
© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 1

Optimizing CUDA

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 2

Outline

Overview

Hardware

Memory Optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary

2
© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 3 3
© NVIDIA Corporation 2008

Optimize Algorithms for the GPU

Maximize independent parallelism

Maximize arithmetic intensity (math/bandwidth)

Sometimes it’s better to recompute than to cache

GPU spends its transistors on ALUs, not memory

Do more computation on the GPU to avoid costly data

transfers

Even low parallelism computations can sometimes be faster than

transferring back and forth to host

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 4 4
© NVIDIA Corporation 2008

Optimize Memory Access

Coalesced vs. Non-coalesced = order of magnitude

Global/Local device memory

Optimize for spatial locality in cached texture memory

In shared memory, avoid high-degree bank conflicts

Partition camping

When global memory access not evenly distributed amongst

partitions

Problem-size dependent

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 5 5
© NVIDIA Corporation 2008

Take Advantage of Shared Memory

Hundreds of times faster than global memory

Threads can cooperate via shared memory

Use one / a few threads to load / compute data shared
by all threads

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 6 6
© NVIDIA Corporation 2008

Use Parallelism Efficiently

Partition your computation to keep the GPU

multiprocessors equally busy

Many threads, many thread blocks

Keep resource usage low enough to support multiple

active thread blocks per multiprocessor

Registers, shared memory

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 7

Outline

Overview

Hardware

Memory Optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary

7
© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 8 8
© NVIDIA Corporation 2008

10-Series Architecture

240 thread processors execute kernel threads

30 multiprocessors, each contains

8 thread processors

One double-precision unit

Shared memory enables thread cooperation

Thread

Processors

Multiprocessor

Shared

Memory

Double

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 9 9
© NVIDIA Corporation 2008

Execution Model

Software Hardware

Threads are executed by thread processors

Thread

Thread

Processor

Thread

Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on

one multiprocessor - limited by multiprocessor

resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at one

time

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 10 1

0

© NVIDIA Corporation 2008

Warps and Half Warps

Thread

Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

16

Half Warps

16

DRAM

Global

Local

A thread block consists of 32-

thread warps

A warp is executed physically in

parallel (SIMD) on a

multiprocessor

Device

Memory

=

A half-warp of 16 threads can

coordinate global memory

accesses into a single transaction

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 11 1

1

© NVIDIA Corporation 2008

Memory Architecture

Host

CPU

Chipset

DRAM

Device

DRAM

Global

Constant

Texture

Local

GPU

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Multiprocessor

Registers

Shared Memory

Constant and Texture

Caches

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 12 1

2

© NVIDIA Corporation 2008

Memory Architecture

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip No R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 13

Outline

Overview

Hardware

Memory Optimizations

Data transfers between host and device

Device memory optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary

1

3

© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 14 1

4

© NVIDIA Corporation 2008

Host-Device Data Transfers

Device to host memory bandwidth much lower than

device to device bandwidth

4GB/s peak (PCI-e x16 Gen 1) vs. 102 GB/s peak (Tesla

C1060)

Minimize transfers

Intermediate data can be allocated, operated on, and

deallocated without ever copying them to host memory

Group transfers

One large transfer much better than many small ones

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 15 1

5

© NVIDIA Corporation 2008

Page-Locked Data Transfers

cudaMallocHost() allows allocation of page-locked
(“pinned”) host memory

Enables highest cudaMemcpy performance
3.2 GB/s on PCI-e x16 Gen1

5.2 GB/s on PCI-e x16 Gen2

See the “bandwidthTest” CUDA SDK sample

Use with caution!!
Allocating too much page-locked memory can reduce overall
system performance

Test your systems and apps to learn their limits

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 16 1

6

© NVIDIA Corporation 2008

Overlapping Data Transfers and

Computation

Async and Stream APIs allow overlap of H2D or D2H
data transfers with computation

CPU computation can overlap data transfers on all CUDA
capable devices

Kernel computation can overlap data transfers on devices with
“Concurrent copy and execution” (roughly compute capability
>= 1.1)

Stream = sequence of operations that execute in order
on GPU

Operations from different streams can be interleaved

Stream ID used as argument to async calls and kernel
launches

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 17 1

7

© NVIDIA Corporation 2008

Asynchronous Data Transfers

Asynchronous host-device memory copy returns control

immediately to CPU

cudaMemcpyAsync(dst, src, size, dir, stream);

requires pinned host memory (allocated with “cudaMallocHost”)

