

Energy Management | Energy Automation

IEC 61850 – Communications

Overview of Topics

- IEC 61850
- Communications
- Advanced Applications
 - Load Shedding
 - Automatic Generation Control

Overview of Topics

• IEC 61850

- Communications
- Advanced Applications
 - Load Shedding
 - Automatic Generation Control

Communications Protocols

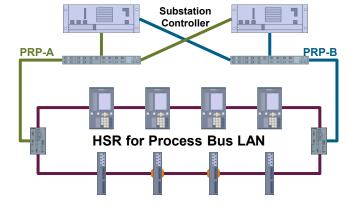
Modbus®

Restricted © Siemens AG 2013 All rights reserved.

IEC 60870

IEC 61850 Applications

+	Power Management Systems – Fast Power Based Load Shedding
+	Automatic Transfer Schemes
+	Inter-tripping / Interlocking Schemes
+	Zone Selective Interlocking (ZSI)
+	Breaker Failure Schemes
+	Data Concentrator
+	Direct IED to HMI Connection
+	Digital Substations


The IEC 61850 Standard in Brief

•IEC 61850 provides a framework to describe all automation and protection functions of a substation or electrical system:

 Standardized language categorized with extensive naming convention based off the electrical system

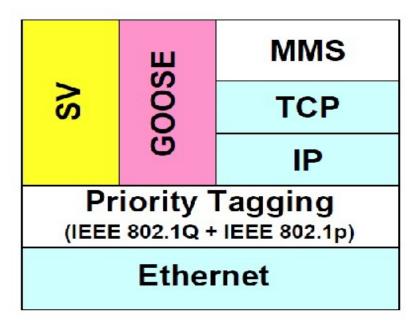
 Standardized Engineering based on vendorindependent function descriptions

- Use devices from different vendors
- Re-use engineering in the future
- Ethernet-based communications
- Interoperability between different vendors
- Non-hardwired inter-device communication providing protection functions & coordination

What Is IEC 61850?

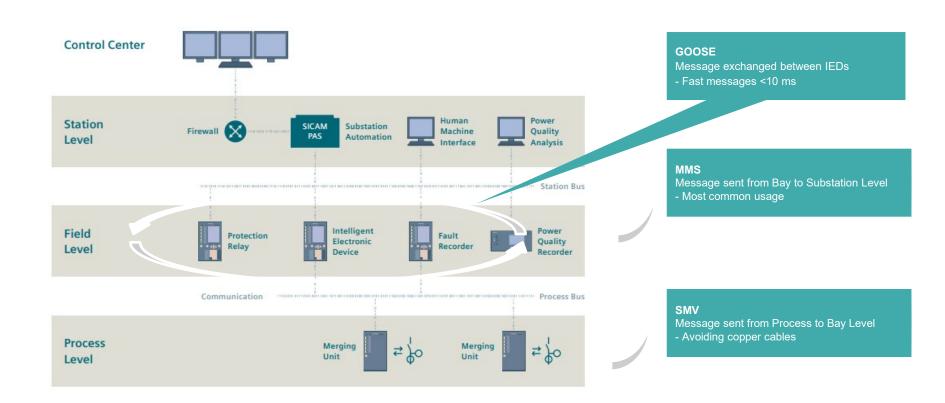
The core idea is a description language, that completely describes the data structure and functionality of a substation information system in a standardized manner.

Three Communications Protocols are based on this standard.

