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o Random vs structured codes: Point-to-point systems
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for point-to-point systems

What are they?

Codes with randomness
@ Invented by Shannon in 1948
Key theoretical tool

@ In proving Shannon’s classic source and
channel coding theorems

Recent invention/rediscovery of codes based on
random graphs

@ Turbo/LDPC codes
@ Fulfilled Shannon’s prophecy (after 50 years)
What do we learn from Shannon?

@ Random codes are optimal for point-to-point
systems

Random graphs
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for point-to-point systems

What are they?
Codes with structure Nested lattice codes
SO0 e

@ Linear/lattice/trellis codes
59 2R 0a0ACe0B0A%6 26969

Widely used in communication systems

@ For their low complexity
@ Potentially limit-approaching (as promised |
by info theory) 1
e Achievable capacity
11og(SNR) — 1 log(1 + SNR) for
AWGN channels
o Optimal for at least some point-to-point
systems as well
e Structure “comes for free”

Can structured codes exceed the info-theoretic limits?

@ No, at least for memoryless point-to-point systems

December 28, 2013 5742
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Q Random vs. structured coding: Multiterminal systems
@ Slepian-Wolf coding
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for multiterminal systems

Slepian-Wolf coding’73

@ X, Y: two correlated sources with finite alphabet

@ Separate encoding and joint decoding

@ Near-lossless decoding, i.e., lim,,_, Pe((X”, ") = (X", f/")) =0

n A
X % X"
—  Encoder AX >
Rate R, Joint
. Decoder An
Y 3 Wy Y
—> Encoder x >
Rate R,
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for multiterminal systems

Slepian-Wolf theorem

@ Slepian-Wolf rate region (proved by using random coding/bining)
Ry > H(X|Y)
R, > H(Y|X)
Ri+Ry > H(X, Y)
RZ
achievable
HX,Y) & rate region for
\ separate entropy
N\ coding
H(Y)
achievable
rate region for
SW coding
HCYIX) <
HXIY) HEK) HEX,Y) R,
@ No rate loss compared to joint encoding of X and Y

December 28, 2013



for multiterminal systems

Slepian-Wolf coding example

Assumptions:
@ X, Y €{0,1}* - binary triplets
@ H(X)=H(Y) =3 bits — equiprobable triplets
@ Correlation between X and Y

e x and y differ at most in one position
e Hamming distance dy(x,y) < 1
e H(X|Y) =2 bits

Question:

o Ify is perfectly known at the decoder but not at the encoder, is it possible

e to send 2 bits instead of 3 for x and
e reconstruct X without loss?

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 9/42



for multiterminal systems

Slepian-Wolf coding example

Solution:

@ Form 4 cosets and send 2-bit index of the coset x belongs to:
e coset Zy: {000,111} « codewords of rate-} repetition code
e coset Zy;: {001,110}
e coset Zjo: {010,101}
e coset Z;;: {011,100}
@ In each set: 2 members at dy = 3
@ Joint decoder: in the set indexed by Z:
e Using y, pick X s.t. dy(,y) < 1
o This guarantees correct/lossless decoding
Example: y=[000], index 00 from encoder, x =[000]
index 01 from encoder, x =[001]

index 10 from encoder, x =[010]
index 11 from encoder, x =[100]

@ Separate encoding as efficient as joint encoding!
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for multiterminal systems

Equivalent way of viewing last example from a concept

@ Form parity-check matrix of rate-% repetition code

1 10
H= [ 1 01 ]
@ Syndrome=coset/bin index
e Coset/bin 0: {000,111} has syndrome Z = 00
e Coset/bin 1: {001,110} has syndrome Z = 01

e Coset/bin 2: {010,101} has syndrome Z = 10
o Coset/bin 3: {011,100} has syndrome Z = 11

@ All 4 cosets preserve the distance properties of the repetition code

@ Encoding corresponds to matrix multiplication Hx
o Compression 3:2

@ Separate encoding as efficient as joint encoding!

