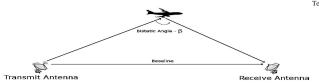


Australian Government Department of Defence Defence Science and Technology Organisation

DSTO's Passive Radar Research

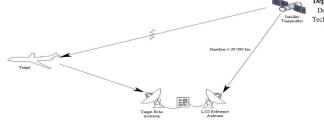
Dr James Palmer james.palmer@dsto.defence.gov.au


Defence Science and Technology Organisation of Australia

17th September, 2014

The Pros and Cons - Standard Bistatic Radar

Australian Government Department of Defence Defence Science and Technology Organisation


- Advantages
 - Passive receiver
 - No RF emissions at RX
 - Covert surveillance
 - Difficult to jam
 - Cheaper (?)
 - Location

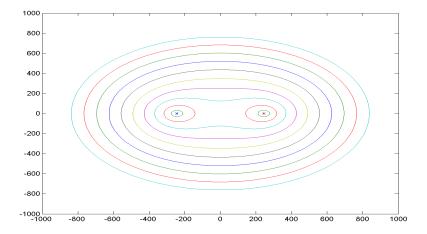
- Disadvantages
 - Increased complexity
 - Geometry
 - System (Coherence issues)
 - Decreased detection range
 - Pulse Chasing
 - Can exploit dedicated/cooperative transmitter(s) only

The Pros and Cons - Passive Radar

Australian Government Department of Defence Defence Science and Technology Organisation

- Advantages
 - Passive system
 - No new RF emissions
 - Covert surveillance
 - Very difficult to jam
 - Cheaper (no new Transmitter)
 - CW transmission (?)
 - Multitude of Signal Sources:
 - TV, radio, cell phones
 - Satellites
 - **۰**...

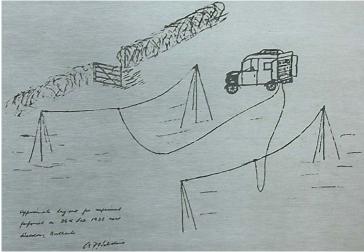
- Disadvantages
 - Increased complexity
 - Geometry
 - System (Coherence issues)
 - Dependence on Transmitter
 - Waveform
 - Location & Coverage (Spatial & Temporal)
 - Transmitter power
 - Bandwidth


Baseline's Impact on Geometry

Range and Doppler Resolution

Area of outer ring: 1670199 800 600 400 200 1116 0 6 -200 -400 -600 -800 └─ -800 -600 -400 -200 0 200 400 600 800

Baseline's Impact on Geometry


Signal-to-Noise Ratio

Passive Radar's History

Australian Government Department of Defence Defence Science and Technology Organisation

26th of February, 1935 - The Daventry Experiment

http://en.wikipedia.org/wiki/File:Daventry_expt.jpg UNCLASSIFIED

Pressure from all around - Spectrum

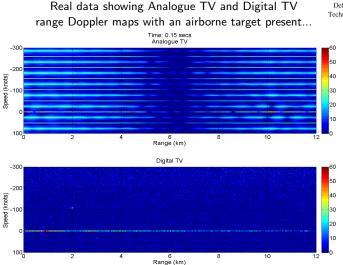
Australian Government Department of Defence Defence Science and Technology Organisation

Australian Spectrum Allocation

Frequency Band	ADF dedicated	Shared	Not available to ADF
29.7 MHz - 312 MHz	7.99%	28.25%	63.76%
312 MHz - 3.1 GHz	1.58%	8.21%	90.21%
3.1 GHz - 31 GHz	11.33%	21.38%	67.29%

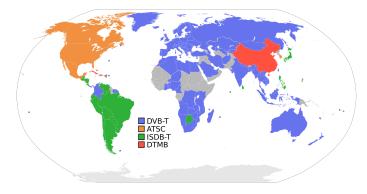
The Underlying Technology

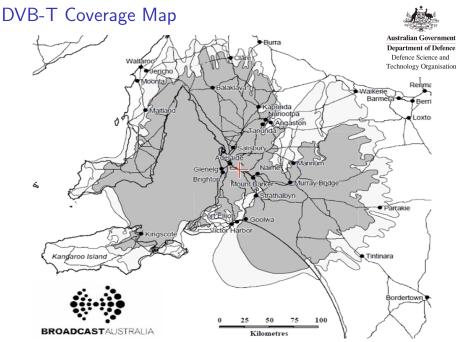
Australian Government Department of Defence Defence Science and Technology Organisation


