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Outline

¢ Distributed spectrum sensing via level-triggered
sampling

e Coding and resource allocation for distributed wireless
cloud




Uniform Sampling vs. Event-triggered Sampling

@ Uniform in-time sampling:
@ sample with period T
@ deterministic sampling

@ Event-triggered sampling:
o sample whenever an event occurs (e.g., a level is passed)
o dynamic sampling — samp. times dictated by the signal (random)
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Cooperative Spectrum Sensing
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Cooperative Spectrum Sensing
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sampling times
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Spectrum Sensing via SPRT

Having observations {yf, ..., yf}K_, at SUs, we perform the following
hypothesis test,

Ho: {vf....¥ft~f, k=1,...,K

: 4

Hio {vf, vkl ~fi, k=1,... K (4)

Each SU computes its own log-likelihood ratio (LLR) and sends it to the

FC.
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FC computes the global LLR, L; = Zle Lk, and applies SPRT to make
a sensing decision.

S = inf{t>0:L ¢ (-B,A)}, (6)
1) = {4 fozls ”
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Spectrum Sensing via SPRT

Thresholds A, B are selected so that SPRT satisfies following constraints
with equality.

Py(ds =1) < a and Pi(ds=0)< g (8)

There are two serious practical weaknesses of SPRT in our problem.
@ Local LLRs must be sent to the FC at Nyquist-rate.
@ Infinite number of bits is required to represent local LLRs.

Substantial communication overhead is incurred between SUs and FC!

Objective
Decentralized schemes = low rate info. transmission from SUs to FC
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Decentralized Q-SPRT Scheme

Secondary Users

@ sample local LLRs uniformly at time instants T7,27T,...,mT,...

@ quantize sampled values using a finite number of levels, ¥ (e.g.
uniform mid-riser quantizer)

Xk

\mT

L \k
| AT

@ send A\ . to FC using log, 7 bits
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Decentralized Q-SPRT Scheme

Fusion Center
@ synchronously receives quantized info. from SUs
@ updates the approximation of the global running LLR
K
Lyt = Lim—1yT + Z Aot (9)

k=1

@ applies the SPRT idea using L7 and A, —B as the two thresholds.

Yilmaz, Moustakides, Wang Spectrum Sensing via Event-triggered Sampling



Decentralized Scheme based on Event-triggered Sampling

Secondary Users

@ sample local LLR process Lk at a sequence of random times {tX}

9 send the information of the threshold that is crossed by
)\ﬁ = Lé‘k — Lé‘k to FC (either A or —A)
n n—1

b = sign()%) (10)

Each SU performs a local SPRT with thresholds A and —A.
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Decentralized Scheme based on Event-triggered Sampling

Fusion Center

@ approximates the local incremental LLR as Ak = bfA.

tk_ZAk_Ln +b,’§A:Zn:b}‘A (11)

Jj=1

If Ak hits exactly one of the boundaries A, then we have exact recovery
(5= t4).

@ adds all the received bits transmitted by all SUs up to time t and
then normalizes the result with A.

K

—~

AZ > bk (12)

k=1 k=1 n:tk<t

@ applies the SPRT idea using L; and /2\, —B as the two thresholds.
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Enhancement: Overshoot Quantization at SUs

A very important source of performance degradation: Lk — [

use additional bits to quantize over(under)shoots, gk = |\K| — A.

@ Divide [0, ¢] uniformly into 7 subintervals.
@ Transmit either lower or upper end of the corresponding subinterval
by random selection.

“eeieve withprob. 1— p p is chosen so that

: elw ande~Lv are supermartingales,
-+-e  withprob. p which greatly simplifies the
. performance analysis of the scheme

@ FC at time t, receives (by, §n), and updates its approx. running LLR.
ztn = Ztnfl + bn(A + an) (13)
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Performance Analysis

Definition
Any sequential scheme (7, d7) satisfying the error prob. bounds as
a, B — 0, is said to be order-1 asymptotically optimal if

1< % — 14 0n5(1); (14)

and order-2 asymptotically optimal if

0 <E[T] - E[S] = 0(1) (15)

where (S, ds) is the optimum SPRT.

Cont.-time results:

@ Q-SPRT is not even order-1 asymp. optimal with any fixed number
of bits.

@ RLT-SPRT is order-2 asymp. optimal with only one bit.
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Comparisons

In order to make fair comparisons, A is adjusted so that
average frequency of received messages by the FC is the same for

Q-SPRT and RLT-SPRT.

@ RLT-SPRT needs significantly less bits than Q-SPRT in order to
enjoy order-2 asymptotic optimality.

@ For fixed s, RLT-SPRT achieves order-1 asymp. optimality when
T — oo with a rate slower than |log .