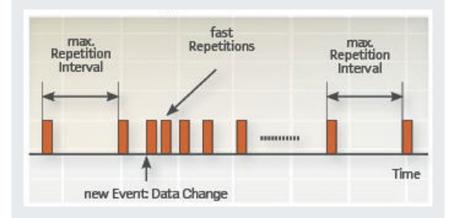

L	D LD	0
B	- LN	LLN0
	LN	LPHD1
	LN	CSWI1
	LN	EQU_GGIO1
	LN	S80RI_GGIO1
	LN	S80CT_GGIO1
		S80RC_GGIO1
	LN	S80RC_GGIO2
	LN	M120_GGIO1
	LN	M120_GGIO2
	LN	M120_GGIO3
	LN	GSE_GGIO1
	LN	MHAN1
	LN	MMTR1
		MMTR2
	LN	MMXU1
	LN	MSQI1
	LN	MSTA1
	I N	RBRF1
		RDRE1
	LN	
	LN	RDRE1
	LN LN LN	RDRE1 CTX_RDRE2 DLG_RDRE3 RREC1
	LN LN LN LN	RDRE1 CTX_RDRE2 DLG_RDRE3 RREC1 RSYN1
	LN LN LN LN	RDRE1 CTX_RDRE2 DLG_RDRE3 RREC1
	LN LN LN LN LN LN	RDRE1 CTX_RDRE2 DLG_RDRE3 RREC1 RSYN1 XCBR1 PTRC1
	LN LN LN LN LN LN LN	RDRE1 CTX_RDRE2 DLG_RDRE3 RREC1 RSYN1 XCBR1 PTRC1 A27_PTUV1
	LN LN LN LN LN LN LN	RDRE1 CTX_RDRE2 DLG_RDRE3 RREC1 RSYN1 XCBR1 PTRC1
	LN LN LN LN LN LN LN LN LN	RDRE1 CTX_RDRE2 DLG_RDRE3 RREC1 RSYN1 XCBR1 PTRC1 A27_PTUV1 A27_PTUV2 A27_PTUV3
		RDRE1 CTX_RDRE2 DLG_RDRE3 RREC1 RSYN1 XCBR1 PTRC1 A27_PTUV1 A27_PTUV2

Properties							
Logical Node : N	IMXU1						
inst	inst			1			
desc	Measurements						
InClass		MMXU					
InType	MMXU_E2						
Logical Node E) e te ile						
Name	Value	Description	FC	Flags			
+ TotW	value	Description	rC	riays			
Totvv TotVAr							
+ TotVAr + TotVA							
TotPF							
+ Hz							
+ PPV							
PhV							
- phsA							
+ cVal			MX	dchg			
- q		MX	qchg				
- t		MX					
+ units			CF				
- db	50	unit: 0.1A	CF				
dbAng	5	unit: 1°	CF				
phsB logical Node MMXU: M	assuramor	t (3 phaese)					

IEC61850 Protocols


- Three IEC61850 Protocols
 - MMS (Manufacturing Message Specification)
 - GOOSE (Generic Object oriented Substation Event)
 - SV (Sampled Values)

IEC-61850 Communication Stack


IEC 61850 Messages

GOOSE mechanism

GOOSE repetition mechanism

Does GOOSE arrive?

Non deterministic service, backed up by:

- Constant repetition or updating
- Redundancy in LAN and relaying architecture
- Monitoring and alarming by subscriber IEDs that fail to receive publisher's message stream.

GOOSE is like a virtual wire but...

...wires cannot monitor themselves like GOOSE.

... faster implementation of additional signals.

GOOSE - Arc Flash Reduction – Virtual main

Location	Arcing Fault Current,	Arc Duration.	Arc Flash Incident	Hazard Level,
	kA	seconds	Energy, Cal/cm ²	NFPA 70E Category
LV SUB 1	8.68	2	36	4
LV SUB 2	14.25	2	62	>4
LV SUB 3	19.77	2	88	>4
-				

Table 1: Arc Flash Hazard Analysis Results, No Virtual Main Relays

Table 5: Arc Flash Hazard Analysis Results with Virtual Main Relays

Location	Arcing Fault Current, kA	Arc Duration, seconds	Arc Flash Incident Energy, Cal/cm ²	Hazard Level, NFPA 70E Category
LV SUB 1	8.68	0.183	3.3	1
LV SUB 2	14.25	0.183	5.7	2
LV SUB 3	19.77	0.183	8.1	3

Texas Power Plant worker

The operator, in addition to wearing a full-body flash suit while racking the breaker, did everything that National Fire Protection Association (NFPA) and Occupational Safety and Health Administration (OSHA) regulations required. Although the suit provided some protection, it did not save the operator's life. The moral of this story: If the arc flash burn doesn't get you, the high-energy blast effects will. Entergy learned the lesson quickly;

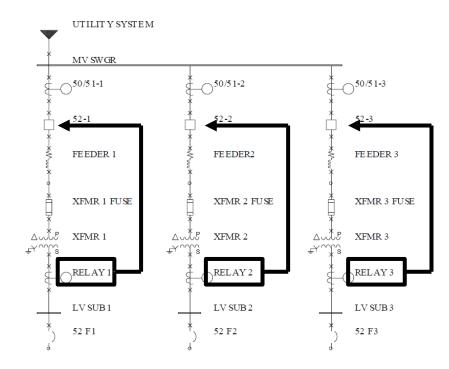
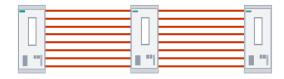


