Lessons Learned from NERC CIP Applied to the Industrial World

Terrence Smith – GE Grid Solutions
Cautionary Tale #1 - Stuxnet

• First cyber-attack that created physical damage.

• Highlights that “air gapping” is not effective.

• Contractors suspected bogus firmware months prior to the attack. Highlights the value of training personnel to look for signs of attack and threat vectors.
Cautionary Tale #2 – German Steel Mill

• Highlights that “Obscurity” is not a defense.
• Access was gained through “spear-phishing” (official looking attachment).
• Reconnaissance was performed for months prior to attacking. EAP packet sniffing could have helped.
Cautionary Tale #3 – Ukraine Power Grid

• Thirty substations, 225,000 customers affected.
• Again, phishing and months of reconnaissance.
• Highlights the need to address known security vulnerabilities.
• Highlights the need to have a recovery plan.
Cautionary Tale #4 – US Paper Mill

• Paper mill released an employee.
• Employee used knowledge of the mill’s cyber assets to take down the process.
• Employee was prosecuted and convicted.
• Highlights the need to remove employee access when the employee is released.
NERC – Critical Infrastructure Protection

• NERC develops, implements and enforces mandatory Reliability Standards

• Section 215 of the Federal Power Act

• CIP – addresses cyber assets that are critical to the bulk electrical system.

• NERC CIP DOES NOT APPLY TO MOST INDUSTRIAL PLANTS!

• I AM NOT ADVOCATING TO EXTEND NERC JURISDICTION!

• PLEASE PUT AWAY YOUR PITCHFORKS AND TORCHES. I AM NOT ADVOCATING MORE REGULATION!
Industrial facilities and the status quo

• Traditionally, there are minimal cyber assets at the plant level.

• DCS Systems, Power Management Systems only occasionally tie into corporate-level networks.

• Sense of security achieved through obscurity and isolation.
Why bring up NERC-CIP at all?

• Bad actors do exist.
 • State-sponsored
 • Organized crime syndicates
 • Activists (both well-intentioned and ill-intentioned)

• They have ways and means to do harm.
 • There are several known threat vectors.
 • As technology is adopted to make life easier, it inevitably increases vulnerabilities.

• They have motivation to do harm.
 • Profit
 • Social upheaval
 • Chaos

• It makes sense to have a plan of action.
• NERC-CIP provides a reference.
NERC-CIP provides a framework.

- **Physical Security of Cyber Systems**
 - CIP-006 – Control, Monitor & Log Physical Access

- **Electronic Security of Cyber Systems**
 - CIP-002 - Identification of Cyber Assets
 - CIP-003 - Documentation of Cyber Security Policies
 - CIP-005 - Electronic Security Perimeter
 - CIP-007 – Ports & Services
 - CIP-009 – Recovery Plan Specifications

- **Personnel Management & Procedures**
 - CIP-004 Cyber Security Training Program
 - CIP-008 Incident Reporting & Response Planning
Who are these Threat Actors?

• State-Sponsored Threats
 - North Korea (Sony)
 - Russia (Ukraine – BlackEnergy)

• Hacktivists
 - Anonymous (Amazon, Paypal, Mastercard, Visa, Power Corporation of Canada, etc. etc. etc...)
 - WikiLeaks (Afghanistan War Logs, DNC)

• Organized Crime
 - Ransomware
 - Corporate espionage

• Agents of Chaos
 - Jason Woodring, convicted Arkansas grid saboteur

• The most dangerous of all, employees (of both disgruntled and happily oblivious varieties).
What are the Threat Vectors?

• Physical Damage
• Cyber Assets
 o “…that if rendered unavailable, degraded, or misused would, with 15 minutes adversely impact [electrical reliability].”
 o Routable Protocols

• People can be Threat Vectors
 o Social Engineering is a technique to manipulate decision making.
Identify Critical Assets

• Can the device directly trip/close critical breakers?

• Can the device start/stop a motor improperly that may cause cascading damage?

• Is this device capable of sending a transfer trip to a different breaker?

