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Random codes for point-to-point systems

What are they?

Codes with randomness

Invented by Shannon in 1948

Key theoretical tool

In proving Shannon’s classic source and
channel coding theorems

Recent invention/rediscovery of codes based on
random graphs

Turbo/LDPC codes

Fulfilled Shannon’s prophecy (after 50 years)

What do we learn from Shannon?

Random codes are optimal for point-to-point
systems

Random graphs
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Structured codes for point-to-point systems

What are they?

Codes with structure

Linear/lattice/trellis codes

Widely used in communication systems

For their low complexity
Potentially limit-approaching (as promised
by info theory)

Achievable capacity
1
2 log(SNR)→ 1

2 log(1 + SNR) for
AWGN channels
Optimal for at least some point-to-point
systems as well
Structure “comes for free”

Nested lattice codes

Can structured codes exceed the info-theoretic limits?

No, at least for memoryless point-to-point systems
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Random codes for multiterminal systems

Slepian-Wolf coding’73
X,Y: two correlated sources with finite alphabet

Separate encoding and joint decoding

Near-lossless decoding, i.e., limn→∞ Pe((Xn,Yn) ≠ (X̂n, Ŷn)) = 0

Encoder

Encoder

Joint 
Decoder

Y

X

WY

WX

Y

X
^

^n

n n

n

Rate R1

Rate R2
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Random codes for multiterminal systems

Slepian-Wolf theorem
Slepian-Wolf rate region (proved by using random coding/bining)

R1 ≥ H(X∣Y)
R2 ≥ H(Y ∣X)

R1 + R2 ≥ H(X,Y)

R
1

H(Y|X)

H(X)

H(Y)

H(X|Y)

R2

H(X,Y)

H(X,Y)

achievable
rate region for 

SW coding

achievable
rate region for 

separate entropy 
coding

No rate loss compared to joint encoding of X and Y
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Random codes for multiterminal systems

Slepian-Wolf coding example
Assumptions:

X,Y ∈ {0,1}3 → binary triplets

H(X) = H(Y) = 3 bits → equiprobable triplets
Correlation between X and Y

x and y differ at most in one position
Hamming distance dH(x,y) ≤ 1
H(X∣Y) = 2 bits

Question:
If y is perfectly known at the decoder but not at the encoder, is it possible

to send 2 bits instead of 3 for x and
reconstruct x without loss?
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Random codes for multiterminal systems

Slepian-Wolf coding example
Solution:

Form 4 cosets and send 2-bit index of the coset x belongs to:
coset Z00: {000,111} ← codewords of rate- 1

3 repetition code
coset Z01: {001,110}
coset Z10: {010,101}
coset Z11: {011,100}

In each set: 2 members at dH = 3
Joint decoder: in the set indexed by Z:

Using y, pick x̂ s.t. dH(x̂,y) ≤ 1
This guarantees correct/lossless decoding
Example: y=[000], index 00 from encoder, x̂ =[000]

index 01 from encoder, x̂ =[001]
index 10 from encoder, x̂ =[010]
index 11 from encoder, x̂ =[100]

Separate encoding as efficient as joint encoding!
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Random codes for multiterminal systems

Equivalent way of viewing last example from a syndrome concept

Form parity-check matrix of rate- 1
3 repetition code

H = [ 1 1 0
1 0 1

]

Syndrome=coset/bin index
Coset/bin 0: {000,111} has syndrome Z = 00
Coset/bin 1: {001,110} has syndrome Z = 01
Coset/bin 2: {010,101} has syndrome Z = 10
Coset/bin 3: {011,100} has syndrome Z = 11

All 4 cosets preserve the distance properties of the repetition code
Encoding corresponds to matrix multiplication Hx

Compression 3:2

Separate encoding as efficient as joint encoding!