1. Random coding optimal for this symmetric Slepian-Wolf coding example
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Q Random vs. structured coding: Multiterminal systems

@ Korner & Marton’s binary two-help-one problem




for multiterminal systems

The two-help-one problem

How to encode the mod-2 sum of binary sources? Introduced by Korner &
Marton in 1979

v W
=0
e Wa ; 70
\ Joint .
"=V oY ) 0
s ]

@ Y; and Y, are doubly symmetric binary sources
@ Only the first two encoders are allowed to transmit, the decoder
reconstructs Z = Y| @ Y» losslessly

o This is combined compression and inference (for big data)
o Goes beyond Slepian-Wolf coding

December



for multiterminal systems

The rate region of Korner-Marton coding

@ Slepian-Wolf coding before forming Z = Y| @ Y, certainly works

@ Structured coding strictly improves random (Slepian-Wolf) coding!

Structured coding Random coding
Rz Rz
H(Y>)
H(Z) H(2)
H(Z) Ry H(Z) HY) R

@ Using the same linear code, encoder i transmits Hy;
e So both encoders use the same rate H(Z)

@ The decoder forms Hy; & Hy, = H(y;®y») = Hz before recovering z
o by picking the element with dy < 1 in the coset indexed by z

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 14742



for multiterminal systems

Korner-Marton coding example

Recall 4 cosets at each encoder (from the Slepian-Wolf coding example)
@ coset Zoo: {000,111} ; coset Zo;: {001,110}
@ coset Zip: {010,101} ; coset Z;;: {011,100}

Suppose y;=[101], encoder 1 transmits index 10

y2=[101], encoder 2 transmits 10, decoder forms 00 before reconstructing z as [000]
@ y,=[001], encoder 2 transmits 01, decoder forms 11 before reconstructing z as [100]
@ y,=[111], encoder 2 transmits 00, decoder forms 10 before reconstructing z as [010]
@ y,=[100], encoder 2 transmits 11, decoder forms 01 before reconstructing z as [001]
o

First instance of linear coding beating the best-known random coding

2. Linear coding optimal for this symmetric Korner-Marton coding example

oint work with Y Xidiz December 28, 2013 15/42



Multiterminal systems

It was long held that random codes are optimal for many comm. systems

@ Korner and Marton’s work showed advantage of structured code for some multiterminal

systems

@ Partially responsible for their recent back-to-back Shannon awards

@ Structured coding for multiterminal systems currently a very active area of research
Reprise

@ Linear coding optimal for symmetric Kérner-Marton coding

o Symmetry means H(Y,|Y>) = H(Y>|Y) or P(Y, =0|Y> = 1) = P(Y; = 1|Y> = 0)

What about the general asymmetric case?

@ Y; and Y, are binary sources with joint PMF (po; # pio in general)

YN | 0 | 1
0 poo | poi
1 Pl | pi

@ Q: Which coding scheme is better? A: Neither

(joint work with Y. (i December 28, 2013
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How to encode the mod-2 sum of binary sources?

Ahlswede-Han coding

@ Introduced by Ahlswede & Han in 1983

@ Random coding: First quantize Y} and Y7 as U} and U}

@ Structured coding: Then apply Korner-Marton coding on Y7 and Y7 with
U} and U7 as decoder side info

@ Achievable rate pairs

Ry > 1(Y; Ui|Uy)  +H(Z|Uy, Up)
RzZI(Yz;Uz‘Ul) +H(Z|U1,U2)
Ry + Ry 2 1(Y1,Y2; Uy, Uz) + 2H(Z|Uy, Us)

@ Performs no worse than Slepian-Wolf and Korner-Marton coding for
general correlation

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 17742



How to encode the mod-2 sum of binary sources?

Ahlswede-Han coding example

@ Expanded rate region when

Yi\Y2 0 1
0 0.00392 | 0.97608
1 0.01992 | 0.00008

HOY oot

HOY|X) femedoeeeeee
=H(2) :

XY H@) RO

@ Due to asymmetry, time sharing between Slepian-Wolf and K&rner-Marton always exists

@ Ahlswede-Han coding achieves points (e.g., P) outside the time-sharing region

@ Optimal coding scheme not known

joint work with Y. Yang) i December 28, 2013



Q The Gaussian two-help-one problem
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The two-help-one problem

@ Separate compression and joint decompression of a linear combination Z = Y; — ¢Y> of
jointly Gaussian sources Y; and Y» subject to an MSE distortion constraint on Z

