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SUMMARY

 The importance of real-time recording of electroneurogram (ENG)
signals

 The difficulties of achieving a stable interface between tissue and
electronic devices

 Illustrations of current problems being studied at Bath University
1 Velocity selective recording (VSR) of ENG signals
2 In vitro recording of ENG from cloned neurons

 Some possible future directions
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THE IMPORTANCE OF ENG RECORDING

Although this area has been researched for some time, there is
still much demand for improved systems for real-time ENG
recording. Interest comes from eg:

•Neuroscientists requiring experimental data in fields such as
neurophysiology and neuropharmacology

•Engineers requiring inputs for systems to control Functional
Electrical Stimulation (FES) systems for a variety of
rehabilitation applications such as neurogenic urinary
incontinence by stimulation of the sacral roots

•There is a demand for recording methods with improved
functionality, eg. Velocity/diameter selective recording (VSR)
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NERVE CUFFS FOR ENG RECORDING

electrodes

nerve

cuff

Avery and Wespic
(1973)

Avery
(1973)

Naples et al Kallesoe (1996)(1988)

Nerve cuff with tripolar
electrode assembly Various types of cuff design
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MULTIELECTRODE CUFF (MEC)

ceramic
adapter

cable

cuff

M Schuettler, 2006

•Polyimide thin-film technology

•Sputtered platinum electrodes

•Etched using oxygen plasma.

•The final MEC was 1.5 mm in
diameter, 40 mm long and
carried eleven 0.5 mm wide,
ring-shaped platinum
electrodes
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RECORDING ENG USING NERVE CUFFS
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Electrode

Amplifier

From tissue

To the central nervous
system

+

-

This type of cuff/amplifier connection
is called a Quasi Tripole (QT). It
provides good suppression of EMG
and other artifacts. It only requires one
amplifier and is relatively simple to
implement. It has been much used in
practical ENG recording systems.

Output
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10 CHANNEL ENG RECORDING SYSTEM
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PREAMPLIFIER SCHEMATIC
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3mm
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10 CHANNEL ENG RECORDING SYSTEM

Die mounted in PGA package
ASIC layout
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EXPERIMENTAL SETUP FOR MEC RECORDINGS
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XENOPUS FROG PREPARED FOR
REMOVAL OF SCIATIC NERVE
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NERVE FITTED WITH MULTIELECTRODE CUFF IN
VITRO
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MEASURED RESULTS IN FROG

Stimulation intensity 0.13 µC Stimulation intensity 1.01 µC
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MEASURED VSR DATA IN FROG

Delay profiles corresponding to
two different stimulation intensities:

grey: 1.01 µC, white: 0.13 µC.

The bars have a width of 25 µs
(reciprocal value of the
sampling frequency)
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BI-DIRECTIONAL INTERFACING OF
ELECTRONICS AND CULTURED NEURONS

•This is a collaborative programme involving E&EE at Bath, KCL/Guy’s
Hospital (London), Dept of EE at University College (London) and the
Department of Physics at Queen Mary University (London)

•The overall aim is to enhance our understanding of how mammalian
nerve cells can be connected optimally to integrated electronic circuitry
for neurobiological research and medical applications

•We intend to find an alternative method to traditional patch clamping
which is non-intrusive, less labour intensive in use and is based on a
simple, cheap, reproducible CMOS integrated circuit without any need
for elaborate post-processing
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NEURON-ELECTRODE INTERFACE: EQUIVALENT CIRCUIT
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PSPICE REALISATION OF THE HODGKIN-HUXLEY MODEL
OF A NEURON (1952)
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PAD-ONLY CHIP LAYOUT

Chip layout Packaged Die
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GROWING NEURONAL CELLS ON CMOS

NG108-15 (neuroblastoma x
glioma hybrid) cells, stained
with methyl blue

Grown on CMOS microchips
pre-coated with a cationic
polymer, (PE1), for 5 days

100μm
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NEURONAL GROWTH ON POROUS SILICON
Etched from polysilicon on a CMOS chip
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ELECTRICAL IMPEDANCE SPECTROSCOPY (EIS) MEASUREMENTS ON
PACKAGED CMOS CHIPS
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FUTURE WORK

•Neural Prostheses: (i) complete the demonstration of velocity
selectivity (start January 2007) (ii) consider new methods of neural
recording, e.g. using optoelectronics

•Electro-neural Interfacing: (i) Demonstrate capture of ENG from
single excited neurons; design on-chip signal processing for
optimum SNR. (ii) Complete modelling work

•SMART Orthopaedic Sensors: (i) Develop an optimal implanted
sensor for hip micromotion detection and verify with in-vitro
experiments. (ii) Develop other possible applications for the use of
SMART sensors and actuators in modern orthopaedic applications
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SYSTEM SPECIFICATION

15 nA, 20 nA, +,- inputs< 100 nAResidual DC input current

291 nV< 300 nVInput-referred rms voltage noise
1 Hz -5 kHz

17 nV/√Hz, 1.5 nV/√Hz20 pA/√Hz, 2 pA/√HzInput-referred current noise density
1 Hz, 1 kHz

11.5 nV/√Hz, 3.8 nV/√Hz20 nV/√Hz, 4 nV/√HzInput-referred voltage noise density
1 Hz, 1 kHz

82 dB100 dBCMRR @ 1kHz

310 Hz, 3.3 kHz300 Hz, 3.5 kHzBandwidth

10,10010,000Midband gain

12 mm2Circuit area

24 mW< 50 mWPower consumption

±2.5 V±2.5 VPower supply

10Number of channels

MeasuredSpecificationParameter