Bistatic real-time processing is now fairly straight-forward

- In 2005 Howland demonstrated 'real-time' target detection using a 100kHz wide signal (FM radio)
 - Required 6 × 2.6GHz Pentium-4 PCs running in parallel
 - Only able to process 1s worth of data every 5s
- At DSTO we have a real-time demonstration system too
 - 8MHz wide signal (DVB-T 80x more bandwidth than FM radio)
 - On a single i7 PC (circa March 2009)

Waveforms


Department of Defence Defence Science and Technology Organisation


Digital TV around the World (as at May 2014)

Australian Government Department of Defence Defence Science and Technology Organisation

http://en.wikipedia.org/wiki/File:Digital_broadcast_standards.svg

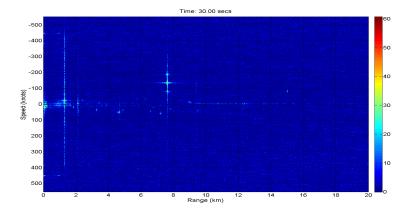


DVB-T Experiments

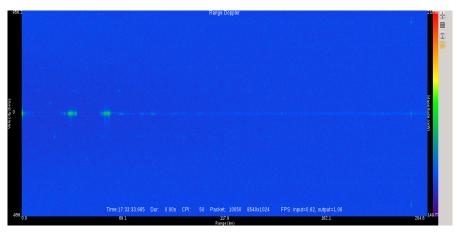
Australian Government Department of Defence Defence Science and Technology Organisation

- Antenna pointed at reference source
- Antenna pointed in direction of interest

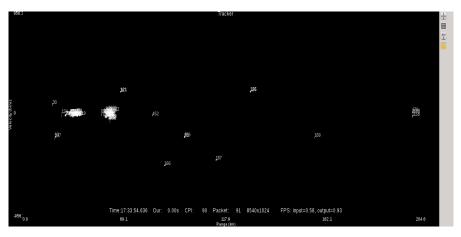
- All COTS hardware:
 - Readily Available receivers (typ. non-ITAR)
 - Domestic grade kit
- Cost for 2 Channel System: < \$60k



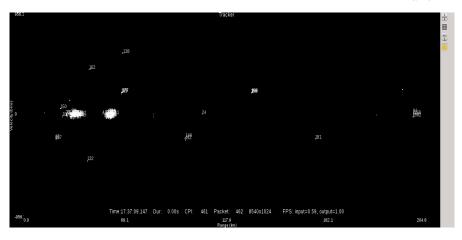
2008: DVB-T Performance - Receiver 30 km from Transmitter

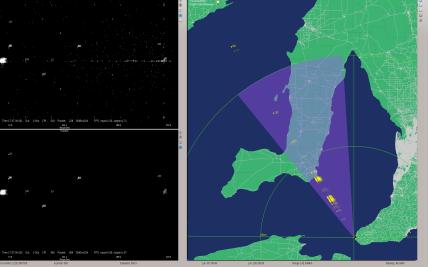

Defence Science and Technology Organisation

DVB-T Performance - Receiver 88km from Transmitter - 1


Australian Government Department of Defence Defence Science and Technology Organisation

DVB-T Performance - Receiver 88km from Transmitter - 2


Department of Defence Defence Science and Technology Organisation



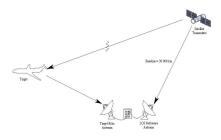
DVB-T Performance - Receiver 88km from Transmitter - 3