1. Random coding optimal for this symmetric Slepian-Wolf coding example
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Structured codes for multiterminal systems

The binary two-help-one problem
How to encode the mod-2 sum of binary sources? Introduced by Körner &
Marton in 1979

Encoder 1

Encoder 2

Encoder 3

Joint 

Decoder

Y n
1Y n
1

Y n
2Y n
2

Zn = Y n
1 © Y n

2Zn = Y n
1 © Y n

2

W1W1

W2W2

00

ẐnẐn

Y1 and Y2 are doubly symmetric binary sources
Only the first two encoders are allowed to transmit, the decoder
reconstructs Z = Y1 ⊕ Y2 losslessly

This is combined compression and inference (for big data)
Goes beyond Slepian-Wolf coding
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Structured codes for multiterminal systems

The rate region of Körner-Marton coding
Slepian-Wolf coding before forming Z = Y1 ⊕ Y2 certainly works

Structured coding strictly improves random (Slepian-Wolf) coding!

R1

R2

H(Z)

H(Z)

Structured coding

R1

R2

H(Z)

H(Z)

H(Y1)

H(Y2)

Random coding

Using the same linear code, encoder i transmits Hyi

So both encoders use the same rate H(Z)
The decoder forms Hy1 ⊕Hy2 = H(y1⊕y2) = Hz before recovering z

by picking the element with dH ≤ 1 in the coset indexed by z

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 14 / 42



Structured codes for multiterminal systems

Körner-Marton coding example
Recall 4 cosets at each encoder (from the Slepian-Wolf coding example)

coset Z00: {000,111} ; coset Z01: {001,110}
coset Z10: {010,101} ; coset Z11: {011,100}

Suppose y1=[101], encoder 1 transmits index 10
y2=[101], encoder 2 transmits 10, decoder forms 00 before reconstructing z as [000]

y2=[001], encoder 2 transmits 01, decoder forms 11 before reconstructing z as [100]

y2=[111], encoder 2 transmits 00, decoder forms 10 before reconstructing z as [010]

y2=[100], encoder 2 transmits 11, decoder forms 01 before reconstructing z as [001]

First instance of linear coding beating the best-known random coding

2. Linear coding optimal for this symmetric Körner-Marton coding example
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Multiterminal systems

Structured vs. random codes
It was long held that random codes are optimal for many comm. systems

Körner and Marton’s work showed advantage of structured code for some multiterminal
systems

Partially responsible for their recent back-to-back Shannon awards

Structured coding for multiterminal systems currently a very active area of research

Reprise
Linear coding optimal for symmetric Körner-Marton coding

Symmetry means H(Y1∣Y2) = H(Y2∣Y1) or P(Y1 = 0∣Y2 = 1) = P(Y1 = 1∣Y2 = 0)

What about the general asymmetric case?
Y1 and Y2 are binary sources with joint PMF (p01 ≠ p10 in general)

Y1/Y2 0 1
0 p00 p01

1 p10 p11

Q: Which coding scheme is better? A: Neither
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How to encode the mod-2 sum of binary sources?

Ahlswede-Han coding
Introduced by Ahlswede & Han in 1983

Random coding: First quantize Yn
1 and Yn

2 as Un
1 and Un

2

Structured coding: Then apply Körner-Marton coding on Yn
1 and Yn

2 with
Un

1 and Un
2 as decoder side info

Achievable rate pairs

R1 ≥ I(Y1; U1∣U2) +H(Z∣U1,U2)
R2 ≥ I(Y2; U2∣U1) +H(Z∣U1,U2)

R1 + R2 ≥ I(Y1,Y2; U1,U2) + 2H(Z∣U1,U2)

Performs no worse than Slepian-Wolf and Körner-Marton coding for
general correlation
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How to encode the mod-2 sum of binary sources?

