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Optimize Algorithms for the GPU <3

NVIDIA.

® Maximize iIndependent parallelism
® Maximize arithmetic Intensity (math/bandwidth)

® Sometimes it’s better to recompute than to cache
® cru spends its transistors on ALUs, not memory

® Do more computation on the GPU to avoid costly data
transfers

® cven low parallelism computations can sometimes be faster than
transferring back and forth to host
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Optimize Memory Access <X

NVIDIA.

® Coalesced vs. Non-coalesced = order of magnitude
® Global/Local device memory

® Optimize for spatial locality in cached texture memory
® |1 shared memory, avoid high-degree bank conflicts

® partition camping

® When global memory access not evenly distributed amongst
partitions

® problem-size dependent
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Take Advantage of Shared Memory <X

NVIDIA.

® Hundreds of times faster than global memory
® Threads can cooperate via shared memory

® Use one / a few threads to load / compute data shared
by all threads

® Use It to avoid non-coalesced access

® Stage loads and stores in shared memory to re-order non-
coalesceable addressing
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Use Parallelism Efficiently <X

NVIDIA.

® partition your computation to keep the GPU
multiprocessors equally busy
® Many threads, many thread blocks

® Keep resource usage low enough to support multiple
active thread blocks per multiprocessor
® Registers, shared memory
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<3

NVIDIA.

10-Series Architecture

® 240 thread processors execute kernel threads
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Execution Model

Software Hardware
]
Thread
Thread Processor

QR

Thread

Block Multiprocessor

Device
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NVIDIA.

Threads are executed by thread processors

Thread blocks are executed on multiprocessors
Thread blocks do not migrate

Several concurrent thread blocks can reside on
one multiprocessor - limited by multiprocessor
resources (shared memory and register file)

A kernel is launched as a grid of thread blocks
Only one kernel can execute on a device at one

time
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Warps and Half Warps <X

NVIDIA.

A thread block consists of 32-
thread warps

=
%22%‘ ’ 2 — 32 Threads
32 Threads

A warp is executed physically in
parallel (SIMD) on a

Thread .
Block Warps Multiprocessor ~ multiprocessor

DRAM A half-warp of 16 threads can
coordinate global memory
H Global accesses into a single transaction
Half Warps Local
Device
Memory
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Memory Architecture <3

NVIDIA.

Device
DRAM

GPU

Multiprocessor
Local Multiprocessor

Multiprocessor

Global Registers
Shared Memory

Constant and Texture
Caches

Chipset

Constant

Texture
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Memory Architecture <3

NVIDIA.

Memory | Location |Cached |Access | Scope Lifetime
Register | On-chip | N/A R/W One thread Thread
Local Off-chip No R/W One thread Thread
Shared On-chip N/A R/W All threads in a block | Block
Global Off-chip No R/W All threads + host Application
Constant | Off-chip | Yes R All threads + host Application
Texture Off-chip | Yes R All threads + host Application
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Host-Device Data Transfers

® Device to host memory bandwidth much lower than
device to device bandwidth

® scBIs peak (PCl-e x16 Gen 1) vs. 102 GB/s peak (Tesla
C1060)

® Minimize transfers

® |ntermediate data can be allocated, operated on, and
deallocated without ever copying them to host memory

® Group transfers
® one large transfer much better than many small ones
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Page-Locked Data Transfers <X

NVIDIA.

® cudaMallocHost() allows allocation of page-locked
(“pinned”) host memory

® Chables highest cudaMemcpy performance
® 3.2GB/s on PCl-e x16 Genl
® 5.2 GB/s on PCl-e x16 Gen2

® Sce the “bandwidthTest” CUDA SDK sample

® Use with caution!

® Allocating too much page-locked memory can reduce overall
system performance

® Test your systems and apps to learn their limits
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Overlapping Data Transfers and ﬁ%“
Computation |

® Async and Stream APIs allow overlap of H2D or D2H
data transfers with computation

® cru computation can overlap data transfers on all CUDA
capable devices

® Kernel computation can overlap data transfers on devices with
“Concurrent copy and execution” (roughly compute capability
>=1.1)

® Sieam = sequence of operations that execute in order
on GPU

® Operations from different streams can be interleaved

® Siream ID used as argument to async calls and kernel
launches
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Asynchronous Data Transfers <X
NVIDIA.

® Asynchronous host-device memory copy returns control
Immediately to CPU
® cudaMemcpyAsync(dst, src, size, dir, stream);
® requires host memory (allocated with “cudaMallocHost”)

® Overlap CPU computation with data transfer
® [ = default stream

cudaMemcpyAsync(a_d, a_h, size,
cudaMemcpyHostToDevice, 0);
cpuFunction();
cudaThreadSynchronize(); /
kernel<<<grid, block>>>(dst);

> overlapped
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GPU/CPU Synchronization <X

NVIDIA.