• Can a device create unwanted data on a network?
NERC CIP-006 Addresses Physical Security Perimeter (PSP)
- Key Card Readers
- Motion Sensors
- Security Cameras
• Equipment communicating with a routable protocol including:
 Modbus TCP/IP, DNP/IP, IEC61850 MMS

• Basically, any equipment with an Ethernet port.
• EAP is a physical device that controls traffic in and out of the ESP.
• EAP can filter data and allow only data that fits the accepted packet structure.
• EAP can whitelist certain MAC addresses, IP addresses.
• EAP can segment data traffic to contain unwanted data.
Cybersecurity Tools - RADIUS

“RADIUS Client”
IP Addr: 192.168.1.200

“RADIUS Server”
IP Addr: 192.168.1.167

1. Establish SSH Connection & Issue Access Request (includes User Name, Password & Secret).
2. Client Initiates Key Exchange Req.
3. Share secret (Diffie-Hellman exchange)
4. Access Request from Client
5. Server Issues Access-Challenge
6. Another Access Request from Client
7. Server Checks Authentication Manager
8. Server Responds with Accept or Reject
9. If Accepted, User Continues to Communicate Through SSH.
Cybersecurity Tools – Role Based Access

- Administrator – Complete access to settings, commands
- Engineer – Can change settings but not firmware or security settings
- Operator – Can only issue commands but not change other settings
- Observer – Can only read/retrieve info.
- Supervisor – Access role to allow Admin, Engineer privileges.
Cybersecurity Tools – Role Based Access

![Screenshot of a software interface](image)

<table>
<thead>
<tr>
<th>SETTING</th>
<th>PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Authentication</td>
<td>Yes</td>
</tr>
<tr>
<td>Bypass Access</td>
<td>Pushbuttons</td>
</tr>
<tr>
<td>Lock Relay</td>
<td>Disabled</td>
</tr>
<tr>
<td>Factory Service Mode</td>
<td>Disabled</td>
</tr>
<tr>
<td>Supervisor Role</td>
<td>Enabled</td>
</tr>
<tr>
<td>Serial Inactivity Timeout</td>
<td>1 min</td>
</tr>
</tbody>
</table>

Self Tests

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed Authentication Function</td>
<td>Enabled</td>
</tr>
<tr>
<td>Firmware Lock</td>
<td>Enabled</td>
</tr>
<tr>
<td>Settings Lock</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Cybersecurity Tools - Syslog

IP Addr: 192.168.1.200

IED

IP Addr: 192.168.1.167

“Syslog Server”

Network

Constant Reporting
Security Audit Trail
Tools – Security Alarms

- REM SET ACCESSION ON
- LOC SET ACCESSION ON
- SETTING CHANGED
- REMOTE ACCESS DENIED

2 OR

- Acc/Set (NO2)

3 OR

- Wrong Password (VO3)

4
Tools – Blocking Remote Access

<table>
<thead>
<tr>
<th>SETTING</th>
<th>PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Password Access Timeout</td>
<td>5 min</td>
</tr>
<tr>
<td>Setting Password Access Timeout</td>
<td>30 min</td>
</tr>
<tr>
<td>Invalid Password Attempts</td>
<td>3</td>
</tr>
<tr>
<td>Password Lockout Duration</td>
<td>5 min</td>
</tr>
<tr>
<td>Password Access Events</td>
<td>Disabled</td>
</tr>
<tr>
<td>Local Setting Authorized</td>
<td>ON</td>
</tr>
<tr>
<td>Remote Setting Authorized</td>
<td>OFF</td>
</tr>
<tr>
<td>Access Authorized Timeout</td>
<td>30 min</td>
</tr>
</tbody>
</table>
Tools – Password Complexity

With Letters only: $26! = 403 	imes 10^{24}$
Assuming 1 minute per try
$= 767 	imes 10^{18}$ years

With upper and lower case: $52! = 80 	imes 10^{66} = 153 	imes 10^{60}$ years

With upper, lower case, and numbers: $62!$

With upper, lower case, numbers, & special characters: $82!$

Dinosaurs went extinct $65 	imes 10^6$ years ago.

With numbers only: $10! = 3.6 	imes 10^6$
Assuming 0 minute per try and a lockout of 5 min every three tries.
$= 11.5$ years

With upper, lower, numbers and special characters, 0 minutes per try and lockout of 5 min every three tries: = a massively big number

T2.713rry
NERC CIP – Recovery Plan

• Keep a running log of all cyber assets.
• Keep a copy of all firmware files, settings files.
• Assign people to this function and train them to be capable of performing a complete system “reset”.
Conclusions

• If they are not already, networked systems will be used in your plant.

• Obscurity & Isolation are not effective strategies.

• NERC CIP provides a useful reference.

• IED technology developed for NERC CIP compliance can be used to secure cyber-assets, even though you’re not legally compelled to use it.
Thank You

Questions?