Ahlswede-Han coding example
Expanded rate region when

Y1/Y2 0 1
0 0.00392 0.97608
1 0.01992 0.00008

Due to asymmetry, time sharing between Slepian-Wolf and Körner-Marton always exists

Ahlswede-Han coding achieves points (e.g., P) outside the time-sharing region
Optimal coding scheme not known
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The Gaussian two-help-one problem

Definition
Separate compression and joint decompression of a linear combination Z = Y1 − cY2 of
jointly Gaussian sources Y1 and Y2 subject to an MSE distortion constraint on Z

Problem characterized by the linear coefficient c, the source correlation coefficient ρ, and
the MSE distortion constraint D on Z

Encoder 1

Encoder 2

Encoder 3

Joint 

Decoder

Y n
1Y n
1

Y n
2Y n
2

Zn = Y n
1 ¡ cY n

2Zn = Y n
1 ¡ cY n

2

W1W1

W2W2

00

ẐnẐn

Motivation
Arises in many practical video surveillance applications, e.g.,
reconstructing the motion difference between two video sequences
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The Gaussian two-help-one problem

Berger-Tung’s generic random coding scheme 1977
Independent quantization of

Y1 to U1 s.t. U1 = Y1 +Q1 with Q1 ∼ N (0,q1)
Y2 to U2 s.t. U2 = Y2 +Q2 with Q2 ∼ N (0,q2)

Followed by Slepian-Wolf compression (or binning) of U1 and U2 leads to rate region

R
BT

(q1, q2) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(R1,R2) ∶

R1 ≥ H(U1∣U2)

R2 ≥ H(U2∣U2)

R1 + R2 ≥ H(U1,U2)

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

Berger-Tung (BT) achievable rate region

RBT(D) = conv( ⋃
(U1,U2)∈U(Y1,Y2)

{(R1,R2) ∶ R1 ≥ I(Y1;U1∣U2), R2 ≥ I(Y2;U2∣U1),

R1 + R2 ≥ I(Y1,Y2;U1,U2)})
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The Gaussian two-help-one problem

When c ⋅ ρ ≤ 0, e.g., ρ > 0, c = −1

Referred to as the µ-sum problem (e.g., with Z = Y1 + Y2)

Considered by Wagner et al. in 2005

Berger-Tung (or random QB) coding is optimal
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The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1
Referred to as the µ-difference problem (e.g., with Z = Y1 − Y2)

Considered by Krithivasan-Pradhan in 2009 using structured/lattice
codes
Two lattices (Λ1,Λ2) for SC; one lattice ΛC with ΛC ⊆ Λi for CC

Independent lattice quantizers (Λ1,Λ2) on Y1 and cY2
Encoders send quantized versions modulo the same lattice ΛC

Transmission rates

Ri = log2
σ2(ΛC)
σ2(Λi)

Krithivasan-Pradhan (KP) achievable rate region

RKP(D) = {(R1,R2) ∶ 2−2R1 + 2−2R2 ≤ D
1 + c2 − 2cρ

}
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The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

Referred to as the µ-difference problem (e.g., with Z = Y1 − Y2)

Considered by Krithivasan-Pradhan in 2009 using structured/lattice codes

Smaller sum-rate than the random Berger-Tung scheme for certain (ρ, c) pairs

Structured codes beat random codes!
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The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

For the µ-difference problem, can we do better?

New hybrid random-structured coding scheme

Inspired by Ahlswede & Han’s for encoding the mod-2 sum of binary sources
Hybrid random BT coding (layer I) and structured KP coding (layer II)
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The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1
Theorem 1: Achievable rate region of hybrid random-structured coding

Rnew(D) = conv( ⋃
(U1,U2)∈U(c,D)

{(R1,R2) ∶

R1 ≥ I(Y1; U1∣U2) + I(V1 − V2; Y1,V2∣U1,U2),
R2 ≥ I(Y2; U2∣U1) + I(V1 − V2; V1,Y2∣U1,U2),

R1 + R2 ≥ I(Y1,Y2; U1,U2) + I(V1 − V2; Y1,V2∣U1,U2)

+ I(V1 − V2; V1,Y2∣U1,U2)})

