

Overview of: IEEE P1668[™]/D1Q Draft Trial Use Recommended Practice for Voltage Sag Ride-through Testing for End Use Electrical Equipment Rated Less than 1,000 Volts

Jim Rossman, P.E. - TVA Senior Program Manager of Power Quality

11/28/2012 – IEEE Section, IAS/PES Chapter, and Music City Power Quality Group Technical Meeting

IEEE P1668 Product of IEEE Standards Association

IEEE STANDA	RDS ASSO	CIATION	Contact FAQs			standards.ieee.org only
Find Standards De	velop Standards	Get Involved	News & Events	About Us	Buy Star	ndards eTools
IEEE PROJECT P1668 - Interrup Electrica	Recommer tion Ride-1 I Equipmer	nded Practio Through Tes nt Less thar	ce for Voltag sting for End n 1,000 Volt	je Sag and I Use s	d	RELATED MATERIALS
This document is a non-ind voltage sag ride-through p electrical and electronic ed systems that can experien reductions in supply voltag recommended practice ind requirements based on act the detailed analysis of vo insight into real-world volt	dustry specific recom performance and com quipment connected t ce malfunction or shi ge lasting less than or dudes defining minim tual voltage sag data ltage sags. Testing pro	mended practice for opliance testing for all o low voltage power utdown as a result of ne minute. The um voltage sag immu . A section dedicated ed by end users provi ocedures and test	STATUS: Active to ides	e Project 🕡		Instrumentation and Measurement Projects Industry Applications Projects
equipment requirements a reflect this electrical enviro phase, three-phase, and u practice also defines certif including voltage sag ride-	re clearly defined wit onment including sing nbalanced voltage sa ication and test report through equipment c	thin this document to gle-phase, phase-to- ags. The recommende rting requirements, haracterization.	ed .			Standards Help IEEE-SA Standards Development Services are proven to expedite the process by 40%. Click here to learn more!
Working Group: Sponsor:	<u> 1668 WG - Volta</u> IAS/PSE - Power	age Sag Ride-through Systems Engineering	Working Group 1 क्र			
Society:	IAS - IEEE Indus	try Applications Socie	<u>etv</u> &			