Defence Science and Technology Organisation



Prompt 2	14443 11 (63.54	4)	stands of a second (see) same	ACTION 214		CRYNOIT	\$14.0					CRI 100 7074	.,	CHILDE		narge.	142.040800				0.60ml (95.80+)
R	age Process	or	Ster File N	10.110	Time	Fs (MHz) Fc (MHz) Duration (s: Host	Age)	GPS ^	1	Lafoute (1	Longitude (*)	Altade (m)	Bange (m)	Velocity Amhó	Power (dB)	SNR (IB)	Bistatic Anole (*)	(9)	Ext. Range (m)
			ktata/CapeJenisL/tjL_6Mt_pr_clinect_854.dat	_60-89.dat	2812-12-04 17:34:07		5 30.4	priscus			1995	-35.3451	137.892	785.168	24313.7	9.11652	171.74			457	Corringe (10)
Range	on) 160		Adata/CapeDenist/rgt_eM#_pr_direct_I54.dat		2812-12-04 17:33:37		5 30.1	priscus				-25.3185	137.872	-834.813	37695.5	-23.703	171.74			457	
c	oniti 70		AlataCapeDenist/rgL_MM_pr_cirect_I54_0.1		2812-12-04 17 33:37			priscus			1335	-25.1414	137.733	-1267.8	61203.8	21.0564	171.74	24.67	64 3633	457	
opres	owni (tti		Addated ape Devisiting _ MM_ pr_chect_154.dat		2812-12-64 17 33:07			priscus			1090	-25.1524	137.741	-1243.67	58758.7	-23.703	171.74	24.67	65.1451	457	
CPI (B)		4288	Adda/CapeJenis2/cgL_MM_pr_cirect_154.dat		2812-12-04 17:33:07			priscus			1611	-25.1276	137.73	-1276.00	61039.8	-25.5283	174.43	27.42	64.0971	457	
			Adda/CapeJevis1/cjl_6Mt_pr_citect_853.dat		2812-12-04 16 12:31			priscus			1453	-35.3113	137.965	-655.492	28779.5	9.11652	193.89	46.82	77.536	457	
CPI (FP	S) 1.9		Adata/CapeJents1/cj1-dual-pr_037.dat		2112-12-04 15:42:27			priscus			1222	-35.1576	137.745	-1232.08	\$9071.3	9.11652	180.06	22.99	65.5206	457	
			Adata/CapeJentis1/rg1-dual-pr_035 dat		2812-12-04 15:37:22			priscus			977	-35.3216	137.874	-828.922	27415.1	-12.7631	183.99		78.3993	457	
		Update	<[643	10.000	137.024	040.403	11768.6	E ADDAN	170.02	01.63	34.5043	453	
System 📕	Target Rotato	r 📕 Az E	1Feed 📕 GPS State 📕 Official? 📑 🛛	Inknowni 0 R	tandsk Usspe 👘 🚯	ta da	st.				Office (R	estata = 3)									

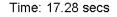
DVB-S Coverage Map (Optus C1)

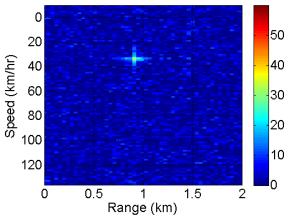


DVB-S Experiments

Australian Government Department of Defence Defence Science and Technology Organisation

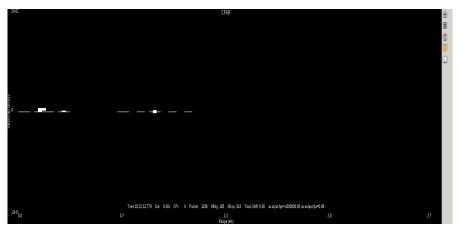
- Antenna pointed at reference source
- Antenna pointed in direction of interest
- All COTS hardware
 - Domestic grade kit
- Replacement cost of \sim \$70k





2008: Geo-sat based aircraft detection

Australian Government Department of Defence Defence Science and Technology Organisation



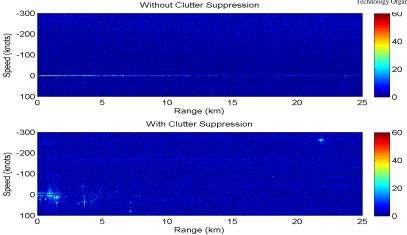
2012: Geo-sat based people detection

Australian Government Department of Defence Defence Science and Technology Organisation

