Electrical Predictive and Preventative Maintenance

Electrical and mechanical equipment is subject to failure at the worst possible time for no apparent reason.

- Mose Ramieh III

There are two types of facilities...

Those that have HAD a failure...

And those that will...

IEEE 493-2007

 Table 5-2—Percentage of failure caused from inadequate maintenance vs.

 month since maintained

Failure (months since maintained)	All electrical equipment classes combined (%)	Circuit breakers (%)	Motors (%)	Open wire (%)	Trans- formers (%)
Less than 12 months ago	7.4	12.5ª	8.8	O ^a	2.9 ^a
12 to 24 months ago	11.2	19.2	8.8	22.2ª	2.6ª
More than 24 months ago	36.7	77.8	44.4	38.2	36.4
Total	16.4	20.8	15.8	30.6	11.1

^aSmall sample size; less than seven failures caused by inadequate maintenance.

Agenda

- Safety and Maintenance
- Types of equipment failures
- Non-Intrusive Predictive Options
- Somewhat Intrusive Predictive Options
- Intrusive Options

Electrical Maintenance 8 Safety NFPA 70B, 70E, IEEE

NFPA 70E

Standard for Electrical Safety in the Workplace

- Electrical Arc, Flash, and Blast
- Safe work practices
- Energized Electrical Work Permit
- Minimum PPE Requirements
- Make systems electrically safe prior to work
- Mechanical controls (IR Windows)

Article 110.4 Multiemployer Relationship

States:

On multiemployer worksites (in all industry sectors), more than one employer may be responsible for hazardous conditions that violate safe work practices.

Reasons for Electrical Predictive and Preventive Maintenance

Safety

- To minimize unsafe conditions
- Avoid personnel injuries
- Reliability Centered Maintenance is directed by safety first, then economics. When determined that safety is not a factor, then preventive maintenance is justified on economic grounds. IEEE 493-2007 Section 5.5

Economics

- To avoid future and more costly equipment failures.
- To avoid premature equipment failures.
- To avoid interruption of services to production and processes.

Legal & Contracts

- Avoid legal consequences and/or to meet legislated mandates (Codes & Standards)
- To comply with insurance company requirements.

Go Green

- Avoid environmental damage
- Accomplish equipment life cycle extension.

Downtime=Money!

Einstein discovers that time is actually money.

NFPA 70B

FIGURE 4.2.6 Effect of EPM Inspection Frequency on Overall Costs.

IEEE 493-2007 5.3.2 Causes of Electrical Failure

IEEE 493-2007 5.3.2 Causes of Electrical Failure

Insulation Failures

Component

Percentage of insulation failure

Transformers	84%
Circuit Breakers	21%
Disconnect Switches	15%
Insulated Switchgear Bus	95%
Bus duct	90%
Cable	89%
Cable Joints (splices)	91%
Cable Terminations	87%

Based on IEEE Gold Book Table 36

Mechanical Failures

Mechanical Failures

Non-Invasive PdM

House Keeping

Walk Through Inspections

What You Can't See

What is Partial Discharge (PD)?

PD is a localized electrical discharge in an insulation system that does not completely bridge the electrodes Phase to Phase or Phase to Ground

What You Can't See

Partial Discharge Emission

Light
Heat
Odor (Ozone)
Sound
Electromagnetic pulse

Typical PD Types

Corona discharge
Floating discharge
Particle discharge
Void discharge
Surface discharge

PD Activity

TEV

signal

(nano

Secs)

Level I PD Detection Services

Application	Detection Bandwidth	
GISMV switchgearPower cable	TEV: 3MHz 100MHz	
Transformer	UHF: 300MHz 1500MHz	
	 AE: 20kHz 300kHz Ultrasonic:40kHz 	
	HFCT: 500kHz 50MHz	

Level I PD Detection Services

- UHF Radio Frequency
- TEV Transient Earth Voltage (capacitive)
- Ultrasonic (airborne acoustic)

Typical Retrofit Switchgear Application

Sensor Selection Guideline

RFCT – One for every cable-set (in or out)

Coupling Capacitors – One set for every 3 structures

On-Line Partial Discharge Continuous Monitoring

Transformer Oil Samples

Fig.2. Identification of Corona or Partial Discharge Problem.