@ Problem characterized by the linear coefficient c, the source correlation coefficient p, and
the MSE distortion constraint D on Z

YTL W . n
2 Encoder 2 I ? Joint Z >
l Decoder

Yln

@ Arises in many practical video surveillance applications, e.g.,
reconstructing the motion difference between two video sequences

20/42




Q The Gaussian two-help-one problem
@ Berger-Tung (BT) random coding




The two-help-one problem

Berger-Tung’s generic scheme 1977

@ Independent quantization of

e YitoU;s.t. Uy =Y, + Q; with O NN(O,ql)
o YtoUps.t. Uy =Y, +Q, with Q) ~ N(O,qZ)

@ Followed by Slepian-Wolf compression (or binning) of U; and U, leads to rate region
R > H( U, |U2)
R (q1,2) ={(Ri,R): R 2H(U:|U>)
Ri+R: >H(U1,Us)

@ Berger-Tung (BT) achievable rate region

Rir(D) = conv( U {(R,R):R 2 I(Yi;Ui|Us), Ry 2 I(Ya; Us|U),
(U1,Uy)elu(Y1,12)

Ri+ Ry, > I(Y1,Y2; Uy, Uz)})

(joint work with Y. Yang) Xidian December 28, 2013 22/42



two-help-one problem

When c-p<0,e.g.,

@ Referred to as the p-sum problem (e.g., with Z = Y + Y5)
@ Considered by Wagner et al. in 2005

@ Berger-Tung (or random QB) coding is optimal

6 —*— Sum-rate-distortion function R (D) H

—+— Sumrrate of the Berger-Tung scheme Rpr (D)

rate (b/s)

CGiong (joint work with Y
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Q The Gaussian two-help-one problem

@ Kirithivasan-Pradhan (KP) structured coding




The two-help-one problem

When c-p >0, e.g.,

o Referred to as the p-difference problem (e.g., with Z = Y| — 1»)

@ Considered by Krithivasan-Pradhan in 2009 using structured/lattice
codes
@ Two lattices (A1, Ay) for SC; one lattice A¢ with A¢ € A; for CC
o Independent lattice quantizers (A1, A;) on ¥y and cY,

e Encoders send quantized versions modulo the same lattice A¢

o Transmission rates 5

o (Ac)

R; =log, ——=
ng 0'2(/\,')

@ Kirithivasan-Pradhan (KP) achievable rate region

D
Rip(D) = { (R, Ry) : 272K 4 272 ¢ —}
xr(D) {( 1Re) 1+c2-2cp

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013



two-help-one problem

When c-p>0,e.g.,

@ Referred to as the p-difference problem (e.g., with Z = Y, — Y»)

@ Considered by Krithivasan-Pradhan in 2009 using structured/lattice codes

@ Smaller sum-rate than the random Berger-Tung scheme for certain (p, ¢) pairs

@ Structured codes beat random codes!

6 *— Sumrrate of Krithivasan & Pradhan’s scheme Rxp (D) |

—*— Sumrate of the Berger-Tung scheme Rpr (D)

rate (b/s)

L L L L L L L L L

0 1
0 0.02 0.04 006 008 01 012 014 016 018 02 022 0.24
distortion D
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two-help-one problem

When c-p>0,e.g.,

@ Referred to as the p-difference problem (e.g., with Z = Y, — Y»)

@ Considered by Krithivasan-Pradhan in 2009 using structured/lattice codes

@ Smaller sum-rate than the random Berger-Tung scheme for certain (p, ¢) pairs

@ Structured codes beat random codes!

6 *— Sumrrate of Krithivasan & Pradhan’s scheme Rxp (D) |
—*— Sumrate of the Berger-Tung scheme Rpr (D)

5 4
4 4

w

) p

= Improved by Wagner 08

% 3 Maddah-Ali & Tse ‘10 i
2 4
1 4
0 . . . . . . . . .

1
0 0.02 0.04 006 008 01 012 014 016 018 02 022 0.24
distortion D
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Q The Gaussian two-help-one problem

@ Hybrid random-structured coding




The two-help-one problem

When c-p >0, e.g.,
@ For the p-difference problem, can we do better?