Direct Path Interference and Clutter

- DPI is a big issue for DVB-T¹:
 - Thumbtack ambiguity constrains available "detection" dynamic range
 - Average peak-to-sidelobe ratio: $10 * log_{10}(B * T_{cpi})$
- A number of mitigation approaches are available, including:
 - Analogue beamforming
 - Digital beamforming
 - Polarisation diversity
 - Digital filters, including:
 - LMS (inc. NLMS and Fast LMS (or block LMS))
 - RLS (inc. EDS and Fast EDS)
 - Wiener filter
 - Conjugate Gradient
 - Steepest Descent
 - Other DSP techniques
 - E.g. The CLEAN technique

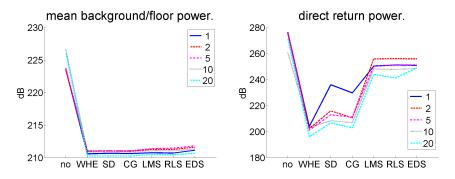
Australian Government Department of Defence Defence Science and Technology Organisation


¹Less of an issue for DVB-S due to high directivity of antennas

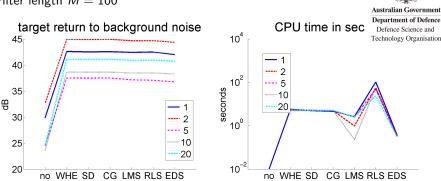
Time: 4.95 secs

Before and After application of Wiener Filter

Australian Government Department of Defence Defence Science and Technology Organisation



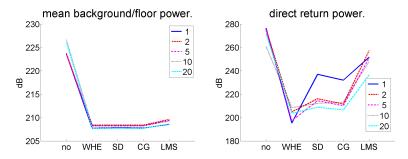
Results: removal of DPI only



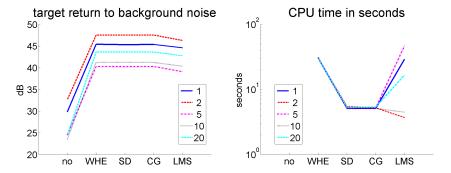
Australian Government Department of Defence Defence Science and Technology Organisation

Filter length M = 100

Results: removal of DPI only Filter length M = 100


- $\bullet\,$ All methods reduce noise floor $\sim\,15$ dB
- $\bullet\,$ All methods increase target power/noise $\sim\,12$ dB
- SD and CG approach same DPI suppression of WHE
- LMS, RLS, EDS achieve partial mitigation of DPI
- LMS and EDS require least CPU time
- SD & CG use same CPU time as WHE

Results: removal of DPI and ZDC

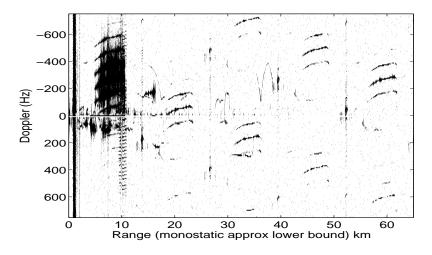

Australian Government Department of Defence Defence Science and Technology Organisation

Filter length M = 2917. RLS and EDS not used due to prohibitively large runtime.

Results: removal of DPI and ZDC

Filter length M = 2917. RLS and EDS not used due to prohibitively large runtime.

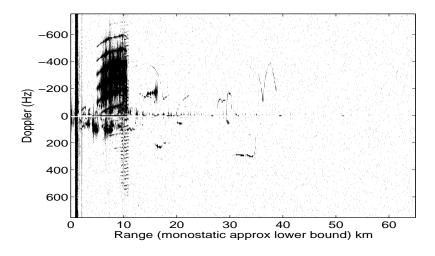
- CG suppresses 1–3 dB more ZDC than SD
- SD & CG requires consistently less CPU time than WHE
- CPUtime required by LMS highly variable.



$\mathsf{Demod}\/\mathsf{Remod}$ - Multipath mitigation, noise reduction and ambiguity control

Australian Government Department of Defence Defence Science and Technology Organisation

CFAR Detection History - Before and After...



$\mathsf{Demod}\/\mathsf{Remod}$ - Multipath mitigation, noise reduction and ambiguity control

Australian Government Department of Defence Defence Science and Technology Organisation

CFAR Detection History - Before and After ...

