2016 IEEE / MCPG meetings cycle,

Kameel Andrawos Director, Power Systems Schneider Electric

Nashville, TN

UPS Topologies

UPS Construction

- > Modular construction
- ≻Traditional with plug-in assemblies

UPS Configuration · Single Module

- Parallel with Centralized static switch
- Integrated parallel

UPS DEFINITION

• Power Protection

• Provides power back-up during power outage

Power Conditioning

- Nominal output voltage with 1% regulation (some vendors specify +/- 0.5%)
- Nominal output frequency with 0.1 Hz regulation
- Output voltage distortion (VTHD) 5% maximum

POWER PROBLEMS

• Power Problems:

- External causes (utility outages)
- Internal causes (CB trip, inrush, bus failure)

• Power Problems:

• Black-out, Brown -out, Sags, Swells, Surges, Transients, Waveform Distortion

On-Line UPS (Standard Features)

Output:

Voltage = Nominal +/- 1% Current = load current Power = rated kVA and rated kW (either parameter should not be exceeded). Power factor = load power

Battery – please refer to battery page

Current = Load current (no current limiting)

Battery Operation

UPS Walk-in Cycle

Transformerless Product

		Transform	nerless Topology		
	Double conversion (from 10 10 1500 kW)	Delta conversion (400 to 1600 kW)	6-pulse rectifier (double conversion) 300 to 500 kVA	12-pulse rectifier (double conversion) 500 to 1125 kVA	Comments
Input Transformer	NO	YES	NO	YES	 10 to 1500 kW units have no transformers. It is the true definition of "transformless" Topology.
Inverter/output Transformer	NO	NO	YES	YES	 2. Delta conversion has a Delta Transformer (this is not an input isolation transformer). 3. 6-pluse has no input transformer. It has output transformer 4. 12-pulse - True isolation transformer (DC bus is floating). It has output transformer.

Schneider Electric - Division - Name - Date

Transformerless Product

	Transformers Topology				
	Weak points	Benefits			
Input isolation Transformer:	a. Big b. Expensive c. Reduces overall efficiency	 a. Provides isolation to the DC bus (floating DC bus – protection against DC ground faults). b. Provides protection against input voltage surges c. Provides impedance isolation to limit fault current to rectifier/charger 			
Inverter/Output isolation transformer	 a. Big b. Expensive c. Reduces overall efficiency d. ECO mode (with inverter off) can not be applied to this topology. e. Concern about circulating current back to the main input source. Caused by unbalance current between modules in parallel system 	 a. Provides isolation to the load (total isolation) b. Separately derived source c. Provides protection to the inverter (reverse feed) d. Summing transformer for voltage regulation e. Eliminate circulating current caused by unbalance between module in parallel system (unbalance flows to UPS module output transformer. 			

Schneider Electric UPS

Efficiency Comparison

Modular vs. Assembly Design UPS

UPS with Plug-in assembly

Schneider Electric - Division - Name - Date

Modular UPS with Plug-in Power Modules Modular UPS with Power cabinets

Module Losses

Efficiencies

Sections	1 1,075.26	2 1,053.9	3 1,050.3	4 1,038.9	5 1,022.7	6 1,004.2	7 1,000	Output 1,000 kW
Measured Losses, KW	22.17	2.79	11.4	16.2	18.5	4.2	-	75.26
Efficiency, %, by section	98.01	99.65	98.91	98.44	98.19	99.58	99.98	93.0 (summation)
Possible solution	Remove or change to auto	Remove	No change	No change	No change	Replace with mechanical device	Remove	
Impact	No isolation between input source and DC bus	ITHD = 8% (vs. 5%)	-	-	-	Increase overlap transfer time (from UPS to bypass)	-Install in system bypass cabinet	Increase to 94.5%

Total System losses

• System losses: Ave efficiency

UPS module = 94%, STS = 98.5%, PDU = 98.5%

DC Power

- Wet Cell battery (includes 4-cell, 2cell and 1-cell jars) manufacturer:
 - C&D XTEnersys DX
 - SG: 1.215 or 1.250
 - 2-tier or 3-tier racks

- VRLA batteries (includes 6-cell jars):
 - C&D
 - Enersys (also have 16 volts battery)
 - GNB
 - Deka