® Context based

® cudaThreadSynchronize()

® Blocks until all previously issued CUDA calls from a CPU
thread complete

® Stream based

® cudaStreamSynchronize(stream)

® Blocks until all CUDA calls issued to given stream
complete

® cudaStreamQuery(stream)
® |ndicates whether stream is idle
® Returns cudaSuccess, cudaErrorNotReady, ...
® Does not block CPU thread
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GPU/CPU Synchronization <X

NVIDIA.

® Sircam based using events
® Events can be inserted into streams:
cudaEventRecord(event, stream)
® Cventis recorded then GPU reaches it in a stream
® Recorded = assigned a timestamp (GPU clocktick)
® Useful for timing

® cudaEventSynchronize (event)
® Blocks until given event is recorded

® cudakEventQuery(event)
® |ndicates whether event has recorded
® Returns cudaSuccess, cudaErrorNotReady, ...
® Does not block CPU thread
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Overlapping kernel and data transfer <X
NVIDIA.

® Requires:
® “Concurrent copy and execute”
® deviceOverlap field of a cudaDeviceProp variable
® Kemel and transfer use different, streams

® A CUDA call to stream-0 blocks until all previous calls
complete and cannot be overlapped

® Example:
cudaStreamCreate(&streaml);
cudaStreamCreate(&stream?2);
cudaMemcpyAsync(dst, src, size, dir, streaml); }
kernel<<<grid, block, 0, stream2>>>(...);
cudaStreamSynchronize(stream?): overlapped
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Coalescing <3

NVIDIA.

® Giobal memory access of 32, 64, or 128-bit words by a half-
warp of threads can result in as few as one (or two)
transaction(s) if certain access requirements are met

® Depends on compute capability
® 1.0and 1.1 have stricter access requirements

Examples — float (32-bit) data

Global Memory

} 64B aligned segment (16 floats)
} 128B aligned segment (32 floats)

Half-warp of threads
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Coalescing Constraints f{%‘\
Compute capability 1.0 and 1.1 ”

® K-th thread must access k-th word in the segment (or k-th word in 2
contiguous 128B segments for 128-bit words), not all threads need to
participate

Coalesces — 1 transaction

Out of sequence — 16 transactions Misaligned — 16 transactions

rriri
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Coalescing Constraints <X
Compute capability 1.2 and higher

¢ Coalescing is achieved for any pattern of addresses that fits into a
segment of size: 32B for 8-bit words, 64B for 16-bit words, 128B for
32- and 64-bit words

®  Smaller transactions may be issued to avoid wasted bandwidth due
to unused words

NVIDIA.

1 transaction - 64B segment

1 transaction - 128B segment
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Shared Memory <X

NVIDIA.

® _Hundred times faster than global memory
® Cache data to reduce global memory accesses
® Threads can cooperate via shared memory

® Use it to avoid non-coalesced access

® Stage loads and stores in shared memory to re-order non-
coalesceable addressing
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Shared Memory Architecture <X

NVIDIA.

® Many threads accessing memory
® Therefore, memory is divided into banks
® Successive 32-bit words assigned to successive banks

® Cach bank can service one address per cycle

® A memory can service as many simultaneous
accesses as it has banks

® Multiple simultaneous accesses to a bank
result in a bank conflict
® Conflicting accesses are serialized
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Bank Addressing Examples

<3

NVIDIA.

@ No Bank Conflicts

® |inear addressing
stride ==

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Bank 15

® No Bank Conflicts
o Random 1:1 Permutation

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Thread 15

Bank 15
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Bank Addressing Examples <X

NVIDIA.

@ 2-way Bank Conflicts ® 8-way Bank Conflicts
® Linear addressing ® Linear addressing
stride == stride ==

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread O
Thread 1

Thread 2 "
Thread 3 L

Thread 4 '
Thread 5 ,\
Thread 6 »

Thread 7

Thread 8 38

Thread 9
Thread 10
Thread 11 Bank 15 Bank 15
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Shared memory bank conflicts <X
NVIDIA.

® Shared memory is ~ as fast as registers if there are no bank conflicts
® warp_serialize profiler signal reflects conflicts

® The fast case:

® ifallthreads of a half-warp access different banks, there is no bank
conflict

® ifallthreads of a half-warp read the identical address, there is no bank
conflict (broadcast)

® The slow case:

® Bank Cconflict: multiple threads in the same half-warp access the same
bank

® Must serialize the accesses
® Cost = max # of simultaneous accesses to a single bank
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Occupancy <X

NVIDIA.