Active Working Group Members

1Bobby GettierDominionBobby.Gettier@dom.comIP2Brad MartinAEPbpmartin@aep.comIP3Brian FortenberyEPRIbfortenbery@epri.comIP4Jack CaufieldNPPDjscaufi@nppd.comIP5John CoffmanMicrochip Technologiesjohn.coffman@microchip.comIP6Bill BrumsickleSoftswitching Technologiesbbrumsickle@softswitch.comM7Chuck ThomasEPRIcthomas@epri.comM9Greg OlsonPSE&GGregory.Olson@pseg.comM10Greg ReiderIBMineder@us.im.im.comM11Jim MentzerTVAjbrossman@tva.govM12John MentzerGMjohn.carl.zarella@gm.comM13John-Carl SemiconductorGM Energy iphn-carl.zarella@gm.comM14Mark Mark StephensOn Companymark.rucker@tema.toyota.comM16Mark NorrisEPRI Companymstephens@epri.comM17Melinda Southern NorrisSouthern CompanyMENORRIS@southernco.com MM18Rick Temple SalbahOn Semiconductorr19271@onsemi.com SalbahM20Scott AndersonSRP Sawanders@srpnet.comM21Sasa DjokicUniversity of Edinburghsasa.djokic@ed.ac.uk MM	No.	Name	Affiliation	e-mail	Membership (IP/M)
2 Brad Martin AEP bpmartin@aep.com IP 3 Brian Fortenbery EPRI bfortenbery@epri.com IP 4 Jack Caufield NPPD jscaufi@nppd.com IP 5 John Coffman Microchip Technologies john.coffman@microchip.com IP 6 Bill Brumsickle Softswitching Technologies bbrumsickle@softswitch.com M 7 Chuck EPRI cthomas@epri.com M 9 Greg Olson PSE&G Gregory.Olson@pseg.com M 10 Greg Reider IBM ieder@us.ibm.ibm.com M 11 Jim Rossman TVA jbrossman@tva.gov M 12 John Carl Zarella GM Energy Pontiac, MI john-carl.zarella@gm.com M 14 Mark Minzlaff Goupany mark.minzlaff@onsemi.com M 15 Mark Rucker Toyota mark.rucker@tema.toyota.com M 16 Mark Stephens Southern MENORRIS@southernco.com M 17 Melinda Southern MENORRIS@southernco.com M 18 Rick Temple On r19271@onsemi.com M 19 Salman Intel Salman.j.sabbah@intel.com <td< td=""><td>1</td><td>Bobby Gettier</td><td>Dominion</td><td><u>Bobby.Gettier@dom.com</u></td><td>IP</td></td<>	1	Bobby Gettier	Dominion	<u>Bobby.Gettier@dom.com</u>	IP
3 Brian Fortenbery EPRI bfortenbery@epri.com IP 4 Jack Caufield NPPD jscaufi@nppd.com IP 5 John Coffman Microchip john.coffman@microchip.com IP 6 Bill Brumsickle Softswitching Technologies bbrumsickle@aaftswitch.com M 7 Chuck Thomas EPRI cthomas@epri.com M 8 Doug Dorr EPRI ddorr@epri.com M 9 Greg Olson PSE&G Gregory.Olson@pseg.com M 10 Greg Reider IBM ieder@us.ibm.ibm.com M 11 Jim Rossman TVA jbrossman@tva.goy M 12 John-Carl Mentzer GM Energy John-carl.zarella@gm.com M 13 John-Carl Minzlaff GM Energy Semiconductor john-carl.zarella@gm.com M 14 Mark Mark On Minzlaff Semiconductor M M 15 Mark Rucker Toyota mark.rucker@tema.toyota.com M 16 Mark Norris Southern Company MENORRIS@southernco.com M <td< td=""><td>2</td><td>Brad Martin</td><td>AEP</td><td>bpmartin@aep.com</td><td>IP</td></td<>	2	Brad Martin	AEP	bpmartin@aep.com	IP
4 Jack Caufield NPPD jscaufi@nppd.com IP 5 John Coffman Microchip john.coffman@microchip.com IP 6 Bill Brumsickle Softswitching Technologies bbrumsickle@softswitch.com M 7 Chuck Thomas EPRI cthomas@epri.com M 8 Doug Dorr EPRI ddorr@epri.com M 9 Greg Olson PSE&G Gregory.Olson@pseg.com M 10 Greg Reider IBM ieder@us.ibm.ibm.com M 11 Jim TVA jbrossman@tva.gov M 12 John GM john.carl.zarella@gm.com M 13 John-Carl GM Energy john-carl.zarella@gm.com M 14 Mark On mark.rucker@tema.toyota.com M 15 Mark Rucker Toyota mark.rucker@tema.toyota.com M 16 Mark EPRI mstephens@epri.com M 17 Melinda Southern MENORRIS@southernco.com M 18 Rick Temple On r19271@onsemi.c	3	Brian Fortenbery	EPRI	bfortenbery@epri.com	IP