U(c,D) ∆= {(U1,U2,V1,V2) ∶ Ui = Yi + Pi,V1 = Y1 +Q1,V2 = cY2 +Q2,

Pi ∼ N (0,pi),Qi ∼ N (0,qi), i = 1,2, indep. of each other and

(Y1,Y2), such that E[(Z − E(Z∣U1,U2,V1 − V2))2] ≤ D}
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The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

Comparison betweenRnew(D),RKP(D) andRBT(D)
Hybrid coding always subsumes structured KP coding

Rnew(D) ⊇RKP(D)

It becomes a QB random coding with additional rate of 1
2 log2

1
α

and
1
2 log2

1
β

(with α + β = 1) at the two encoders

Lemma 1:

Rnew(D) ⊇RKP(D) ∪ [RBT(D) ⊎ {(1
2

log2
1
α
,

1
2

log2
1
β
) ∶ α + β = 1}]

New rate regionRnew(D) strictly improves the time-sharing region
betweenRKP(D) andRBT(D)
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The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

Comparison betweenRnew(D),RKP(D) andRBT(D)
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The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1
We look deeper at the minimum achievable sum-rate

Rnew(D) ∆= min{R1 + R2 ∶ (R1,R2) ∈Rnew(D)}

Theorem 2: Achievable sum-rate of hybrid random-structured coding

Rnew(D)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 log2

16c2(1−ρ2)(1−cρ)2
D2 ,

if c ≤ 1
ρ+
√

1−ρ2
& D ≤ 2c2(1 − ρ2)

min(log2
2σ2

Z
D , 1

2 log2
16c((1−ρ2)c−ρD)

D2 ) ,

if c > 1
ρ+
√

1−ρ2
& D ≤ 2c2(1−ρ2)

1+cρ

min(log+2
2σ2

Z
D , 1

2 log+2
4(1−cρ)2

D−c2(1−ρ2)) ,
otherwise
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The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

Comparison between Rnew(D), RKP(D) and RBT(D)

Corollary to Lemma 1:

Rnew(D) ≤ min (RKP(D),RBT(D) + 1)

When can Rnew(D) strictly improve both RKP(D) and RBT(D)?

Lemma 2:

Rnew(D) < min (RKP(D),RBT(D))

if either 1
2ρ < c < min (

√

3
2ρ ,

1
ρ+
√

1−ρ2
) & D < c(1−ρ2

)(3−2cρ)(2cρ−1)
ρ

or
√

3
2ρ < c < 1

ρ+
√

1−ρ2
& D < 4(2 −

√
3)c2(1 − ρ2)
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The Gaussian two-help-one problem

When c ⋅ ρ > 0, e.g., ρ > 0, c = 1

Comparison between Rnew(D), RKP(D) and RBT(D)
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The Gaussian two-help-one problem

Partial sum-rate tightness
Sum-rate lower bound needed −− to compared with achievable sum-rate
upper bound from hybrid coding

Consider a new and more general problem of Gaussian two-terminal SC

problem with covariance matrix ΣY = [ 1 ρ
ρ 1 ] and covariance matrix

distortion constraintD = [ k2
1 θk1k2

θk1k2 k2
2

]

Fact: If the minimum sum-rate for the above problem is R(D), then

R(D) = min
D∈Υ(ρ,c,D)

R(D),

where Υ(ρ, c,D) contains all real 2 × 2 symmetric matricesD such that
0 ⪯D ⪯ ΣY and [1 − c]D[1 − c]T ≤ D

Z. Xiong (joint work with Y. Yang) Xidian December 28, 2013 34 / 42



The Gaussian two-help-one problem

Partial sum-rate tightness

Lemma 3: A new sum-rate lower bound R(D) ≥ max (R†
(D),R‡

(D)), where

R†
(D)