Figure 5: Test system for arc flash hazard calculations

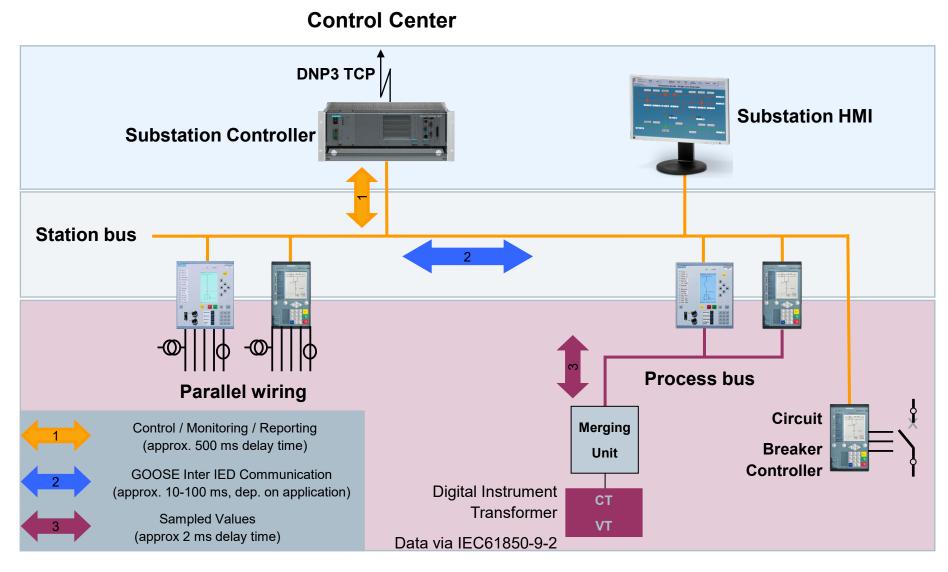


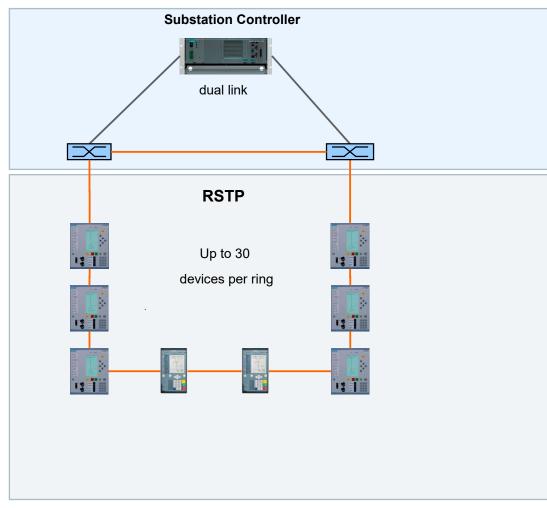
- Reduction of wiring and hardware
- Eliminates need for protocol converters
- Full communications redundancy
 with fewer switches
- Process bus
- System file exchange

Conventional Wiring

Wiring with IEC 61850

]			
"	1.	1	

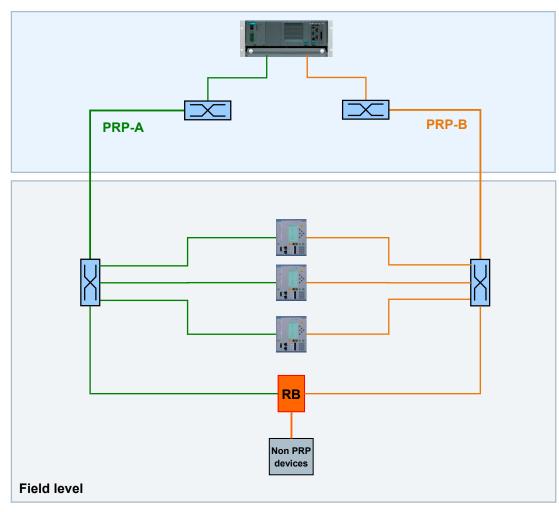

Overview of Topics

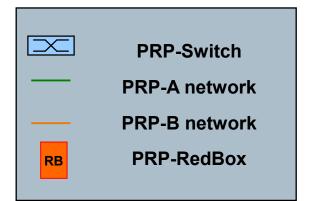

- IEC 61850
- Communications
- Advanced Applications
 - Load Shedding
 - Automatic Generation Control