5 John Coffman Microchip john.coffman@microchip.com IP 6 Bill Brumsickle Softswitching Technologies bbrumsickle@softswitch.com M 7 Chuck Thomas EPRI cthomas@epri.com M 8 Doug Dorr EPRI ddorr@epri.com M 9 Greg Olson PSE&G Gregory.Olson@pseg.com M 10 Greg Reider IBM ieder@us.ibm.ibm.com M 11 Jim Rossman TVA jbrossman@tva.gov M 12 John GM john.carl.zarella@gm.com M 13 John-Carl GM Energy Pontiac, MI john-carl.zarella@gm.com M 14 Mark On mark.minzlaff@onsemi.com M 15 Mark Rucker Toyota mark.rucker@tema.toyota.com M 16 Mark EPRI mstephens@epri.com M 17 Melinda Southern MENORRIS@southernco.com M 18 Rick Temple On r19271@onsemi.com M 20 Scott Anderson SRP <	4	Jack Caufield	NPPD	jscaufi@nppd.com	IP
6 Bill Brumsickle Softswitching Technologies bbrumsickle@softswitch.com M 7 Chuck Thomas EPRI cthomas@epri.com M 8 Doug Dorr EPRI ddorr@epri.com M 9 Greg Olson PSE&G Gregory.Olson@pseg.com M 10 Greg Reider IBM rieder@us.ibm.ibm.com M 11 Jim TVA jbrossman@tva.gov M 12 John GM john.mentzer@gm.com M 13 John-Carl GM Energy Pontiac, MI john-carl.zarella@gm.com M 14 Mark Minzlaff Semiconductor mark.minzlaff@onsemi.com M 15 Mark Rucker Toyota mark.rucker@tema.toyota.com M 16 Mark Norris Southerm Company r19271@onsemi.com M 18 Rick Temple On Semiconductor r19271@onsemi.com M 20 Scott Anderson SRP swanders@srpnet.com M 20 Scott Anderson SRP sasa.djokic@ed.ac.uk M	5	John Coffman	Microchip	john.coffman@microchip.com	IP
7Chuck ThomasEPRIcthomas@epri.comM8Doug DorrEPRIddorr@epri.comM9Greg OlsonPSE&GGregory.Olson@pseg.comM10Greg ReiderIBMreder@us.ibm.ibm.comM11JimTVAjbrossman@tva.govM12JohnGMjohn.mentzer@gm.comM13John-CarlGM Energyjohn-carl.zarella@gm.comM14MarkOnmark.minzlaff@onsemi.comM15Mark RuckerToyotamark.rucker@tema.toyota.comM16MarkEPRImstephens@epri.comM17MelindaSouthernMM18Rick TempleOnr19271@onsemi.comM19SalmanIntelSalman,j.sabbah@intel.comM20Scott AndersonSRPswanders@srpnet.comM21Sasa DjokicUniversity of Edinburghsasa.djokic@ed.ac.ukM	6	Bill Brumsickle	Softswitching Technologies	bbrumsickle@softswitch.com	М
8Doug DorrEPRIddorr@epri.comM9Greg OlsonPSE&GGregory.Olson@pseg.comM10Greg ReiderIBMrieder@us.ibm.ibm.comM11JimTVAjbrossman@tva.govM12JohnGMjohn.mentzer@gm.comM13John-CarlGM Energyjohn-carl.zarella@gm.comM14MarkOnmark.minzlaff@onsemi.comM15Mark RuckerToyotamark.rucker@tema.toyota.comM16MarkEPRImstephens@epri.comM17MelindaSouthernMENORRIS@southernco.comM18Rick TempleOnr19271@onsemi.comM19SalmanIntelSalman.j.sabbah@intel.comM20Scott AndersonSRPswanders@srpnet.comM21Sasa DjokicUniversity of Edinburghsasa.djokic@ed.ac.ukM	7	Chuck Thomas	EPRI	cthomas@epri.com	М
9Greg OlsonPSE&GGregory.Olson@pseg.comM10Greg ReiderIBMrieder@us.ibm.ibm.comM11JimTVAjbrossman@tva.govMRossmanGMjohn.mentzer@gm.comM12JohnGMjohn.mentzer@gm.comM13John-CarlGM Energyjohn-carl.zarella@gm.comM2arellaPontiac, MIMarkM14MarkOnmark.minzlaff@onsemi.comM15Mark RuckerToyotamark.rucker@tema.toyota.comM16MarkEPRImstephens@epri.comM17MelindaSouthernMENORRIS@southernco.comM18Rick TempleOnr19271@onsemi.comM20ScottSRPswanders@srpnet.comM21Sasa DjokicUniversity of Edinburghsasa.djokic@ed.ac.ukM	8	Doug Dorr	EPRI	ddorr@epri.com	М
10Greg ReiderIBMrieder@us.ibm.ibm.comM11JimTVAjbrossman@tva.govM12JohnGMjohn.mentzer@gm.comM13John-CarlGM Energyjohn-carl.zarella@gm.comM2arellaPontiac, MIMM14MarkOnmark.minzlaff@onsemi.comM15Mark RuckerToyotamark.rucker@tema.toyota.comM16MarkEPRImstephens@epri.comM17MelindaSouthernMENORRIS@southernco.comM18Rick TempleOnr19271@onsemi.comM20ScottSRPswanders@srpnet.comM21Sasa DjokicUniversity of Edinburghsasa.djokic@ed.ac.ukM	9	Greg Olson	PSE&G	Gregory.Olson@pseg.com	М