® Thread instructions are executed sequentially, so
executing other warps is the only way to hide latencies
and keep the hardware busy

® Occupancy = Number of warps running concurrently on a
multiprocessor divided by maximum number of warps
that can run concurrently

® Limited by resource usage:
® Registers
® Shared memory
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Grid/Block Size Heuristics <X

NVIDIA.

® . of blocks > # of multiprocessors
® soal multiprocessors have at least one block to execute

® . of blocks / # of multiprocessors > 2

® Multiple blocks can run concurrently in a multiprocessor

® Blocks that aren’t waiting at a __syncthreads() keep the
hardware busy

® Subject to resource availability — registers, shared memory
® . of blocks > 100 to scale to future devices

® Blocks executed in pipeline fashion
® 1000 blocks per grid will scale across multiple generations
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Register Dependency <X

NVIDIA.

® Read-after-write register dependency
® |nstruction’s result can be read ~11 cycles later

® Scenarios:  CUDA: PTX:
X=y+5; add.f32 $f3, $f1, $f2
Z=X+3; add.f32 $f5, $f3, $f4
s_data[0] += 3; |d.shared.f32 $f3, [$r31+0]
add.f32 $f3, $f3, $f4

® 1 completely hide the latency:

® Run at least 192 threads (6 warps) per multiprocessor
® Atleast 25% occupancy

® Threads do not have to belong to the same thread block
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Register Pressure

® Lide latency by using more threads per SM

® Limiting Factors:
® Number of registers per kernel
® 8K/16K per SM, partitioned among concurrent threads
® Amount of shared memory
® 16KB per SM, partitioned among concurrent threadblocks
® Compile with —ptxas-options=-v flag
® Use —maxrregcount=N flag to NVCC
® \ = desired maximum registers / kernel

® Atsome point “spilling” into local memory may occur
® Reduces performance — local memory is slow
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Occupancy Calculator

B3 Microsoft Excel - CUD Occupancy_calculator.xls

.g_] File Edit Wew Insert Format  Tools Data  Window  Help

N EEH S SISV %GB P 2 = -4l £l |l 4 se
MyRegCount | = A 20
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CU DA G PU OCCU pancy Ca|CU |at0I' lick Here for detailed instructions on how to use this occupan

For more information on HVIDIA CUDA, visit http://developer.nvidia.com/cuda

Just follow steps 1, 2, and 3 below! {or click here for help) Your chosen resource usage is indicated by the red triangle on the graphs.

The other data points represent the range of possible block sizes, register counts, and shared memory allocation.
1.) Select a GPU from the list (click): [Help)

2.) Enter your resource usage:
Threads Per Block

Registers Per Thread

Shared Memory Per Block (bytes)

Varying Block Size Varying Register Count

{Don't edit anything below this line)

o

3.) GPU Occupancy Data is displayed here and in the graphs:
Active Threads per Multiprocessor 384
Active Warps per Multiprocessor 12
Active Thread Blocks per Multiprocessor 2
Occupancy of each Multiprocessor 50%
Maximum Simultaneous Blocks per GPU 32
{Hote: This assumes there are at least this many blocks)

My Block Size My Register

Count 20

Multiprocessor
Warp Occupancy

Multiprocessor
Warp Occupancy
Pt

m

P al s for GPL: Gao
Multiprocessors per GPU 16
Threads /Warp 32 144 208 272 336 400 12 1§ 20

Warps ! Multiprocessor 24 Threads Per Block Registers Per Thread
Threads ! Multiprocessor 7ES
Thread Blocks ! Multiprocessar g
Total # of 32-hbit registers f Multiprocessor
Shared Memary / Multiprocessar (bytes) Varying Shared Memory Usage

Allocation Per Thread Block
WWarps

Registers

Shared Memory

These data are used in computing the occupancy data in blue

@

hared
lemory B8

Thread Blocks Per Multiprocess: Blocks
Litnited by Max Warps § Multiprocessor 4
Limited by Registers ! Multiprocessar 2

Limited by Shared Memary / Multiprocessar 32
Thresad Block Limit Per Multiprocessor is the minimum of these 3

Multiprocessor
Warp Occupancy
=3

-

@™

=2

i
CUDA Cccupancy Calculstor | L
“ersion: | 1.1 Registers Per Thread

Copyright and License
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o
=1

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009




Optimizing threads per block <X

NVIDIA.