- Deka -
- C&D
- Enersys
- GNB

DC Power

• Battery Parameters

• Operating temperature

- Specified protection time @ 77° F (25° C)
- Higher temperature > protection time
- Lower temperature < protection time

• Discharges

- Number of discharges
- Elevated cut-off voltage
- Protection against deep discharge

• Battery charging

- Re-charge current
- Temperature compensation
- DC ripple: less than 1%

DC Power

- Single string (applies to wet cells battery or Stackable BRLA batteries
- High A-H ratings
- Longer run time
- Higher cost (purchase and installation)

- Multiple strings -applies to VRLA batteries
- Limited A-H ratings
- Limited run time
- Cost effective

DC to DC converters

GALAXY 4000 UPS SYSTEM WITH BATTERY SINGLE LINE DIAGRAM

System Component Specs.

System Component	Cell	Module	Ra Fype G	rype S
Configuration	1S1P	8S1P	136S1P	104S1P
Dimension (mm)	125.7x173.9x45.6	414x216x163	650Wx600Dx2055H	650Wx600Dx2055H
Weight (kg)	1.88 kg	17 kg	550 kg	480 kg
Nominal Voltage (V)	3.8V	30.4V	517V	395V
Nominal Current (A)		460 /	Ą	
Operating Range (V)	2.7V – 4.2V	24.0V - 33.6V	408V – 571V	312V – 437V
Capacity (Ah)		67 A	h	
Capacity (kWh)	0.254 kWh	2.04 kWh	34.6 kWh	26.5kWh
Nominal Power (kW)	1.7 kW	13.6 kW	231 kW	177 kW

LIB Solution

LIB Requirements for UPS application

- Top safety technology
- High energy and power density: 35kWh and up to 230kW per rack
- Backup time from 5/6min to 30+min
- 15-years design life

A modular solution accommodating a wider range of needs

Solution design

Single Battery Rack

¹ BMS = Battery Management System ² SMPS = Switched-Mode Power Supply

Solution design

Multiple Battery Racks

¹ BMS = Battery Management System

² SMPS = Switched-Mode Power Supply

Runtime Table

Rack Type	# of cells/rack	SE UPS	Power	1 rack	2 racks	3 racks	4 racks	5 racks	6 racks	7 racks	8 racks
G	136	G7K	300kVA	#N/A	13.0	20.5	27.5	35.0	42.5	49.5	57.0
G	136	(PF=0.9)	400kVA	#N/A	9.5	15.0	20.5	26.0	31.5	37.0	42.5
G	136		500kVA	#N/A	#N/A	11.5	16.0	20.5	25.0	29.5	34.0
G	136		160kVA	12.5	27.0	41.0	55.0	69.0	83.0	97.0	110.0
G	136	GVM	180kVA	11.0	23.5	36.0	48.5	61.0	73.5	86.0	98.5
G	136	GVIVI	200kVA	10.0	21.0	32.5	43.5	55.0	66.0	77.5	88.5
G	136		225kVA	7.2	18.50	28.5	38.5	48.5	58.5	68.5	78.5
G	136		500kW	#N/A	#N/A	10.5	14.5	18.5	23.0	27.0	31.0
G	136	GVX	625kW	#N/A	#N/A	5.1	11.5	15.0	18.0	21.0	24.5
G	136		750kW	#N/A	#N/A	#N/A	9.50	12.0	14.5	17.5	20.0
				-							
Rack Type	# of cells/rack	SE UPS	Power	2 racks	4 racks	6 racks	8 racks	10 racks	12 racks	14 racks	16 racks
S	104		400kW	#N/A	14.0	21.5	29.0	37.0	44.5	52.5	60.0
S	104		600kW	#N/A	8.2	14.0	19.0	24.0	29.0	34.5	39.5
S	104		800kW	#N/A	#N/A	10.0	14.0	17.5	21.5	25.5	29.0
S	104	SyMW	1000kW	#N/A	#N/A	1.5	10.5	14.0	17.0	20.0	23.0
S	104		1200kW	#N/A	#N/A	#N/A	8.2	11.0	14.0	16.5	19.0
S	104		1400kW	#N/A	#N/A	#N/A	#N/A	9.6	11.5	14.0	16.0
S	104		1600kW	#N/A	#N/A	#N/A	#N/A	4.6	10.0	12.0	14.0