11Jim RossmanTVAjbrossman@tva.govM12JohnGMjohn.mentzer@gm.comM12JohnGMjohn.carl.garella@gm.comM13John-Carl ZarellaGM Energy Pontiac, MIjohn-carl.zarella@gm.comM14MarkOnmark.minzlaff@onsemi.comM15Mark RuckerToyotamark.rucker@tema.toyota.comM16Mark StephensEPRImstephens@epri.comM17Melinda Southern CompanyMENORRIS@southernco.comM18Rick Temple Salman SabbahOnr19271@onsemi.comM20Scott AndersonSRPSwanders@srpnet.comM21Sasa DjokicUniversity of Edinburghsasa.djokic@ed.ac.uk Sasa.djokic@ed.ac.ukM	10	Greg Reider	IBM	rieder@us.ibm.ibm.com	М
12John MentzerGMjohn.mentzer@gm.comM13John-Carl ZarellaGM Energy Pontiac, MIjohn-carl.zarella@gm.comM14MarkOn Minzlaffmark.minzlaff@onsemi.comM15Mark RuckerToyotamark.rucker@tema.toyota.comM16Mark StephensEPRImstephens@epri.comM17Melinda NorrisSouthern CompanyMENORRIS@southernco.comM18Rick Temple Salman SabbahOn Semiconductorr19271@onsemi.com Salman.j.sabbah@intel.comM20Scott AndersonSRP Edinburghsasa.djokic@ed.ac.uk EdinburghM	11	Jim Rossman	TVA	jbrossman@tva.gov	М
13John-Carl ZarellaGM Energy Pontiac, MIjohn-carl.zarella@gm.comM14Mark MinzlaffOn Semiconductormark.minzlaff@onsemi.comM15Mark RuckerToyotamark.rucker@tema.toyota.comM16Mark StephensEPRImstephens@epri.comM17Melinda NorrisSouthern CompanyMENORRIS@southernco.comM18Rick TempleOn Semiconductorr19271@onsemi.comM20Scott AndersonSRPSwanders@srpnet.comM21Sasa DjokicUniversity of Edinburghsasa.djokic@ed.ac.uk EdinburghM	12	John Mentzer	GM	john.mentzer@gm.com	М
14Mark MinzlaffOn Semiconductormark.minzlaff@onsemi.comM15Mark RuckerToyotamark.rucker@tema.toyota.comM16Mark StephensEPRImstephens@epri.comM17Melinda NorrisSouthern CompanyMENORRIS@southernco.com r19271@onsemi.comM18Rick Temple SemiconductorOn Semiconductorr19271@onsemi.com Salman_j.sabbah@intel.comM20Scott AndersonSRP Edinburghsasa.djokic@ed.ac.uk EdinburghM	13	John-Carl Zarella	GM Energy Pontiac, MI	john-carl.zarella@gm.com	М
15Mark RuckerToyotamark.rucker@tema.toyota.comM16MarkEPRImstephens@epri.comMStephensM17MelindaSouthernMENORRIS@southernco.comMNorrisCompanyM18Rick TempleOn Semiconductorr19271@onsemi.comM19Salman SabbahIntelSalman.j.sabbah@intel.comM20Scott AndersonSRPswanders@srpnet.comM21Sasa DjokicUniversity of Edinburghsasa.djokic@ed.ac.uk EdinburghM	14	Mark Minzlaff	On Semiconductor	mark.minzlaff@onsemi.com	М
16Mark StephensEPRImstephens@epri.comM17Melinda NorrisSouthern CompanyMENORRIS@southernco.com MENORRIS@southernco.comM18Rick Temple SemiconductorOn Semiconductorr19271@onsemi.com 	15	Mark Rucker	Toyota	mark.rucker@tema.toyota.com	М
17Melinda NorrisSouthern CompanyMENORRIS@southernco.com MM18Rick Temple SemiconductorOn Semiconductorr19271@onsemi.com SemiconductorM19Salman SabbahIntel Salman.j.sabbah@intel.comM20Scott AndersonSRP Sumanders@srpnet.comM21Sasa DjokicUniversity of Edinburghsasa.djokic@ed.ac.uk EdinburghM	16	Mark Stephens	EPRI	mstephens@epri.com	М
18Rick TempleOn Semiconductorr19271@onsemi.com MM19Salman SabbahIntelSalman.j.sabbah@intel.comM20Scott 	17	Melinda Norris	Southern Company	MENORRIS@southernco.com	М
19Salman SabbahIntelSalman.j.sabbah@intel.comM20Scott AndersonSRPswanders@srpnet.comM21Sasa DjokicUniversity of Edinburghsasa.djokic@ed.ac.uk EdinburghM	18	Rick Temple	On Semiconductor	r19271@onsemi.com	М
20 Scott Anderson SRP swanders@srpnet.com M 21 Sasa Djokic University of Edinburgh sasa.djokic@ed.ac.uk Edinburgh M	19	Salman Sabbah	Intel	Salman.j.sabbah@intel.com	М
21 Sasa Djokic University of Edinburgh sasa.djokic@ed.ac.uk M	20	Scott Anderson	SRP	swanders@srpnet.com	М
	21	Sasa Djokic	University of Edinburgh	<u>sasa.djokic@ed.ac.uk</u>	М

