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Optimize Algorithms for the GPU

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache

GPU spends its transistors on ALUs, not memory

Do more computation on the GPU to avoid costly data 

transfers

Even low parallelism computations can sometimes be faster than 

transferring back and forth to host
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Optimize Memory Access

Coalesced vs. Non-coalesced = order of magnitude

Global/Local device memory 

Optimize for spatial locality in cached texture memory

In shared memory, avoid high-degree bank conflicts

Partition camping

When global memory access not evenly distributed amongst 

partitions

Problem-size dependent
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Take Advantage of Shared Memory

Hundreds of times faster than global memory

Threads can cooperate via shared memory

Use one / a few threads to load / compute data shared 
by all threads

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing
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Use Parallelism Efficiently

Partition your computation to keep the GPU 

multiprocessors equally busy

Many threads, many thread blocks

Keep resource usage low enough to support multiple 

active thread blocks per multiprocessor

Registers, shared memory



© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 7

Outline

Overview

Hardware

Memory Optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary



© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 8

10-Series Architecture

240 thread processors execute kernel threads

30 multiprocessors, each contains

8 thread processors

One double-precision unit

Shared memory enables thread cooperation

Thread

Processors

Multiprocessor

Shared

Memory

Double



© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 9

Execution Model

Software Hardware

Threads are executed by thread processors

Thread

Thread 

Processor

Thread 

Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on 

one multiprocessor - limited by multiprocessor 

resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at one 

time
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Warps and Half Warps

Thread 

Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

16

Half Warps

16

DRAM

Global

Local

A thread block consists of 32-

thread warps

A warp is executed physically in 

parallel (SIMD) on a 

multiprocessor

Device 

Memory

=

A half-warp of 16 threads can 

coordinate global memory 

accesses into a single transaction
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Memory Architecture

Host

CPU

Chipset

DRAM

Device

DRAM

Global

Constant

Texture

Local

GPU

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Constant and Texture 

Caches
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Memory Architecture

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip No R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application
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Host-Device Data Transfers

Device to host memory bandwidth much lower than 

device to device bandwidth

4GB/s peak (PCI-e x16 Gen 1) vs. 102 GB/s peak (Tesla 

C1060)

Minimize transfers

Intermediate data can be allocated, operated on, and 

deallocated without ever copying them to host memory

Group transfers

One large transfer much better than many small ones
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Page-Locked Data Transfers

cudaMallocHost() allows allocation of page-locked 
(“pinned”) host memory

Enables highest cudaMemcpy performance
3.2 GB/s on PCI-e x16 Gen1

5.2 GB/s on PCI-e x16 Gen2

See the “bandwidthTest” CUDA SDK sample

Use with caution!
Allocating too much page-locked memory can reduce overall 
system performance

Test your systems and apps to learn their limits
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Overlapping Data Transfers and 

Computation

Async and Stream APIs allow overlap of H2D or D2H 
data transfers with computation

CPU computation can overlap data transfers on all CUDA 
capable devices

Kernel computation can overlap data transfers on devices with 
“Concurrent copy and execution” (roughly compute capability 
>= 1.1)

Stream = sequence of operations that execute in order 
on GPU

Operations from different streams can be interleaved

Stream ID used as argument to async calls and kernel 
launches
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Asynchronous host-device memory copy returns control 

immediately to CPU

cudaMemcpyAsync(dst, src, size, dir, stream); 

requires pinned host memory (allocated with “cudaMallocHost”) 

Overlap CPU computation with data transfer

0 = default stream

cudaMemcpyAsync(a_d, a_h, size, 

cudaMemcpyHostToDevice, 0);

cpuFunction();

cudaThreadSynchronize();

kernel<<<grid, block>>>(dst);

Asynchronous Data Transfers 

overlapped
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GPU/CPU Synchronization

Context based

cudaThreadSynchronize()

Blocks until all previously issued CUDA calls from a CPU 

thread complete

Stream based

cudaStreamSynchronize(stream)

Blocks until all CUDA calls issued to given stream 

complete

cudaStreamQuery(stream)

Indicates whether stream is idle

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread
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GPU/CPU Synchronization

Stream based using events

Events can be inserted into streams:

cudaEventRecord(event, stream)

Event is recorded then GPU reaches it in a stream

Recorded = assigned a timestamp (GPU clocktick)

Useful for timing

cudaEventSynchronize(event)