Runtimes are subject to tolerances (+/- 5%) and may vary

S* : Only half of rack type S is filled

Parallel Systems

	Centralize	ed vs. IP	
	Centralized	Integrated parallel	Comments
Foot print	Requires System level Static switch, control cabinet, bypass CB and UOB (UPS inverters output breaker).	SBC (System Bypass Cabinet) about half the size.	IP configuration are in more demand. Every UPS vendor offers this configuration.
Cost	Reduction in price for static switch, bypass CB, and SSC cabinet.		Although considered "poor man" topology, the IP has benefits on cost and footprint
	A slight increase in input switchgear if dual input per module is utilized (highly recommended).		
Operation	Standard parallel system	Standard parallel system	
	Transfer to & from bypass from centralized location	Transfer to & from bypass from centralized location	
	Transfer to bypass requires the firing on system level static switch.	Transfer to bypass requires the firing of all modules static switch	
	No concerns about current sharing while on bypass	While on bypass, paralleling static switches. Cable impedance is a major point for current sharing.	Cable run and cable management is very important point to consider during installation.
Fault current capabilities	Superior since the system level static switch (and bypass CB) are 100% rated for the full system ratings.	Very limited. Fault current does not share so the entire fault will flow through single module static switch.	Major point and very weak point for IP. No one wants to talk about this unless you want to sell centralized static switch.

Centralized Static Switch Design

- UPS modules are based on parallel configuration
- Separate bypass cabinet that includes bypass CB, system level static switch, modules output isolation circuit breakers and maintenance bypass
- SSC is rated based on system ratings (capacity and/or redundancy)

Integrated Parallel Design

- UPS modules are based on "single module" configuration
- Each UPS module has its own internal static bypass switch
- SBC is rated based on system ratings (capacity and/or redundancy)

System Configuration

• Parallel for Capacity and/or Redundancy

System Configuration

• Parallel for Capacity and/or Redundancy 2 (N+1)

Each System supports 500KVA

System Configuration

EConversion

The best of double conversion and Eco mode

ECOnversion Mode

How does it Work?

Static Bypass Components

Backfeed protective device

• Required by UL

Static Switch

- provides "uninterrupted transfer" between utility and inverter
- provides voltage reference for inverter
- Types

momentary

continuous

Static Switch

Main Static switch consists of anti-parallel connected SCR

SCR 1 is conducting the current for the "positive" half cycle. The SCR cannot conduct current in the opposite direction - it works as a diode.

SCR 1 is conducting the current for the "negative" half cycle. The SCR cannot conduct current in the opposite direction - it works as a diode.

Static Switch Design

100% rated for Momentary duty

Advantages: •Less expensive •Smaller footprint

Disadvantages •Less Reliability 100% rated for Continuous duty

Advantages: •Higher Reliability •Better performance • Standard Feature for Schneider

Disadvantages •More expensive •Larger footprint 100% rated for continuous duty with bypass CB

Advantages: •Much Higher Reliability (redundant bypass) •Better performance

• Typical for parallel system with centralized static switch

Disadvantages •Much more expensive •Larger footprint

Static Switch Semiconductors

	Static Switch		
	Brick Type	Hockey Puck	Comments
Cost	 Less expensive device Less expensive to manufacture Easy to assemble 	 More expensive device More expensive to manufacture the assembly Harder to assemble (very specific torque requirements and assembly procedure) 	
Operation	Same switching speed	Same gating and firing controls	Same efficiency
Fault capabilities	 Harder to cool (single sided heat sink) Much higher chances to rupture under fault condition. Fails in open circuit position 	 Heat sink assembly is structured by sandwiching the SCR between two layers of heat sink switch clamped down with high pressure. Almost impossible to rupture under fault condition. Fails in short circuit position 	Hockey puck SCR are widely used in high- high power application. The construction of the assembly creates rugged structure that can sustain high surge current, and it also provides excellent cooling that makes it suitable for higher current applications.

Grounded Input Source

- Input Power source is grounded. The midpoint (neutral) is reference to ground.
- This is applicable to 480 or 600 Volts system.
- This is also applies to 208 and 400 volts system.

HRG – High Resistance Grounded Source

- The Input Source is Grounded through a resistor (current limiting device)
- This is applicable to 480 and 600 volts system only.
- The resistor value is determined based on the ground current fault (typically it is set between 10 to 50 amps).
- The system is provided with current and voltage monitoring for indication.
- Under normal operation the current is zero.