@ New hybrid random-structured coding scheme

o Inspired by Ahlswede & Han’s for encoding the mod-2 sum of binary sources
@ Hybrid random BT coding (layer I) and structured KP coding (layer II)

Encoder 1
Layer Il v R(IZ)
Decoder
(1)
Y1n Random Uln Slepian-Wolf Rl
Quantizer | Encoder | ¥
Layer |
Slepian- | .
Encoder 2 Wl
) Decoder
Yy Layer | .| Random Uy Slepian-Wolf Ry i
Quantizer Il Encoder Il Layer | Layer I1
C ‘/2n R(22)
QAZ(T;) mod A¢
Layer |1




The two-help-one problem

When c-p >0, e.g.,

@ Theorem 1: Achievable rate region of hybrid random-structured coding

Ruew(D) = conv( U {(R,Ry) :
(U],Uz)EU(C,D)

Ry > I(Yl; U]‘Uz) +I(V1 —V2;Y1,V2’U1,U2),
Ry > I(Y2; Un|Uy) + I(Vy = Vo3 Vi, Ya|Uy, U),
Ry +Ry 2 I(Yy, Y2, Uy, Up) + I(Vy = Vo, Y1, Va|Uy, Uy)

+I(Vi - Vo; Vi, Ya|Uy, Un) )}
U(e,D) 2 {(U1,Uz, V1,V2) : Ui = Yi 4 Py, Vi = Y1 + 01, Va = ¢ + 0,
Pi~N(0,p;),0; ~N(0,q;),i = 1,2, indep. of each other and
(Y1, Y2), such that E[(Z - E(Z|Uy, Uz, Vi - V2))?] < D}

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 29/42



The two-help-one problem

When c-p >0, e.g.,
@ Comparison between R ., (D), Rixp(D) and Rpr(D)
o Hybrid coding always subsumes structured KP coding

Ryew(D) 2 Rip(D)

o It becomes a QB random coding with additional rate of 1 log2 and
; log2 3 (with a + 8 = 1) at the two encoders

e Lemma 1:

1

Ruew (D) 2 Rgp(D) U [RBT(D) C] {(% log2 1 log2 ) a+f3= 1}]

New rate region R ey (D) strictly improves the time-sharing region
between Rgp(D) and Ry (D)

Z. Xiong (joint work with Y. Y Xidian December 28, 2013 30/42



two-help-one problem

@ Comparison between R ., (D), Rixp(D) and Rpr(D)

7 T T T T
KP rate region Ry p(D)
—+— QB rate region Rop (D)
65k —— Time-sharing region between Rep (D) and Ricp(D) ||
- ——— Rate region of new hybrid scheme Ryev (D
Time-sharing region between Rop (D) and Ryew(D)
6
55

451

35

Ry (b/s)




The two-help-one problem

When c-p >0, e.g.,

@ We look deeper at the minimum achievable sum-rate

Ruew(D) £ min {R1 +Ry: (R1,R>) € RHCW(D)}

@ Theorem 2: Achievable sum-rate of hybrid random-structured coding

16¢2(1-p%)(1=cp)?
Ilog, w’_ | 2 2
if ¢ < P s & D < 2c (l_p )
2 . oy

min (10g2 %, %log2 16‘((15—2)“’1))) :
fren (07 i 1 2¢2(1-p?)
if ¢ > ——— & D<= "F~)

p+\/1-p?
' 207 4(1-cp)?
otherwise

1+cp

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013
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The two-help-one problem

Whenc-p > 0, e.g.,

@ Comparison between Ry, (D), Rgp(D) and Rgr(D)

e Corollary to Lemma 1:

Ruew(D) < min (RKP(D),RBT(D) + 1)

e When can R,,,, (D) strictly improve both Rgp(D) and Rgr(D)?

e Lemma 2:

Ruew(D) < min (RKP(D),RBT(D))

ifeitherzi <c<min(\/§ ! ) & D < £0=2)(=2cp)(2¢p-1)
P P

2% /i
V3 1
OIEsics T & D<4(2-/3)3(1-p?)
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two-help-one problem

henc-p >0, e.g.,

@ Comparison between Ry, (D), Rxkp(D) and Ry (D)

worf

c=0(p) and p <

c=gand p> {2

|| T (p. ) region where Ryew (D) < min{Rqp(D), Ry p(D)} for sufficiently small D
~ + —Boundary of (p,c) region where Ry p(D) < Rgp(D) for sufficiently small D