Overlap CPU computation with data transfer

0 = default stream

cudaMemcpyAsync(a_d, a_h, size,

cudaMemcpyHostToDevice, 0);

cpuFunction();

cudaThreadSynchronize();

kernel<<<grid, block>>>(dst);

overlapped

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 18 1

8

© NVIDIA Corporation 2008

GPU/CPU Synchronization

Context based

cudaThreadSynchronize()

Blocks until all previously issued CUDA calls from a CPU

thread complete

Stream based

cudaStreamSynchronize(stream)

Blocks until all CUDA calls issued to given stream

complete

cudaStreamQuery(stream)

Indicates whether stream is idle

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 19 1

9

© NVIDIA Corporation 2008

GPU/CPU Synchronization

Stream based using events

Events can be inserted into streams:

cudaEventRecord(event, stream)

Event is recorded then GPU reaches it in a stream

Recorded = assigned a timestamp (GPU clocktick)

Useful for timing

cudaEventSynchronize(event)

Blocks until given event is recorded

cudaEventQuery(event)

Indicates whether event has recorded

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 20 2

0

© NVIDIA Corporation 2008

Overlapping kernel and data transfer

Requires:

“Concurrent copy and execute”

deviceOverlap field of a cudaDeviceProp variable

Kernel and transfer use different, non-zero streams

A CUDA call to stream-0 blocks until all previous calls

complete and cannot be overlapped

Example:

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);

cudaStreamSynchronize(stream2); overlapped

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 21

Outline

Overview

Hardware

Memory Optimizations

Data Transfers between host and device

Device memory optimizations

Matrix transpose study
– Measuring performance - effective bandwidth

– Coalescing

– Shared memory bank conflicts

– Partition camping

Execution Configuration Optimizations

Instruction Optimizations

Summary

2

1

© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 22

Matrix Transpose

Transpose 2048x2048 matrix of floats

Performed out-of-place

Separate input and output matrices

Use tile of 32x32 elements, block of 32x8 threads

Each thread processes 4 matrix elements

In general tile and block size are fair game for

optimization

Process

Get the right answer

Measure effective bandwidth (relative to theoretical or

reference case)

Address global memory coalescing, shared memory bank

conflicts, and partition camping while repeating above

steps

2

2

© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 23

Theoretical Bandwidth

Device Bandwidth of GTX 280

1107 * 10^6 * (512 / 8) * 2 / 1024^3 = 131.9 GB/s

Specs report 141 GB/s

Use 10^9 B/GB conversion rather than

1024^3

Whichever you use, be consistent

2

3

© NVIDIA Corporation 2008

Memory

clock (Hz)

Memory

interface

(bytes)

DDR

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 24

Effective Bandwidth

Transpose Effective Bandwidth

2048^2 * 4 B/element / 1024^3 * 2 / (time in secs) = GB/s

Reference Case - Matrix Copy

Transpose operates on tiles - need better comparison

than raw device bandwidth

Look at effective bandwidth of copy that uses tiles

2

4

© NVIDIA Corporation 2008

Matrix size

(bytes)

Read and

write

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 25

Matrix Copy Kernel

2

5

© NVIDIA Corporation 2008

__global__ void copy(float *odata, float *idata, int width,

int height)

{

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

}

}
TILE_DIM = 32

BLOCK_ROWS = 8

32x32 tile

32x8 thread block

idata and odata

in global memory

idata odata

Elements copied by a half-warp of threads

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 26

Matrix Copy Kernel Timing

Measure elapsed time over loop

Looping/timing done in two ways:

Over kernel launches (nreps = 1)

Includes launch/indexing overhead

Within the kernel over loads/stores (nreps > 1)

Amortizes launch/indexing overhead

2

6

© NVIDIA Corporation 2008

__global__ void copy(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index = xIndex + width*yIndex;

for (int r = 0; r < nreps; r++) {

for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {

odata[index+i*width] = idata[index+i*width];

}

}

}

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 27

Naïve Transpose

Similar to copy

Input and output matrices have different indices

2

7

© NVIDIA Corporation 2008

__global__ void transposeNaive(float *odata, float* idata, int width,

int height, int nreps)

{

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;

int index_out = yIndex + height * xIndex;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i] = idata[index_in+i*width];

}

}

}
idata odata

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 28

Effective Bandwidth

2

8

© NVIDIA Corporation 2008

Effective Bandwidth (GB/s)