INPUT	
SOURCE	

Rectifier/Charger with Grounded input Source

- Input source is grounded.
- No galvanic isolation between the Input source and the DC bus (the battery).
- Battery mid-point is reference to zero (50% voltage from zero to + and 50% from zero to -).
- Ground fault on the DC bus will cause fault and shut down.

Rectifier/Charger with input Isolation Transformer

- Input source is grounded.
- UPS Input isolation transformer provides galvanic isolation between the source and the DC bus (the battery).
- Battery system is floating no reference to ground.
- Ground fault on the DC bus will cause an alarm but NOT a shut down.

12-pulse Rectifier/Charger

- Input source is grounded.
- UPS Input isolation transformer provides galvanic isolation between the source and the DC bus (the battery).
- Battery system is floating no reference to ground.
- Ground fault on the DC bus will cause an alarm but NOT a shut down.

Single module with Grounded Output

- UPS Inverter output neutral is grounded
- AC ground fault on the load will cause UPS shut down (short circuit condition).

Single Module with HRG output

- UPS Inverter output neutral is HRG
- AC ground fault on the load will cause an alarm but the UPS module will continue to function and support the load (no shut down).

Parallel System with Grounded Source & UPS Output

- UPS Inverter output neutral are connected together in the system bypass cabinet
- The neutral is grounded in the system bypass cabinet.
- AC ground fault on the load will cause UPS module shut down (short circuit condition).

Parallel System with HRG Source & HRG UPS Output

- UPS Inverter output neutral are connected together in the system bypass cabinet
- The neutral is HRG in the system bypass cabinet.
- Each UPS module output Neutral is isolated through contactor.
- AC ground fault on the load will cause UPS module shut down (short circuit condition).

Market Requirements

- Voltage requirements (for 60 Hz and 3-phase application):
 - 208, 400/415, 480 and 575/600 Volts
- System configuration:
 - Single module
 - Isolated redundant
 - Parallel for capacity and/or redundancy with centralized/system level static switch
 - Parallel for capacity and/or redundancy in Integrated Parallel
- System application:
 - 3-Phase, 3-wire
 - 3-Phase, 4-wire
 - HRG (High Resistance Ground) Input source (utility and/or generator) and/or output.
 - Flywheel application

Power Distribution Basics

480 Or 575/600 VAC

Or

PDU STANDARD FEATURES

- 30 kVA 300 kVA (and 500 kVA)
- 208/480/600V input
- 208/120V or 400/230 V output
- Two (2) or up to 6 x 42 pole panelboards with main breakers.
- K rated isolation transformer
- 200% rated neutral bus
- Local EPO
- Front facing
- Front access
- Bottom or top cable entry

PMM TOPOLOGY

PMM TOPOLOGY

4 x 225A DISTRIBUTION BREAKERS

REMOTE Power Panels (RPP)

- 208 or 400 V 3-phase, 4-wire input
- 208/120V or 400/230 V output
- 2 or 4 x 42 pole panelboards
- Panelboard main circuit breaker
- Fed via distribution breakers on the PDU.
- Bottom or top cable entry

RPP TOPOLOGY

PDU MONITORING

Features:

- ã Monitors input and/or output
- ã Dry contact alarm output
- ã Alarm log
- ã IR port for downloading to Palm Pilot
- ã RS485 serial output
- ã True rms metering
- ã Nonvolatile Memory
- ã Min/Max reading of values for real time readings
- ã Set-Point controlled alarm & relay functions
- ã Modbus Protocol
- ã Password protected

Options:

- ă Main input breaker current monitoring
- a Panelboard main breaker current monitoring
- ã Branch circuit current monitoring
- ã Mainframe breaker current monitoring
- ã Web enabled (EGX option)

BRANCH CIRCUIT CURRENT MONITORING

- Available as field retrofit
- Monitors current on all individual panelboard branch circuits
- Each circuit will alarm at customizable (programmable) thresholds
 - High current warning
 - Very high current / trip threshold warning
- Currents for each breaker can be viewed on:
 - MCM Display
 - Downloaded to PDA via MCM IR port
 - Output to the local RS485 serial port (up to 63 panel- boards can be daisy chained)

FLOOR STANDS & SEISMIC BRACING

- Floor stands to elevate the PDU/RPP to the height of the raised floor (12" or 18")
- Seismic certified bracing secures the PDU/RPP

Questions