@ In contrast, by controlling T, Q-SPRT can not enjoy any form of
asymp. optimality.
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Simulations: Q-SPRT

Asymptotic Analysis: Q-SPRT
T

8

Average sensing delay

s
llog al=llog B|
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Simulations: Q-SPRT

Asymptotic Analysis: Q-SPRT
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Simulations: Q-SPRT

Asymptotic Analysis: Q-SPRT
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Simulations: RLT-SPRT

Asymptotic Analysis: RLT-SPRT
T

12 T T

Average sensing delay

s
llog al=llog B|

Yilmaz, Moustakide: pectrum Sensing via Even



Simulations: RLT-SPRT

Asymptotic Analysis: RLT-SPRT
T
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Average sensing delay
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Simulations: RLT-SPRT

Asymptotic Analysis: RLT-SPRT
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Simulations: RLT-SPRT

Asymptotic Analysis: RLT-SPRT
12 T T T
——optimum
- - - 1-bit
2-hit 1
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Simulations: RLT-SPRT vs. Q-SPRT
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Conclusion

The proposed decentralized (low-rate transmission) scheme based on
non-uniform samplers

@ asynchrony among SUs
@ order-2 asymp. optimality
@ only 1 bit in cont.-time

o significantly less number of bits (—log, T) than Q-SPRT in
disc.-time

@ order-1 asymp. optimality using a constant num. of bits when av.
comm. period is controlled

Its uniform sampling counterpart (Q-SPRT)
@ no optimality using const. num. of bits

@ order-2 optimality when num. of bits is allowed to increase at a rate
O(log | log o)

@ no optimality when num. of bits kept constant and av. comm.
period changed
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Data Centers

e Server clusters that store and process all the data in the Internet
e There were 509147 data centers worldwide in 2011

e Consume vast amounts of energy - more than 2% of US electricity
— Power to run and repair servers, and for cooling systems

— Backup power generators use diesel cause air pollution

e Consequences if a data center breaks down (electricity failure)

/
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Desired Properties of Distributed Storage

Reliability against disk failures
Recovery with minimum cost
Simple updates when data changes
Easy accessibility without blocking

Easy failed node repair

— no data recovery efficiency loss after failed node repair

Columbia University
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Trade-offs in Distributed Storage

e Reliability vs. Storage
— Replication is the most commonly used redundancy

— (n, k) MDS Codes - any k out of n sufficient for data recovery

e Storage vs. Repair Bandwidth
— Locally Repairable Codes - To restore a failed disk by accessing
minimum number of working disks
e Accessibility vs. Storage

— Coding gives lower blocking probability than replication for the
same storage (Energy Cost)

N /
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Distributed Wireless Clouds

Information storage and retrieve in Mobile Wireless Cloud

Mobile Wireless Cloud without Infrastructure

— Military communication networks

— Wireless cloud of Vehicles and Ships

— Emergency cases: earthquake, tsunami, infrastructures
destroyed

Large amount of data exceeding the infrastructure capacity

Security reasons, information must be stored locally

Columbia University




Technique Overview

A file split into several parts,
- coded symbols across the split parts,
- stored in various data storage nodes;

A data collector, reconstruct the original files:
- via downloading data from the storage nodes

Download part of the data from each storage node
- amount of downloaded data depends on wireless link strength

Orthogonal wireless channels for symbol downloading

/
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Basic Structure for Wireless Storage Networks

Storage

Node 1 Storage
Node 2
[
°
°
h A < control channel
l
Data data channel Storage
Collector | Node i

feedback channel >

wireless distributed storage network structure

Columbia University




-

Failed Node Regeneration

e A failed storage node downloads symbols from other nodes;
e Exactly recover the coded data symbols it stored;

e Similar procedure as that for data reconstruction.

Columbia University
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Distributed Storage Modeling for Wireless Cloud

Distributed storage:

e store a file in a distributed manner, in several nodes

e two operations:
- reconstruct the original file

- repair the storage in a failed node

(S, K,d, a, 3) regenerating code:

e totally S storage nodes, each storing a symbols;

e reconstruct original file,

- via downloading all K« symbols from any K nodes;

e repair a failed node,

- via downloading 3 symbols each from any d surviving nodes

-
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Data Reconstruction

(2) (2)
m-~, H
m(l), HY

K Nodes

Data
Collector

Data
Reconstruction

and Node Regeneration

Storage

Node 1
m(k)’ H(k) o

Failed
Storage
Node

Regeneration
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Distributed storage setting:

Wireless Distributed Storage Data Coding

e original file:
S — [51,82, ...,SM} :

e each storage node 1 stores:
m() = sTH(®:.