—— Boundary of (p.) region where Ry (D) < Rop(D) for sufficiently small D

—o— Boundary of (p.) region where Ry (D) strictly improves conv(Rp(D), R p(D)) for small D

05 055 06 065 07 075 08 085
P




e The Gaussian two-help-one problem

@ Hybrid random-structured coding
@ Partial sum-rate tightness
@ Gap to optimal sum-rate
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The two-help-one problem

Partial sum-rate tightness

@ Sum-rate lower bound needed —— to compared with achievable sum-rate
upper bound from hybrid coding
o Consider a new and more general problem of Gaussian two-terminal SC

p
1

problem with covariance matrix Xy = [ ] and covariance matrix

KB Okk
Okiky k3
e Fact: If the minimum sum-rate for the above problem is R(D), then

distortion constraint D = [

R(D) = in  R(D
(D) pemin (D),

where Y (p, ¢, D) contains all real 2 x 2 symmetric matrices D such that
0<D<Yyand [l -c]D[1 -c]"' <D

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 34/42



The two-help-one problem

Partial sum-rate tightness

@ Lemma 3: A new sum-rate lower bound R(D) > max (E(’D) R (’D)), where

| [ 1-p2 420k ko (146) *
5 log, | 12— 0<0
+ A 2 2 (1+6)21213 ] B
EEE g, Up?) 0> 0"
2 108, _(1—0)2k§k§(1—p2+2pk1k2(1+0)) )
1 [ 11— 2420k ko (146) *
2 logz (1+6)2k%k% ] ) 0 < 0
Al (1-p")? « %
R (D) =1 7log, »(1—0)21{1,2(4kl.2p2—4p0k1k2+k/2)]’ 0" <0<90
1 (1-p")* (1=K} (1-6%))
3 log, (1—02)2k2k2((1— 2)2 e (ki—2k; !9 2V k22 02 (1—62 ) ? 9" <9
L 1% P i (ki—2k;p0) (1-p*)—kik; p* (1-6%)

with k; = min(ky, k), kj = max(ki, k), and

* A 1
02 =P 4R - (- )

N
02 (V- PP+ 40k -8R0 (1= ) + (1 =)
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The two-help-one problem

Partial sum-rate tightness

@ Lemma 3: A new sum-rate lower bound R(D) > max (E(’D) R (’D)), where

| [ 1-p2 420k ko (146) *
Llog, | Loett2ekik (1+6) 0<0
i A 27702 (1+0)2K213 ] 2
BP0, U=’)” 0> 0"
2 1082 _(1—0)2k§k§(1—p2+2pk1k2(1+0)) )
1 [ 11— 2420k ko (146) *
2 logz (1+6)2k%k% ] ) 0 < 0
Al 1 (1-p")* " :
Ei('D) = 2 log, | (1—0)21{1.2(4kl.2p2—4p0k1k2+k]2)] 9 0" <0<0
Llog (1-p")*(1-p" -k (1-6%)) o <0
i »(1—02)21(%1(%((l—pz)z—kj(kj—Zkin)(l—pz)—k%k%pz(l—ez))

@ The 1st lower bound E(’D) proved in Xiong’ 13 using the estimation-theoretic approach
of Wang’10

@ The 2nd lower bound R* (D) newly obtained by combining the approach of Wang’10
and the technique in Wagner’ 11, which exploits stochastic degradedness of the channel
Y1 — Y, with respectto Y, - Z

(joint work with Y. i December 28, 2013 35/42



The two-help-one problem

Partial sum-rate tightness

@ Theorem 3: A new sum-rate lower bound

R(D)=R(D)2  min  max (K'(D),K'(D))

@ Comparison among sum-rate lower and upper bounds

12

T T
165 L. Ruen (D), R (D))




The two-help-one problem

Partial sum-rate tightness

@ Theorem 4: First partial sum-rate tightness result

Ros(D) = R(D) = R(D)