1.60

C2H6

30.00

C2H2

3.30

C2H4

Slightly Invasive PdM

Thermographic Surveys

Survey Hazards

IR Windows

Short Outage PdM

IEEE 493-2007 5.3.2 Causes of Electrical Failure

- Dirt on moving parts can cause sluggishness and improper electrical equipment operations...
- Checking the mechanical operation of devices and manually or electrically operating any device that seldom operates should be standard practice.

Seldom Operated

"Traditional" Outage PM

When to Test? NETA MTS and NFPA 70B

- Monthly
 - Visual Inspections
 - Make notes regarding operating status and house keeping
- Annually
 - Thermographic Survey
 - Out of Service Maintenance
- 1-5 Years
 - Follow Manufacturer Guidelines
 - NETA Guidelines (Handouts Available)
 - Check with Insurance Carrier for additional Guidelines.

Circuit Breaker Testing

Circuit Breaker Testing

NFPA 70E Chapter 2 Safety Related Maintenance Requirements

- Qualified Persons to conduct maintenance.
- Over-current devices shall be maintained.
- House keeping, House keeping
- "Failure to properly maintain protective devices can have an adversely effect on the arc flash hazard analysis incident values."

NFPA 70E Chapter 2 Safety Related Maintenance Requirements

"Failure to properly maintain protective devices can have an adversely effect on the arc flash hazard analysis incident values."

Circuit Breaker Testing

Transformer Testing

Transformer Testing

- Insulation Resistance
- Winding Resistance
- Turns Ratio Test
- Power Factor (60Hz)
- Leakage Reactance
- On Load Tap Changer

Power Factor vs Frequency

Besides......The Moisture is All in the Paper!!

Moisture distribution

- > Moisture exchange between cellulose and oil
 - > Increasing temperature: water goes to the oil
 - > Decreasing temperature: water goes back to the cellulose
- > Most of the moisture is contained in the cellulose
- > Thus it is important to know the water content of the cellulose, not of the oil

Catch it Early or Pay Big \$'s Later

Effect: High temperature and moisture content will dramatically lower the mechanical strength of paper insulation

L. E. Lundgaard, "Aging of oil-impregnated paper in power transformers", IEEE Transactions on Power Delivery, Jan. 2004

<u> Risks:</u>

- Lower the expected life of transformer
- Run transformer at lower rating

Dielectric Frequency Response

Typical:

- Dry transformer or low temperature
 -> 0,1 mHz, 2:50 hours
- Moderate wetness / temperature -> 1 mHz, 22 min
- Wet transformer or hot temperature -> 0,1 Hz, 5 min

Transformer Tests

<u>Dielectric</u>	<u>Thermal</u>	<u>Mechanical</u>
DGA	DGA	SFRA
Oil Screen	Oil Screen	Leakage Reactance
PF/TD CAP	IR	PF/TD CAP
Exciting Ima	DC Winding RES	Exciting Ima
TTR		DC Winding RES
DFR		
Partial Discharge		

The General Curve Structure

Cable Testing

VLF Cable Testing

VLF Cable Test Results

Protective Relays and Meters

• Monthly

- Visual Inspection
- Record and Reset Targets

• Annually

- Pick up Test and Time
 Electromechanical Relays
- Verify Setting of Solid State

• 1-5 Years (Out of Service)

- Pick Up Test
- Timing Test
- Verify Operational Scheme

Protective Relays and Meters

• Monthly

- Visual Inspection
- Record and Reset Targets

• 1-5 Years (Out of Service)

- Pick Up Test
- Timing Test
- Verify Operational Scheme

No Scheduled Maintenance

Critical Chiller Goes Down! Why?

- Hospitality Facility
- Heat of Summer
- Fuse Blows
- No Spares
- Patients must be relocated.
- How many ways can we measure the cost?

Questions? Answers