Who is on P1668 Working Group?

Representatives from Industry:

General Motors, Toyota, IBM, Intel, Microchip, On Semiconductor, NPPD

Representatives from Utilities:

Dominion, AEP, PSE&G, Salt River Project, Southern Company, TVA

Other PQ Industry Leaders:

EPRI, Soft Switching Technologies, University of Edinburgh

TVA	IEEE Standards Association Balloting Process
	 Balloters usually fall into one of several interest categories (e.g. producers, users). No interest category can comprise over one-third of the balloting group. A standard will pass if at least 75 percent of all ballots from a balloting group are returned and if 75 percent of those bear a "yes" vote. Ballots usually last 60 to 90 days. Balloters can approve, disapprove, or abstain. The can also disapprove with comment. The ballot resolution group responds to all comments, whether submitted by those within or outside the balloting group. P1668 was set up with individuals each having the opportunity for a single vote. It is the Sponsor's responsibility to form the balloting group. 4.1 Type of Ballot: Individual 4.2 Expected Date of submission of draft to the IEEE-SA for Initial Sponsor Ballot: 08/2011 4.3 Projected Completion Date for Submittal to RevCom: 01/2012

IEEE Standards Association Balloting Consensus

- What a balloting group is trying to achieve is the imperative principle of consensus.
- According to IEEE rules, consensus is defined as a minimum 75% return of ballots from the balloting group, and a 75% approval rate from that 75% return group.
- All negative comments will be addressed by the Working Group Chair even if consensus is reached.