2048x2048, GTX 280

Loop over

kernel

Loop in kernel

Simple Copy 96.9 81.6

Naïve

Transpose

2.2 2.2

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 29

Outline

Overview

Hardware

Memory Optimizations

Data Transfers between host and device

Device memory optimizations

Matrix transpose study
– Measuring performance - effective bandwidth

– Coalescing

– Shared memory bank conflicts

– Partition camping

Execution Configuration Optimizations

Instruction Optimizations

Summary

2

9

© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 30

Coalescing

Global memory access of 32, 64, or 128-bit words by a half-

warp of threads can result in as few as one (or two)

transaction(s) if certain access requirements are met

Depends on compute capability

1.0 and 1.1 have stricter access requirements

3

0

© NVIDIA Corporation 2008

Global Memory

Half-warp of threads

} 64B aligned segment (16 floats)

Examples – float (32-bit) data

}128B aligned segment (32 floats)

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 31

Coalescing
Compute capability 1.0 and 1.1

K-th thread must access k-th word in the segment (or k-th word in 2

contiguous 128B segments for 128-bit words), not all threads need to

participate

3

1

© NVIDIA Corporation 2008

Coalesces – 1 transaction

Out of sequence – 16 transactions Misaligned – 16 transactions

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 32

Coalescing
Compute capability 1.2 and higher

Coalescing is achieved for any pattern of addresses that fits into a

segment of size: 32B for 8-bit words, 64B for 16-bit words, 128B for

32- and 64-bit words

Smaller transactions may be issued to avoid wasted bandwidth due

to unused words

3

2

© NVIDIA Corporation 2008

1 transaction - 64B segment

2 transactions - 64B and 32B segments
1 transaction - 128B segment

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 33

Coalescing in Transpose

Naïve transpose coalesces reads, but not writes

3

3

© NVIDIA Corporation 2008

idata odata

Elements transposed by a half-warp of threads

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 34 3

4

© NVIDIA Corporation 2008

Shared Memory

~Hundred times faster than global memory

Cache data to reduce global memory accesses

Threads can cooperate via shared memory

Use it to avoid non-coalesced access

Stage loads and stores in shared memory to re-order non-
coalesceable addressing

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 35

Coalescing through shared memory

Access columns of a tile in shared memory to write

contiguous data to global memory

Requires __syncthreads() since threads write data

read by other threads

3

5

© NVIDIA Corporation 2008

Elements transposed by a half-warp of threads

idata odata

tile

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 36

Coalescing through shared memory

3

6

__global__ void transposeCoalesced(float *odata, float *idata, int width,

int height, int nreps)

{

__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;

yIndex = blockIdx.x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];

}

}

}
© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 37

Effective Bandwidth

3

7

© NVIDIA Corporation 2008

Effective Bandwidth (GB/s)

2048x2048, GTX 280

Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

Uses shared

memory tile

and

__syncthreads()

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 38

Outline

Overview

Hardware

Memory Optimizations

Data transfers between host and device

Device memory optimizations

Matrix transpose study
– Measuring performance - effective bandwidth

– Coalescing

– Shared memory bank conflicts

– Partition camping

Execution Configuration Optimizations

Instruction Optimizations

Summary

3

8

© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 39 3

9

© NVIDIA Corporation 2008

Shared Memory Architecture

Many threads accessing memory

Therefore, memory is divided into banks

Successive 32-bit words assigned to successive banks

Each bank can service one address per cycle

A memory can service as many simultaneous

accesses as it has banks

Multiple simultaneous accesses to a bank

result in a bank conflict

Conflicting accesses are serialized

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 40 4

0

© NVIDIA Corporation 2008 46

Bank Addressing Examples

No Bank Conflicts

Linear addressing

stride == 1

No Bank Conflicts

Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 41 4

1

© NVIDIA Corporation 2008

Bank Addressing Examples

2-way Bank Conflicts

Linear addressing

stride == 2

8-way Bank Conflicts

Linear addressing

stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 42 4

2

© NVIDIA Corporation 2008

Shared memory bank conflicts

Shared memory is ~ as fast as registers if there are no bank conflicts

warp_serialize profiler signal reflects conflicts

The fast case:

If all threads of a half-warp access different banks, there is no bank

conflict

If all threads of a half-warp read the identical address, there is no bank

conflict (broadcast)

The slow case:

Bank Conflict: multiple threads in the same half-warp access the same

bank

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 43

Bank Conflicts in Transpose

32x32 shared memory tile of floats

Data in columns k and k+16 are in same bank

16-way bank conflict reading half columns in tile

Solution - pad shared memory array

__shared__ float tile[TILE_DIM][TILE_DIM+1];

Data in anti-diagonals are in same bank

4

3

© NVIDIA Corporation 2008

idata odata

tile

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 44

Effective Bandwidth

4

4

© NVIDIA Corporation 2008

Effective Bandwidth (GB/s)

2048x2048, GTX 280

Loop over

kernel

Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

Bank Conflict Free Transpose 16.6 17.2

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 45

Outline

Overview

Hardware

Memory Optimizations

Data transfers between host and device

Device memory optimizations

Matrix transpose study
– Measuring performance - effective bandwidth

– Coalescing

– Shared memory bank conflicts

– Partition camping

Execution Configuration Optimizations

Instruction Optimizations

Summary

4

5

© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 46

Partition Camping

Global memory accesses go through partitions

6 partitions on 8-series GPUs, 8 partitions on 10-series

GPUs

Successive 256-byte regions of global memory are

assigned to successive partitions

For best performance:

Simultaneous global memory accesses GPU-wide should

be distributed evenly amongst partitions

Partition Camping occurs when global memory

accesses at an instant use a subset of partitions

Directly analogous to shared memory bank conflicts, but

on a larger scale

4

6

© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 47 4

7

© NVIDIA Corporation 2008

0 1 2 3 4 5

64 65 66 67 68 69

128 129 130 ...

0 64 128

1 65 129

2 66 130

3 67 ...

4 68

5 69

odataidata

Partition Camping in Transpose

tiles in matrices

colors = partitions

blockId = gridDim.x * blockIdx.y + blockIdx.x

Partition width = 256 bytes = 64 floats

Twice width of tile

On GTX280 (8 partitions), data 2KB apart map to same

partition

2048 floats divides evenly by 2KB => columns of matrices map

to same partition

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 48 4

8

© NVIDIA Corporation 2008

Partition Camping Solutions

blockId = gridDim.x * blockIdx.y + blockIdx.x

Pad matrices (by two tiles)

In general might be expensive/prohibitive memory-wise

Diagonally reorder blocks

Interpret blockIdx.y as different diagonal slices and blockIdx.x

as distance along a diagonal

odataidata

0 64 128

1 65 129

2 66 130

3 67 ...

4 68

5

0

64 1

128 65 2

129 66 3

130 67 4

... 68 5

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 49 4

9

__global__ void transposeDiagonal(float *odata, float *idata, int width,

int height, int nreps)

{

__shared__ float tile[TILE_DIM][TILE_DIM+1];

int blockIdx_y = blockIdx.x;

int blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;

int xIndex = blockIdx_x * TILE_DIM + threadIdx.x;

int yIndex = blockIdx_y * TILE_DIM + threadIdx.y;

int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx_y * TILE_DIM + threadIdx.x;

yIndex = blockIdx_x * TILE_DIM + threadIdx.y;

int index_out = xIndex + (yIndex)*height;

for (int r=0; r < nreps; r++) {

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {

odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];

}

}

}
© NVIDIA Corporation 2008

Diagonal Transpose

Add lines to map diagonal

to Cartesian coordinates

Replace

blockIdx.x

with

blockIdx_x,

blockIdx.y

with

blockIdx_y

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 50 5

0

if (width == height) {

blockIdx_y = blockIdx.x;

blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;

} else {

int bid = blockIdx.x + gridDim.x*blockIdx.y;

blockIdx_y = bid%gridDim.y;

blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x;

}

© NVIDIA Corporation 2008

Diagonal Transpose

Previous slide for square matrices (width == height)

More generally:

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 51

Effective Bandwidth

5

1

© NVIDIA Corporation 2008

Effective Bandwidth (GB/s)

2048x2048, GTX 280

Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

Bank Conflict Free Transpose 16.6 17.2

Diagonal 69.5 78.3

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 52

Transpose Summary

Coalescing and shared memory bank conflicts are

small-scale phenomena

Deal with memory access within half-warp

Problem-size independent

Partition camping is a large-scale phenomena

Deals with simultaneous memory accesses by warps on

different multiprocessors

Problem size dependent

Wouldn’t see in (2048+32)^2 matrix

Coalescing is generally the most critical

5

2

© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 53

Outline

Overview

Hardware

Memory Optimizations

Data transfers between host and device

Device memory optimizations

Matrix transpose study

Textures

Execution Configuration Optimizations

Instruction Optimizations

Summary

5

3

© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 54 5

4

© NVIDIA Corporation 2008

Textures in CUDA

Texture is an object for reading data

Benefits:
Data is cached (optimized for 2D locality)