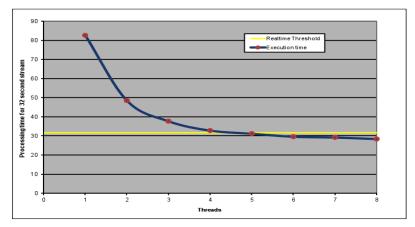
Processing time constraints - CPI

Australian Government Department of Defence Defence Science and Technology Organisation

To achieve real-time performance:

- Ideal: Finish all processing calculations in less time than a CPI! This includes:
 - DPI and clutter suppression
 - RD map formation
 - Target detection
 - Target tracking*
 - Geolocation*
 - Display*

System Overview

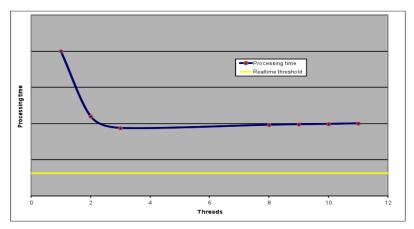


Australian Government Department of Defence Defence Science and Technology Organisation

- Our computing platform (circa 2012) consists of:
 - a multi-core Intel processor (Core i7 x980 @ 3.3GHz CPU)
 - OpenSuse 11.4 Linux
 - 24GB RAM
 - Either a GTX285 or a Tesla C2075 NVIDIA GPU card
- Using one core (non-parallel implementation)
 - More than 2x slower than realtime

Parallel CPU Results - no clutter suppression

- Achieves realtime with 6 threads
- Performance is worse if range/Doppler increased
- Shortcomings:
 - Many cores of CPU in use
 - No capacity for other processing



Defence Science and Technology Organisation

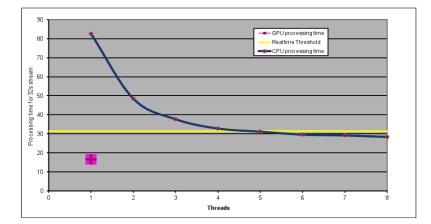
Parallel CPU Results - with clutter suppression

- Single threaded processing now 6 times slower than realtime
- Because clutter filtering works on entire CPI time series:
 - Filter not as easily parallelised no parallel CPU FFT at the time
 - This is a bottleneck at the input
 - Manifestation of Amdahls law

Department of Defence Technology Organisation

Reasons for non-scalability

Australian Government Department of Defence Defence Science and Technology Organisation

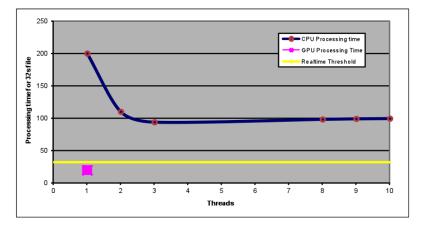

- We moved to CUDA and achieved realtime
 - So no business case for in-depth analysis
- Speculation as to likely reasons includes:
 - Thread/IPC overhead
 - Cache overflow effects
 - Amdahl's law:

"The speedup of a program using multiple processors in parallel computing is limited by the time needed for the sequential fraction of the program²"

²http://en.wikipedia.org/wiki/Amdahl's_law

GPU Results - no clutter suppression

- Achieve realtime in one thread
- Saves four cores for other processing



Australian Government Department of Defence Defence Science and Technology Organisation

GPU Results - with clutter suppression

- Achieve realtime in one thread
 - Clutter uses large FFTs which can be parallelised in GPU
 - Was not possible in CPU for given configuration

Where to next?

Australian Government Department of Defence Defence Science and Technology Organisation

- CTD bigger, better, faster, more...
- Phased Array NPP multi-element arrays for wide field of view and large effective aperture
- Understanding the practical limits of processing and hardware
- Investigate significant unknowns:
 - Bistatic RCS
 - Bistatic Clutter
 - Propagation effects

Acknowledgements:

Australian Government Department of Defence Defence Science and Technology Organisation

A *lot* of people have contributed to this work over the years. Special thanks go to:

- Simon Palumbo
- Dave Merrett
- Ashley Summers
- Matty Brincat
- Travis Bessell

- Tri-Tan Cao
- Kalon Heintze
- Jamie Carter
- Mark Minton
- Ron Fulgrabe

- Stephen Howard
- Stephen Searle
- Linda Davis (Uni SA)
- Andrew Harms (Duke University)
- All of the support staff

Australian Government

Department of Defence Defence Science and Technology Organisation