IEEE P1668 Contents

- 1. Overview
- 2. Limitations
- 3. Normative References
- 4. Definitions
- **5. A Primer on Voltage Sags**
- 6. Recommended Voltage-Sag Test Requirements

Annex A Test Procedures and Guidelines Annex B Test Equipment Requirements Annex C Certification and Test Reports

Section 1 Overview of IEEE 1668

TVA	Section 1.1 IEEE P1668 Scope
	 Recommended practice for voltage-sag performance and compliance testing for all electrical equipment<1000V
	 Defines minimum voltage-sag immunity requirements
	 Testing procedures and requirements for test equipment are clearly defined including the following voltage sag subtypes: – single-phase,
	 two-phase, three-phase, balanced
	 unbalanced voltage sags
	 The recommended practice also defines requirements for certification and test reporting
9	

TVA	Section 1.1 IEEE P1668 Purpose
	 Establishes clearly defined test methods and ride-through performance for determining the sensitivity of electrical and electronic equipment to voltage sags.
	 Analysis of real-world sags providing foundation for both the test methods and the performance criteria. The standard defines voltage sag characteristics in terms of the depths, magnitudes, durations, phase angles, and vectors.
	 The recommended practice shows how different voltage-sag testing methods can be used to simulate real-world sags.
	 Provides end-use standard for purchase specifications to ensure the required level of equipment performance. In addition, end users can use the voltage-sag criteria as performance benchmark for existing equipment.

5.1 Voltage Sag Basics

Presents:

- Basic concepts
- Multiphase nature and complexity
- How we often over simplify in data presentation
- How to read a magnitude and duration scatter plot

5.3 Fault (Characteristics) and Voltage Sags

Illustrates:

- Fault Clearing
 Times
- Voltage Recovery
- Slow Voltage
 Recovery

5.3 Faults and Voltage Sags (Continued) Fault on Transmission System

Illustrates:

- Transmission fault influence on utilization voltage
- Effect of multiple transformations

Table 2—Secondary transformer voltages (pu) and phase angles from a transmissionsystem fault (A-G)

Transformation#1	VLL (AB, BC, CA)	VLN (AN, BN, CN)	Transformation#2	VLL (AB, BC, CA)	VLN (AN, BN, CN)
Delta-Wye (g)	33% ∠ 180,	58% ∠ 300,	Delta-Wye (g)	58% ∠ 120,	88% ∠ 280.9,
	88% ∠ 79.1,	58% ∠ 240,		58% ∠ 6 0,	33% ∠ 180,
	88% ∠ 280.9	100% ∠ 90		100% ∠ 270	88% ∠ 79.1
Wye (g)-Wye (g)	58% ∠ 240,	0%,	Delta-Wye (g)	33% ∠ 180,	58% ∠ 300,
	100% ∠ 90,	100% ∠ 240,		88% ∠ 79.1,	58% ∠ 240,
	58% ∠ 300	100% ∠ 120		88% ∠ 280.9	100% ∠ 90
Wye (g)-Wye (g)	58% ∠ 240,	0%,	Wye (g)-Wye (g)	58% ∠ 240,	0%,
	100% ∠ 90,	100% ∠ 240,		100% ∠ 90,	100% ∠ 240,
	58% ∠ 300	100% ∠ 120		58% ∠ 300	100% ∠ 120
Wye -Wye (g)	58% ∠ 240	33% ∠ 0	Delta-Wye (g)	33% ∠ 180,	58% ∠ 300,
	100% ∠ 90	88% ∠ 259.1		88% ∠ 79.1,	58% ∠ 240,
	58% ∠ 300	88% ∠ 100.9		88% ∠ 280.9	100% ∠ 90
Wye (g) - Delta	33% ∠ 180	58% ∠ 300	Wye (g) - Delta	58% ∠ 120	88% ∠ 280.9
	88% ∠ 79.1	58% ∠ 240		58% ∠ 60	33% ∠ 180
	88% ∠ 280.9	100% ∠ 90		100% ∠ 270	88% ∠ 79.1