: 1 2¢(1-p*) (1-2¢p) 2p c(1-p?) (1-2%p?)
1fp€(0,1),0SCS@’D2Worogcs1+2p2’DZ p(2-3cp)

|

i

=

Il
u
u
l




The two-help-one problem

Partial sum-rate tightness

@ Theorem 4: First partial sum-rate tightness result

Ros(D) = R(D) = R(D)

: 1 2c(1-p*) (1-2¢p) 2p c(1-p?) (1-2%p?)
ifpe(0,1),0<c< 7, D2 =5 —=or0<c< 95, D> =500

1
09 “
Reew(D) < Rex(D) for small D
o< \ e
sl <=4 EF—
55 itp=Y2




The two-help-one problem

Partial sum-rate tightness

@ Theorem 4: First partial sum-rate tightness result

Ros(D) = R(D) = R(D)

: 1 2c(1-p*) (1-2¢p) 2p c(1-p?) (1-2%p?)
ifpe(0,1),0<c< 7, D2 =5 —=or0<c< 95, D> =500

{ew itp<
o= 2
%

5 it p= Y2

1

<132

R(D) = Rax(D) for large D




e The Gaussian two-help-one problem

@ Hybrid random-structured coding
@ Partial sum-rate tightness
@ Gap to optimal sum-rate
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two-help-one problem

@ Theorem 5: For any (p, ¢, D) triple, it holds that

Gap to optimal sum-rate

Ruew(D) = R(D) < Ruew (D) = R(D) <2

16 T T

—+— Sum-rate of Krithivasan & Pradhan’s scheme Ry p(D)
& BT sum-rate bound Rpr(D)
—*— Sum-rate of the new scheme Ry.. (D)

——— Lower sum-rate bound Ry (D)

L |
<«<— BTsum-rateis suhaptima!—)‘

< BT sum-rate >
is TIGHT




two-help-one problem

Gap to optimal sum-rate

@ Theorem 5: For any (p, ¢, D) triple, it holds that

Ruew(D) = R(D) < Ruew (D) = R(D) <2

16 T T T T
—+— Sum-rate of Krithivasan & Pradhan’s scheme R p(D)

&— BT sum-rate bound Rpy(D) n

—*— Sum-rate of the new scheme Ry.. (D)

——— Lower sum-rate bound Ry (D)

|
|

|

]

Sum-rate gap Al
T

< BT sum-rate >
is TIGHT




@ Lemma4: If ¢ = 1 or ¢ = p, it holds that

Ruew(D) = R(D) < Roew (D) — R(D) < |

T : T T
—— Sum-rate of QB coding scheme Rop (D)
—— Sum-rate of Krithivasan-Pradhan coding scheme Rycp(D)
—— Sum-rate of new hybrid coding scheme Ryey (D)

New sum-rate lower bound R(D) f

QB sumrate is tight

I
|
|
|
|
|
|
|
[
|
|
|
|
|
*
|
|
|
|

i
| QB sunt-rate
suboptijual
i I
I I




Conclusions

Intellectual merits:
@ Hybrid scheme conceptually brings together two different worlds

@ Philosophically the right approach (with better performance)
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Conclusions

Intellectual merits:
@ Hybrid scheme conceptually brings together two different worlds
@ Philosophically the right approach (with better performance)
Problem addressed:

@ Very timely and interesting
o Thanks to Korner & Marton, Ahlswede & Han, and other IT gurus
e Combined SC and inference for big data
o The more general many-help-one problem

@ Results significant and intriguing

o First partial sum-rate tightness results
e Many open issues (e.g., optimality of hybrid coding)
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Conclusions

Intellectual merits:
@ Hybrid scheme conceptually brings together two different worlds
@ Philosophically the right approach (with better performance)
Problem addressed:

@ Very timely and interesting

o Thanks to Korner & Marton, Ahlswede & Han, and other IT gurus
e Combined SC and inference for big data
o The more general many-help-one problem

@ Results significant and intriguing
o First partial sum-rate tightness results
e Many open issues (e.g., optimality of hybrid coding)
Broader impact:
@ Hybrid approach applicable to many other network comm. scenarios

o Cooperative networks: The two-way relay channel
o The interference channels
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