Helpful when coalescing is a problem

Filtering

Linear / bilinear / trilinear

Dedicated hardware

Wrap modes (for “out-of-bounds” addresses)

Clamp to edge / repeat

Addressable in 1D, 2D, or 3D

Using integer or normalized coordinates

Usage:
CPU code binds data to a texture object

Kernel reads data by calling a fetch function

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 55 5

5

© NVIDIA Corporation 2008

Texture Addressing

Wrap

Out-of-bounds coordinate is

wrapped (modulo arithmetic)

Clamp

Out-of-bounds coordinate is

replaced with the closest

boundary

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

0 1 2 3 4

1

2

3

0
(2.5, 0.5)

(1.0, 1.0)

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 56 5

6

© NVIDIA Corporation 2008

Two CUDA Texture Types

Bound to linear memory
Global memory address is bound to a texture

Only 1D

Integer addressing

No filtering, no addressing modes

Bound to CUDA arrays
CUDA array is bound to a texture

1D, 2D, or 3D

Float addressing (size-based or normalized)

Filtering

Addressing modes (clamping, repeat)

Both:
Return either element type or normalized float

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 57 5

7

© NVIDIA Corporation 2008

CUDA Texturing Steps

Host (CPU) code:

Allocate/obtain memory (global linear, or CUDA array)

Create a texture reference object

Currently must be at file-scope

Bind the texture reference to memory/array

When done:

Unbind the texture reference, free resources

Device (kernel) code:

Fetch using texture reference

Linear memory textures:

tex1Dfetch()

Array textures:

tex1D() or tex2D() or tex3D()

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 58

Outline

Overview

Hardware

Memory Optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary

5

8

© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 59 5

9

© NVIDIA Corporation 2008

Occupancy

Thread instructions are executed sequentially, so

executing other warps is the only way to hide latencies

and keep the hardware busy

Occupancy = Number of warps running concurrently on a

multiprocessor divided by maximum number of warps

that can run concurrently

Limited by resource usage:

Registers

Shared memory

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 60 6

0

© NVIDIA Corporation 2008

Grid/Block Size Heuristics

of blocks > # of multiprocessors

So all multiprocessors have at least one block to execute

of blocks / # of multiprocessors > 2

Multiple blocks can run concurrently in a multiprocessor

Blocks that aren’t waiting at a __syncthreads() keep the

hardware busy

Subject to resource availability – registers, shared memory

of blocks > 100 to scale to future devices

Blocks executed in pipeline fashion

1000 blocks per grid will scale across multiple generations

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 61 6

1

© NVIDIA Corporation 2008

Register Dependency

Read-after-write register dependency
Instruction’s result can be read ~11 cycles later

Scenarios: CUDA: PTX:

To completely hide the latency:
Run at least 192 threads (6 warps) per multiprocessor

At least 25% occupancy

Threads do not have to belong to the same thread block

add.f32 $f3, $f1, $f2

add.f32 $f5, $f3, $f4

x = y + 5;

z = x + 3;

ld.shared.f32 $f3, [$r31+0]

add.f32 $f3, $f3, $f4

s_data[0] += 3;

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 62 6

2

© NVIDIA Corporation 2008

Register Pressure

Hide latency by using more threads per SM

Limiting Factors:

Number of registers per kernel

8K/16K per SM, partitioned among concurrent threads

Amount of shared memory

16KB per SM, partitioned among concurrent threadblocks

Compile with –ptxas-options=-v flag

Use –maxrregcount=N flag to NVCC

N = desired maximum registers / kernel

At some point “spilling” into local memory may occur

Reduces performance – local memory is slow

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 63 6

3

© NVIDIA Corporation 2008

Occupancy Calculator

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 64 6

4

© NVIDIA Corporation 2008

Optimizing threads per block

Choose threads per block as a multiple of warp size

Avoid wasting computation on under-populated warps

More threads per block == better memory latency hiding

But, more threads per block == fewer registers per thread

Kernel invocations can fail if too many registers are used

Heuristics

Minimum: 64 threads per block

Only if multiple concurrent blocks

192 or 256 threads a better choice

Usually still enough regs to compile and invoke successfully

This all depends on your computation, so experiment!