5.3 Faults and Voltage Sags (Continued) Fault on Distribution System

Illustrates:

- Distribution fault influence on utilization voltage
- Effect of multiple transformations

Table 4—Secondary transformer voltages (pu) and phase angle from distribution system fault (A-G)

Transformation	VLL (AB, BC, CA)	VLN (AN, BN, CN)
Delta-Wye (g)	33% ∠ 180.	58% ∠ 300, 58% ∠ 240, 100%
	88% ∠ 79.1,	∠90
	88% ∠ 280.9	
Wye-Wye (g)	58% ∠ 240	33% ∠ 0
	100% ∠ 90	88% ∠ 259.1
	58% ∠ 300	88% ∠ 100.9
Wye (g) - Wye (g)	58% ∠ 240,	0%,
	100% ∠ 90,	100% ∠ 240, 100% ∠ 120
	58% ∠ 300	
Wye - Delta	33% ∠ 180	58% ∠ 300
	88% ∠ 79.1	58% ∠ 240
	88% ∠ 280.9	100% ∠ 90

5.3 Faults and Voltage Sags (Continued) Impact of Line Re-Closing

Faulted Feeder "A"

5.4 Voltage Sags and Load Current Relationships

Discusses how current can vary during a voltage sag based on load types.

- Resistive load current lowers proportionally
- Induction motors load current generally increases
- Synchronous motors inject reactive current toward fault
- Non-linear power electronic loads may draw significant current on return of voltage

5.5 How Common Are Voltage Sags?

Discusses findings from benchmark voltage sag studies:

- EPRI DPQ Phase I
- EPRI DPQ Phase II
- CIGRE C4.110

How common are the events and how many phases are involved?

-	Fable 6— <u>Yearly</u>	SARFI rates	1	
60-Second Aggregate	Period, DPQ I,	DPQ II, and	DPQ II Group 1	Sites)

SARFI level	DPQ Phase I	DPQ Phase II	DPQ Phase II Group 1 (A,F, and G Sites)
SARFI-70	23.4	13.7	22.4
SARFI-50	12.2	5.7	13.2
SARFI-10	5.8	0.9	3.4
SARFI-ITIC ¹²	23.5	13.9	23.9
SARFI-SEMI ¹³	17.0	8.3	19.9

5.5 Expected Voltage Sag Distribution Previous EPRI Studies

Number of Phases with a Voltage Drop

Number of affected phases (i.e., voltage sag types) for voltage sags with at least one remaining voltage below 85% of nominal from EPRI DPQ II (1-Minute Aggregation, All Sites, All Days)

Percent residual voltage by type of sag from EPRI DPQ II Study

5.5 Expected Voltage Sag Distribution International Statistics on Voltage Sags

Figure 19-Three-phase (Type III) voltage-sag contour charts from C4.110 Working Group (969 sites, 40.86 Monitor Years)

Table 7-Breakout of voltage sag types from C4.110 Working Group Report

	Sites	Voltage range	Number of sites	Single-phase (Type I)	Two-phase (Type II)	Three-phase Type III
will II han	MV & HV Sites	6 kV- 230 kV	969	27%	53%	20%
half e III	LV Sites	<1KV	206	64%	25%	11%
r.						

Section 6 Recommended Voltage Sag Test Requirements

- This section details the voltage-sag test requirements of this recommended practice.
- The recommended voltage-sag types and voltage-sag immunity levels are detailed in this section.

6.1 Classification of Voltage-Sag Types in Three-Phase Systems

Where: V - characteristic voltage, E - pre-sag voltage, and Ua, Ub, Uc - phase-to-neutral voltages.