® Choose threads per block as a multiple of warp size
® Avoid wasting computation on under-populated warps

® \iore threads per block == better memory latency hiding

® But, more threads per block == fewer registers per thread
® Kerel invocations can fail if too many registers are used
® Leuristics

® Minimum: 64 threads per block

® Only if multiple concurrent blocks
® 128 to 256 threads a better choice

® Usually still enough regs to compile and invoke successftully
® This all depends on your computation, so experiment!
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Occupancy != Performance <X
NVIDIA.

® Increasing occupancy does not necessarily increase
performance

BUT ...

® Low-occupancy multiprocessors cannot adequately hide
latency on memory-bound kernels

® (It all comes down to arithmetic intensity and available
parallelism)
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Parameterize Your Application <X
NVIDIA.

® parameterization helps adaptation to different GPUs

® GpPus vary in many ways
® 4of multiprocessors
® Memory bandwidth
® Shared memory size
® Register file size
® Max. threads per block

® \ou can even make apps self-tuning (like FFTW and
ATLAS)

® “Experiment” mode discovers and saves optimal configuration
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CUDA Instruction Performance

® |struction cycles (per warp) = sum of
® Operand read cycles
® |nstruction execution cycles
® Result update cycles

® Therefore instruction throughput depends on
® Nominal instruction throughput
® Memory latency
® Memory bandwidth

® “Cycle” refers to the multiprocessor clock rate
® 1 3GHzonthe Tesla C1060, for example

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009
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Maximizing Instruction Throughput <X

NVIDIA.

® \aximize use of high-bandwidth memory
® Maximize use of shared memory
® Minimize accesses to global memory
® Maximize coalescing of global memory accesses

® Optimize performance by overlapping memory accesses
with HW computation

® High arithmetic intensity programs
®ic high ratio of math to memory transactions
® Many concurrent threads
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Arithmetic Instruction Throughput <X

NVIDIA.

® it and float add, shift, min, max and float mul, mad: 4
cycles per warp
® int multiply (*) is by default 32-bit
® requires multiple cycles / warp

® Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int
multiply

® Integer divide and modulo are more expensive

® Compiler will convert literal power-of-2 divides to shifts
® But we have seen it miss some cases

® Be explicit in cases where compiler can’t tell that divisor is a
power of 2!

® Useful trick: foo % n == foo & (n-1) if n is a power of 2
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Arithmetic Instruction Throughput <X

NVIDIA.

® The intrinsics reciprocal, reciprocal square root, sin/cos,
log, exp prefixed with “ " 16 cycles per warp
® Examples:  rcp(), __sin(), __exp()

® Other functions are combinations of the above

® y I x ==rcp(x) * y takes 20 cycles per warp
® sgrt(x) == x * rsqrt(x) takes 20 cycles per warp
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Runtime Math Library <X

NVIDIA.

® There are two types of runtime math operations

® ___func(): direct mapping to hardware ISA
® Fast but lower accuracy (see prog. guide for details)
® Examples: _sin(x), __exp(x), __pow(X,y)
® func() : compile to multiple instructions
® Slower but higher accuracy (5 ulp or less)
® Examples: sin(x), exp(x), pow(x,y)

® The -use fast math compiler option forces every func()
to compile to _ func()
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GPU results may not match CPU <X

NVIDIA.

® Many variables: hardware, compiler, optimization
settings

® cpu operations aren't strictly limited to 0.5 ulp

® Sequences of operations can be more accurate due to 80-bit
extended precision ALUs

® Floating-point arithmetic is not associative!
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FP Math is Not Associative! <X

NVIDIA.

® |1\ symbolic math, (x+y)+z == x+(y+2)

® This is not necessarily true for floating-point addition
® Try x =103,y =-103° and z = 1 in the above equation

® \When you parallelize computations, you potentially
change the order of operations

® parallel results may not exactly match sequential results

® Thisis not specific to GPU or CUDA — inherent part of parallel
execution
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Control Flow Instructions <X
NVIDIA.

® \vain performance concern with branching is divergence
® Threads within a single warp take different paths
® Different execution paths must be serialized

® Avoid divergence when branch condition is a function of
thread ID
® Example with divergence:

® if (threadldx.x > 2) {}
® Branch granularity < warp size
® Example without divergence:
® if (threadldx.x / WARP_SIZE > 2) {}
® Branch granularity is a whole multiple of warp size
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Summary <3

NVIDIA.

® GPU hardware can achieve great performance on data-
parallel computations if you follow a few simple
guidelines:
® Use parallelism efficiently
® Coalesce memory accesses if possible
® Take advantage of shared memory

® Explore other memory spaces
® Texture
® Constant

® Reduce bank conflicts
® Avoid partition camping
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