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 65 6

5

© NVIDIA Corporation 2008

Occupancy != Performance

Increasing occupancy does not necessarily increase

performance

BUT …

Low-occupancy multiprocessors cannot adequately hide

latency on memory-bound kernels

(It all comes down to arithmetic intensity and available

parallelism)

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 66 6

6

© NVIDIA Corporation 2008

Parameterize Your Application

Parameterization helps adaptation to different GPUs

GPUs vary in many ways
of multiprocessors

Memory bandwidth

Shared memory size

Register file size

Max. threads per block

You can even make apps self-tuning (like FFTW and
ATLAS)

“Experiment” mode discovers and saves optimal configuration

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 67

Outline

Overview

Hardware

Memory Optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary

6

7

© NVIDIA Corporation 2008

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 68 6

8

© NVIDIA Corporation 2008

CUDA Instruction Performance

Instruction cycles (per warp) = sum of

Operand read cycles

Instruction execution cycles

Result update cycles

Therefore instruction throughput depends on

Nominal instruction throughput

Memory latency

Memory bandwidth

“Cycle” refers to the multiprocessor clock rate

1.3 GHz on the Tesla C1060, for example

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 69 6

9

© NVIDIA Corporation 2008

Maximizing Instruction Throughput

Maximize use of high-bandwidth memory

Maximize use of shared memory

Minimize accesses to global memory

Maximize coalescing of global memory accesses

Optimize performance by overlapping memory accesses

with HW computation

High arithmetic intensity programs

i.e. high ratio of math to memory transactions

Many concurrent threads

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 70 7

0

© NVIDIA Corporation 2008

Arithmetic Instruction Throughput

int and float add, shift, min, max and float mul, mad: 4

cycles per warp

int multiply (*) is by default 32-bit

requires multiple cycles / warp

Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit int

multiply

Integer divide and modulo are more expensive

Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases

Be explicit in cases where compiler can’t tell that divisor is a

power of 2!

Useful trick: foo % n == foo & (n-1) if n is a power of 2

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 71 7

1

© NVIDIA Corporation 2008

Arithmetic Instruction Throughput

The intrinsics reciprocal, reciprocal square root, sin/cos,

log, exp prefixed with “__” 16 cycles per warp

Examples: __rcp(), __sin(), __exp()

Other functions are combinations of the above

y / x == rcp(x) * y takes 20 cycles per warp

sqrt(x) == x * rsqrt(x) takes 20 cycles per warp

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 72 7

2

© NVIDIA Corporation 2008

Runtime Math Library

There are two types of runtime math operations

__func(): direct mapping to hardware ISA

Fast but lower accuracy (see prog. guide for details)

Examples: __sin(x), __exp(x), __pow(x,y)

func() : compile to multiple instructions

Slower but higher accuracy (5 ulp or less)

Examples: sin(x), exp(x), pow(x,y)

The -use_fast_math compiler option forces every func()

to compile to __func()

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 73 7

3

© NVIDIA Corporation 2008

GPU results may not match CPU

Many variables: hardware, compiler, optimization

settings

CPU operations aren’t strictly limited to 0.5 ulp

Sequences of operations can be more accurate due to 80-bit

extended precision ALUs

Floating-point arithmetic is not associative!

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 74 7

4

© NVIDIA Corporation 2008

FP Math is Not Associative!

In symbolic math, (x+y)+z == x+(y+z)

This is not necessarily true for floating-point addition

Try x = 1030, y = -1030 and z = 1 in the above equation

When you parallelize computations, you potentially

change the order of operations

Parallel results may not exactly match sequential results

This is not specific to GPU or CUDA – inherent part of parallel

execution

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 75 7

5

© NVIDIA Corporation 2008

Control Flow Instructions

Main performance concern with branching is divergence

Threads within a single warp take different paths

Different execution paths must be serialized

Avoid divergence when branch condition is a function of

thread ID

Example with divergence:

if (threadIdx.x > 2) { }

Branch granularity < warp size

Example without divergence:

if (threadIdx.x / WARP_SIZE > 2) { }

Branch granularity is a whole multiple of warp size

© NVIDIA Corporation 2009 CUDA Tutorial 30/3/2009 76 7

6

© NVIDIA Corporation 2008

Summary

GPU hardware can achieve great performance on data-

parallel computations if you follow a few simple

guidelines:

Use parallelism efficiently

Coalesce memory accesses if possible

Take advantage of shared memory

Explore other memory spaces

Texture

Constant

Reduce bank conflicts

Avoid partition camping