Table 8-Type I, II, and III voltage-sag classifications

TVA	6.1 Classification of voltage-sag types in three-phase systems (continued) Two Phases Impacted						
	Type II (Recommended)	Type II.A1 (Alternate 1)	Type II.A2 (Alternate 2)				
	$V_a = E$ $V_b = -\frac{1}{2}E - \frac{1}{2}jV\sqrt{3}$ $V_c = -\frac{1}{2}E + \frac{1}{2}jV\sqrt{3}$	$V_a = E$ $V_b = -\frac{1}{2}E - \frac{1}{2}jV\sqrt{3}$ $V_c = -\frac{1}{2}E + \frac{1}{2}jV\sqrt{3}$	$V_a = E$ $V_b = -\frac{1}{2}E - \frac{1}{2}jV\sqrt{3}$ $V_c = -\frac{1}{2}E + \frac{1}{2}jV\sqrt{3}$				

6.2 Recommended Voltage-Sag Immunity Levels One Phase Only and Two Impacted Phases

Table 10—Recommended test points for Type I and Type II voltage sags

Minimum test point No.	Residual voltage in percent nominal	Duration in seconds	Duration at 50 Hz	Duration at 60 Hz
1	50%	0.2	10 cycles	12 cycles
2	70%	0.5	25 cycles	30 cycles
3	80%	2.0	100 cycles	120 cycles

6.2 Recommended Voltage-Sag Immunity Levels Three Phases Impacted

Table 11—Recommended test points for Type III voltage sags

Minimum test point No.	Residual voltage in percent nominal	Duration in seconds	Duration at 50 Hz	Duration at 60 Hz
1	50%	0.05	2.5 cycles	3 cycles
2	70%	0.1	5 cycles	6 cycles
3	80%	2.0	100 cycles	120 cycles

When Published, Industries Can Specify Systems That Are IEEE 1668 Compliant!!!

6.2 Recommended Voltage-Sag Immunity Levels (continued)

Test Conditions:

- The EUT shall be tested in its most sensitive process states, as determined by the EUT manufacturer. For example, this may include robot movement, maximum power processing, and most sensitive measurement.
- Components and subsystems, when tested independently, shall be tested under load (for example, DC power supplies and AC drives).

6.3 Recommended Voltage-Sag Immunity Levels (continued)

6.2.4 Pass/fail criteria:

a) Full (normal) operation – Equipment performs as expected or intended, and all of its relevant parameters are within technical specifications or within allowed tolerance limits. Equipment performance should be expressed and measured against the set of relevant/critical "equipment outputs" (for example, speed, torque, and voltage level), which have to be defined as per the process requirements.

b) Self-recovery – Equipment does not perform its intended functions, or its outputs vary outside the technical specification/limits, but equipment is able to automatically recover after the end of a voltage sag without any intervention from the user.

c) Assisted-recovery – Equipment does not perform intended functions, or its outputs vary outside the technical specification/limits, and equipment is not able to automatically recover after the end of a voltage sag.

6.3 Recommended Voltage-Sag Immunity Levels (continued)

Table 12—IEEE P1668 equipment-immunity specification sheet (for use with three-phase equipment)

Table 13—IEEE P1668 equipment-immunity single specification sheet (for use with singlephase equipment)

How to Vote – Existing IEEE Members Join SA for \$50 and Let Us Know of Your Interest!

- We Need Your Review and Hopefully a Yes Vote on IEEE 1668
- Please Let Us Know If You Are Interested In Making Power Quality History by Participating in the Balloting Effort for IEEE 1668

Memberships and Subscriptions

Description	Quantity	Shipping	Price	
IEEE Power & Energy Society Membership	1	N/A	US \$35.00	
IEEE Standards Association Individual Membership	1	N/A	US \$50.00	\
IEEE Membership	1	N/A	US \$185.00	

Tax IDs for The Institute of Electrical & Electronics Engineers, Inc.:

U.S. Taxpayer ID #: 13-1656633,Canadian business #: 12563 4188 RT0001,EU special scheme (digital goods only)Registration #: EU826000081 Shipping & handling: US \$0.00 Tax: US \$0.00