Blocks until given event is recorded

cudaEventQuery(event)

Indicates whether event has recorded

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread
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Overlapping kernel and data transfer

Requires:

“Concurrent copy and execute”

deviceOverlap field of a cudaDeviceProp variable

Kernel and transfer use different, non-zero streams

A CUDA call to stream-0 blocks until all previous calls 

complete and cannot be overlapped

Example:

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);

cudaStreamSynchronize(stream2); overlapped
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Coalescing

Global memory access of 32, 64, or 128-bit words by a half-

warp of threads can result in as few as one (or two) 

transaction(s) if certain access requirements are met

Depends on compute capability

1.0 and 1.1 have stricter access requirements

Global Memory

Half-warp of threads

}  64B aligned segment (16 floats)

Examples – float (32-bit) data

}128B aligned segment (32 floats)



© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 23

Coalescing Constraints
Compute capability 1.0 and 1.1

K-th thread must access k-th word in the segment (or k-th word in 2 

contiguous 128B segments for 128-bit words), not all threads need to 

participate

Coalesces – 1 transaction

Out of sequence – 16 transactions Misaligned – 16 transactions
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Coalescing Constraints
Compute capability 1.2 and higher

Coalescing is achieved for any pattern of addresses that fits into a 

segment of size: 32B for 8-bit words, 64B for 16-bit words, 128B for 

32- and 64-bit words

Smaller transactions may be issued to avoid wasted bandwidth due 

to unused words

1 transaction - 64B segment

2 transactions - 64B and 32B segments 
1 transaction - 128B segment
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Shared Memory

~Hundred times faster than global memory

Cache data to reduce global memory accesses

Threads can cooperate via shared memory

Use it to avoid non-coalesced access

Stage loads and stores in shared memory to re-order non-
coalesceable addressing
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Shared Memory Architecture

Many threads accessing memory

Therefore, memory is divided into banks

Successive 32-bit words assigned to successive banks

Each bank can service one address per cycle

A memory can service as many simultaneous 

accesses as it has banks

Multiple simultaneous accesses to a bank

result in a bank conflict 

Conflicting accesses are serialized

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Bank Addressing Examples

No Bank Conflicts

Linear addressing 

stride == 1

No Bank Conflicts

Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0
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Bank Addressing Examples

2-way Bank Conflicts

Linear addressing 

stride == 2

8-way Bank Conflicts

Linear addressing 

stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8
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Shared memory bank conflicts

Shared memory is ~ as fast as registers if there are no bank conflicts

warp_serialize profiler signal reflects conflicts

The fast case:

If all threads of a half-warp access different banks, there is no bank 

conflict

If all threads of a half-warp read the identical address, there is no bank 

conflict (broadcast)

The slow case:

Bank Conflict: multiple threads in the same half-warp access the same 

bank

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank
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Occupancy

Thread instructions are executed sequentially, so 

executing other warps is the only way to hide latencies 

and keep the hardware busy

Occupancy = Number of warps running concurrently on a 

multiprocessor divided by maximum number of warps 

that can run concurrently

Limited by resource usage:

Registers

Shared memory
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Grid/Block Size Heuristics

# of blocks > # of multiprocessors

So all multiprocessors have at least one block to execute

# of blocks / # of multiprocessors > 2

Multiple blocks can run concurrently in a multiprocessor

Blocks that aren’t waiting at a __syncthreads() keep the 

hardware busy

Subject to resource availability – registers, shared memory

# of blocks > 100 to scale to future devices

Blocks executed in pipeline fashion

1000 blocks per grid will scale across multiple generations
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Register Dependency

Read-after-write register dependency
Instruction’s result can be read ~11 cycles later

Scenarios: CUDA: PTX:

To completely hide the latency: 
Run at least 192 threads (6 warps) per multiprocessor

At least 25% occupancy

Threads do not have to belong to the same thread block

add.f32   $f3, $f1, $f2

add.f32   $f5, $f3, $f4

x = y + 5;

z = x + 3;

ld.shared.f32  $f3, [$r31+0] 

add.f32           $f3, $f3, $f4

s_data[0] += 3;
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Register Pressure

Hide latency by using more threads per SM

Limiting Factors:

Number of registers per kernel

8K/16K per SM, partitioned among concurrent threads

Amount of shared memory

16KB per SM, partitioned among concurrent threadblocks

Compile with –ptxas-options=-v flag

Use –maxrregcount=N flag to NVCC

N = desired maximum registers / kernel

At some point “spilling” into local memory may occur

Reduces performance – local memory is slow
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Occupancy Calculator
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Optimizing threads per block

Choose threads per block as a multiple of warp size

Avoid wasting computation on under-populated warps

More threads per block == better memory latency hiding

But, more threads per block == fewer registers per thread

Kernel invocations can fail if too many registers are used

Heuristics

Minimum: 64 threads per block

Only if multiple concurrent blocks 

128 to 256 threads a better choice

Usually still enough regs to compile and invoke successfully

This all depends on your computation, so experiment!
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Occupancy != Performance

Increasing occupancy does not necessarily increase 

performance

BUT …

Low-occupancy multiprocessors cannot adequately hide 

latency on memory-bound kernels

(It all comes down to arithmetic intensity and available 

parallelism)
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Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
# of multiprocessors

Memory bandwidth

Shared memory size

Register file size

Max. threads per block

You can even make apps self-tuning (like FFTW and 
ATLAS)

“Experiment” mode discovers and saves optimal configuration
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CUDA Instruction Performance

Instruction cycles (per warp) = sum of

Operand read cycles

Instruction execution cycles

Result update cycles

Therefore instruction throughput depends on

Nominal instruction throughput

Memory latency

Memory bandwidth

“Cycle” refers to the multiprocessor clock rate

1.3 GHz on the Tesla C1060, for example
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Maximizing Instruction Throughput

Maximize use of high-bandwidth memory

Maximize use of shared memory

Minimize accesses to global memory

Maximize coalescing of global memory accesses

Optimize performance by overlapping memory accesses 

with HW computation

High arithmetic intensity programs

i.e. high ratio of math to memory transactions

Many concurrent threads
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Arithmetic Instruction Throughput

int and float add, shift, min, max and float mul, mad: 4 

cycles per warp

int multiply (*) is by default 32-bit

requires multiple cycles / warp

Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int 

multiply

Integer divide and modulo are more expensive

Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases

Be explicit in cases where compiler can’t tell that divisor is a 

power of 2!

Useful trick: foo % n == foo & (n-1) if n is a power of 2
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Arithmetic Instruction Throughput

The intrinsics reciprocal, reciprocal square root, sin/cos, 

log, exp prefixed with “__” 16 cycles per warp

Examples: __rcp(), __sin(), __exp()

Other functions are combinations of the above

y / x == rcp(x) * y takes 20 cycles per warp

sqrt(x) == x * rsqrt(x) takes 20 cycles per warp
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Runtime Math Library

There are two types of runtime math operations

__func(): direct mapping to hardware ISA

Fast but lower accuracy (see prog. guide for details)

Examples: __sin(x), __exp(x), __pow(x,y)

func() : compile to multiple instructions

Slower but higher accuracy (5 ulp or less)

Examples: sin(x), exp(x), pow(x,y)

The -use_fast_math compiler option forces every func() 

to compile to __func()
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GPU results may not match CPU

Many variables: hardware, compiler, optimization 

settings

CPU operations aren’t strictly limited to 0.5 ulp

Sequences of operations can be more accurate due to 80-bit 

extended precision ALUs

Floating-point arithmetic is not associative!
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FP Math is Not Associative!

In symbolic math, (x+y)+z == x+(y+z)

This is not necessarily true for floating-point addition

Try x = 1030, y = -1030 and z = 1 in the above equation

When you parallelize computations, you potentially 

change the order of operations

Parallel results may not exactly match sequential results

This is not specific to GPU or CUDA – inherent part of parallel 

execution
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Control Flow Instructions

Main performance concern with branching is divergence

Threads within a single warp take different paths

Different execution paths must be serialized

Avoid divergence when branch condition is a function of 

thread ID

Example with divergence: 

if (threadIdx.x > 2) { }

Branch granularity < warp size

Example without divergence:

if (threadIdx.x / WARP_SIZE > 2) { }

Branch granularity is a whole multiple of warp size
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Summary

GPU hardware can achieve great performance on data-

parallel computations if you follow a few simple 

guidelines:

Use parallelism efficiently

Coalesce memory accesses if possible

Take advantage of shared memory

Explore other memory spaces

Texture

Constant

Reduce bank conflicts

Avoid partition camping