∆
=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
2 log2 [

1−ρ2
+2ρk1k2(1+θ)
(1+θ)2k2

1k2
2

] , θ ≤ θ⋆

1
2 log2 [

(1−ρ2
)

2

(1−θ)2k2
1k2

2(1−ρ
2+2ρk1k2(1+θ))

] , θ > θ⋆

R‡
(D)

∆
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 log2 [

1−ρ2
+2ρk1k2(1+θ)
(1+θ)2k2

1k2
2

] , θ ≤ θ⋆

1
2 log2 [

(1−ρ2
)

2

(1−θ)2k2
i (4k2

i ρ
2−4ρθk1k2+k2

j )
] , θ⋆ < θ ≤ θ‡

1
2 log2 [

(1−ρ2
)

2
(1−ρ2

−k2
j (1−θ

2
))

(1−θ2)2k2
1k2

2((1−ρ
2)2−kj(kj−2kiρθ)(1−ρ2)−k2

1k2
2ρ

2(1−θ2))
] , θ‡

< θ

with ki = min(k1, k2), kj = max(k1, k2), and

θ⋆
∆
=

1
2ρk1k2

(

√

(1 − ρ2)2 + 4ρ2k2
1k2

2 − (1 − ρ2
))

θ‡ ∆
=

1
2ρk1k2

(

√

(1 − ρ2)2 + 4ρ2k2
1k2

2 − 8k2
i ρ

2(1 − ρ2) + (1 − ρ2
))
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1k2
2ρ

2(1−θ2))
] , θ‡

< θ

The 1st lower bound R†
(D) proved in Xiong’13 using the estimation-theoretic approach

of Wang’10

The 2nd lower bound R‡
(D) newly obtained by combining the approach of Wang’10

and the technique in Wagner’11, which exploits stochastic degradedness of the channel
Y1 → Y2 with respect to Y1 → Z
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The Gaussian two-help-one problem

Partial sum-rate tightness
Theorem 3: A new sum-rate lower bound

R(D) ≥ R(D)
∆
= min
D∈Υ(ρ,c,D)

max (R†
(D),R‡

(D))

Comparison among sum-rate lower and upper bounds
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The Gaussian two-help-one problem

Partial sum-rate tightness
Theorem 4: First partial sum-rate tightness result

RQB(D) = R(D) = R(D)

if ρ ∈ (0, 1), 0 ≤ c ≤ 1
1+2ρ , D ≥

2c2
(1−ρ2

)(1−2cρ)
1−3cρ or 0 ≤ c ≤ 2ρ
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Outline

1 Random vs structured codes: Point-to-point systems

2 Random vs. structured coding: Multiterminal systems
Slepian-Wolf coding
Körner & Marton’s binary two-help-one problem

3 The Gaussian two-help-one problem
Berger-Tung (BT) random coding
Krithivasan-Pradhan (KP) structured coding
Hybrid random-structured coding

Partial sum-rate tightness
Gap to optimal sum-rate

4 Conclusions
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The Gaussian two-help-one problem

Gap to optimal sum-rate
Theorem 5: For any (ρ, c,D) triple, it holds that

Rnew(D) − R(D) ≤ Rnew(D) − R(D) ≤ 2
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The Gaussian two-help-one problem

Gap to optimal sum-rate
Lemma 4: If c = 1 or c = ρ, it holds that

Rnew(D) − R(D) ≤ Rnew(D) − R(D) ≤ 1
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Conclusions

Intellectual merits:

Hybrid scheme conceptually brings together two different worlds

Philosophically the right approach (with better performance)

Problem addressed:
Very timely and interesting

Thanks to Körner & Marton, Ahlswede & Han, and other IT gurus
Combined SC and inference for big data
The more general many-help-one problem

Results significant and intriguing
First partial sum-rate tightness results
Many open issues (e.g., optimality of hybrid coding)

Broader impact:
Hybrid approach applicable to many other network comm. scenarios

Cooperative networks: The two-way relay channel
The interference channels
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