tilde{x}_k \mathbf{v}_k$
- \Rightarrow Sampling, compression, filtering, pattern recognition

Predicting law practice

- Working relationships among lawyers [Lazega'01]
 - ► Graph: 36 partners, edges indicate partners worked together

- ▶ Signal: various node-level attributes x = {x_i}_{i∈V} including
 ⇒ Type of practice, i.e., litigation (red) and corporate (cyan)
- Suspect lawyers collaborate more with peers in same legal practice

 Knowledge of collaboration useful in predicting type of practice

Graph frequency analysis of brain signals

▶ GFT of brain signals during a visual-motor learning task [Huang et al'16]
 ⇒ Decomposed into low, medium and high frequency components

- Brain: Complex system where regularity coexists with disorder [Sporns'11]
 - \Rightarrow Signal energy mostly in the low and high frequencies
 - \Rightarrow In brain regions akin to the visual and sensorimotor cortices

Learning graphs from data

- Learning graphs from nodal observations
- Key in neuroscience
 - \Rightarrow Functional network from fMRI signals

- ► Most GSP works: how known graph **S** affects signals and filters
- ▶ Here, reverse path: how to use GSP to infer the graph topology?
 - Gaussian graphical models [Egilmez et al'16], [Rabbat'17], ...
 - Smooth signals [Dong et al'15], [Kalofolias'16], [Sardellitti et al'17], ...
 - ► Graph filtering models [Shafipour et al'17], [Thanou et al'17], ...
 - ▶ Stationary signals [Pasdeloup et al'15], [Segarra et al'16], ...
 - Directed graphs [Mei-Moura'15], [Shen et al'16], ...

Connecting the dots

Recent tutorials on learning graphs from data

IEEE Signal Processing Magazine and Proceedings of the IEEE

IEEE Trans. on Signal and Information Processing over Networks
 Forthcoming issue on Network Topology Inference (Jan. 2020)

Network science and big data pose new challenges

- \Rightarrow GSP can contribute to address some of those challenges
- \Rightarrow Well suited for network (diffusion) processes
- ► GSP pillars: graph-shift operator, filters and Fourier transform
- GSP tools can be applied to solve practical problems
 - \Rightarrow Signal representation and compression
 - ⇒ Sampling, interpolation (network control)
 - \Rightarrow Source localization on graphs (fake news, epileptic seizures)
 - \Rightarrow Network topology inference
 - \Rightarrow Geometric deep learning and graph CNNs

Application domains

Visualization / Compression

Envisioned application domains

- Gene regulatory and protein interaction networks
- Online social media
- Smart infrastructure networks, IoT
- Economics, finance, social sciences
- Neuroimaging data analysis
 - \Rightarrow Extensive literature on brain network analysis
 - \Rightarrow Classifying neural disorders, predicting learning ability
 - \Rightarrow Analyzed networks because they could not study signals
 - \Rightarrow GSP: Integration of structural and functional perspectives

See also arXiv:1710.01135v3 [eess.IV]

PyGSP: Graph Signal Processing in Python

▶ PyGSP is a Python package to ease SP on graphs. Free software

Available from https://github.com/epfl-lts2/pygsp