Wireless network setting:

e a data collector (DC)
Node 2
e N orthogonal channels
(i) 2 y
(2),2 _WT l9; " 1“Pj .
c(lg; " |°Pj) = 5~ logy (1 + K —L—5—
< control channel

Full downloading and partial downloading: ‘
Data < data channel ‘ Storage
. Collector ode i
[ ] fU” downloaChng oo feedback channel > Nod

- power grows exponentially with the capacity

wireless distributed storage network structure

e partial downloading

-
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Partial Downloading Linear Combination

Partial downloading formulation:

downloading u; < a symbols from storage node ¢

downloading linear combination sTH(%) A (9)

O . .
- Aaxm linear combination matrix;

1E€ES
- s reconstructable iff [H(i)A(i)] of rank M

1ES

downloading symbols: s [H(i)A(i)]

Downloading original symbols:

-

Theorem: [HmAw} s s

-3 H®, a x p; submatrix of H(®)

of rank M = [ﬁ(i)] of rank M,

downloading original symbols suffices
- no need to use linear combination (matrix A (%))

Columbia University
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Wireless Cloud Resource Allocation Formulation

Wireless resource allocation:

e data reconstructable: [/Ll,pbz, ...,,us}, M X p; submatrix H® of H()
- [ﬁ(i)} of rank M

1€ES
° ﬁj(.i) = 1 if DC downloads from storage node ¢ using channel j

X, = c(Pj Sics ﬁ](.i)|g§.i)|2), ni =N 89X (1)

Problem formulation:

minimize transmission power s.t. data reconstructable
- min Zj-vzl Pj; s.t. data reconstructable, (1), >, Bj@ <1.

Difficulty: how to analyze the data reconstructability

- transform the full rank constraint to ...

-
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Data Reconstructability (MSR)

Full rank constraint:

e transform it using u;: downloading u; symbols from node ¢;

Minimum storage regeneration (MSR):

MSR: M = K«, minimum downloading for data reconstruction

- [H(i)} of rank M for any |R| = K;
1€ER

Simple necessary condition: number of downloaded symbols > M

- this is also sufficient

Theorem: For any Zies wi > M, u; < «, there exists p; X o submatrix
H() of H®)  such that [I:I(i)} o is of rank M.

1€
- keep adding linearly independent symbols, plus some stuck processing

/
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Wireless Cloud Resource Allocation (MSR)

Relaxed resource allocation problem:

° ZieS Wi > M, u; < a = remove constraint u; < q;

e problem reformulation
- minimize transmission power, s.t. totally downloading M symbols;

-min} ) Pyist. Y00 X; =M.

e two-step optimal solution
- each channel j allocated to the best user, max; |g§.7’)
- optimal greedy algorithm for symbol allocation.

2.

Local adjustment:

e in case that the constraint u; < «, © € S violated

e rarely happens in simulation scenarios

-
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System setup:

Wireless Cloud Resource Allocation Results (MSR)

300
e node number S = 16, channel num-

ber N = 64, noise 02 = 0.25, coef-
ficients Kk = 0.5, % = 0.25;

e MSR: M =16, K = o = 4;

250

N

o

o
T

Partial downloading:

Number of Events
[
3

e 1000 channel realization,

100

e total transmission power

50

- mostly more than 0.6dB perfor-
mance gain over full downloading L

gz

0.2 0.4

-

0.6 0.8 1 1.2
Consumption Power Saving (dB)

1.4

1
16

~
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Partial downloading:

Wireless Cloud Resource Allocation (MBR)

e more complicated reconstructability

condition;
e downloaded symbols: M (< K«) 0
- Ka required by full downloading; |
Resource allocation:
200
o relax to ) ;s i = M; E
e optimal greedy solution + local ad- ¢
: =
justment (rare); E
100
Results:
50
e 1000 channel realization,
|
e total transmission power s ‘2/ 22 24 26 28 3/ 32 34

Power Consumption Saving (dB)

- mostly around 2.5dB performance

gain over full downloading

-

3.6

~

/
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Performance Comparison with Existing Schemes

Existing schemes - flexible downloading:

® any > ..g Mi > M symbols suffice data reconstruction;
e needs v symbols for failed node repair;

Bound for failed node repair ~:

e MSR point « =4, M = 16: bound v > 7, partial downloading v = 7;

e MBR point a = 6, M = 18: bound v > 8, partial downloading v = 6;
-only > .5 mi = M not suffices, but usually suffices for wireless setting

Explicit coding schemes for failed node repair:

e MSR point: flexible downloading v = 10, partial downloading v = 7;

e MBR point: flexible downloading v = 12, partial downloading v = 6;

-
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