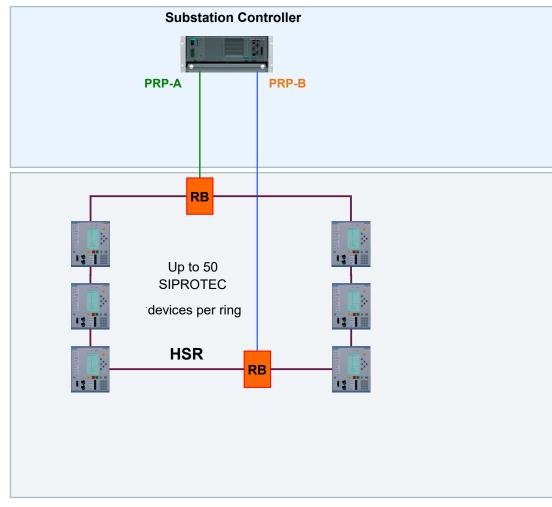
IEC 61850 communication

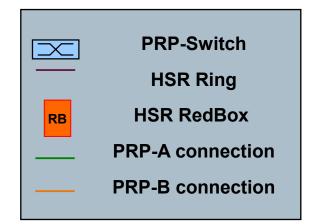
Principle of RSTP- IEEE 802.1D-2004

- 2 external RSTP-Switches
- Devices with integrated RSTP switch


- Rings with up to 30 devices
- Several rings can be connected to external switches
- Setting of RSTP parameters necessary
- → Well established technology (> 250.000 devices)
- \rightarrow Field proven interoperability


Restricted $\ensuremath{\mathbb{C}}$ Siemens AG 2013 All rights reserved.


Principle of PRP - IEC 62439-3.4

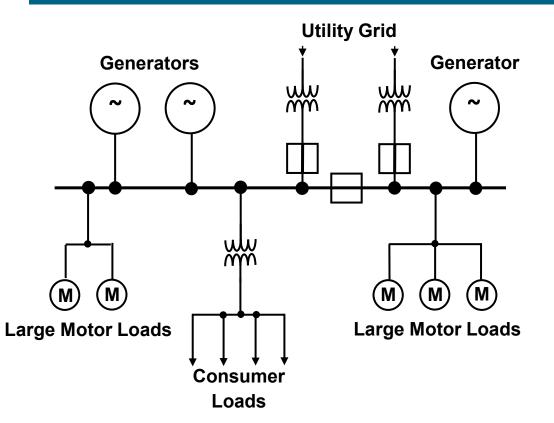

- Two parallel networks
- Device are connected to network PRP-A and PRP-B
- Devices send and receive via both active links
- RedBox for connection of non PRP devices
- Seamless
- \rightarrow Interoperability tests done

Principle of HSR - IEC 62439-3.5

- 2 Redboxes
- Devices with integrated HSR switch
- Rings with up to 50 devices
- Redboxes distributed in the ring
- Seamless
- \rightarrow Interoperability tests done

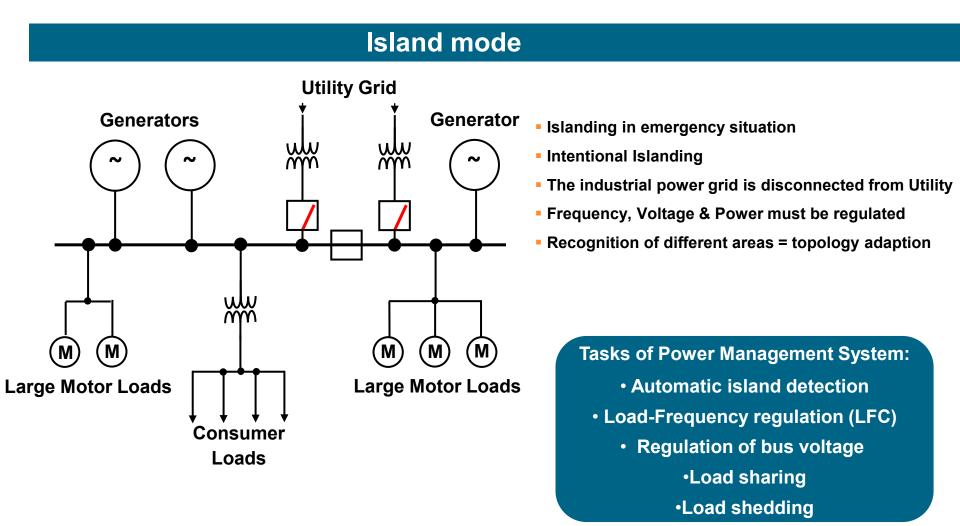

Overview of Topics

- IEC 61850
- Communications
- Advanced Applications
 - Load Shedding
 - Automatic Generation Control


Power Management Systems in Industrial Applications

Operating modes

Interconnected mode

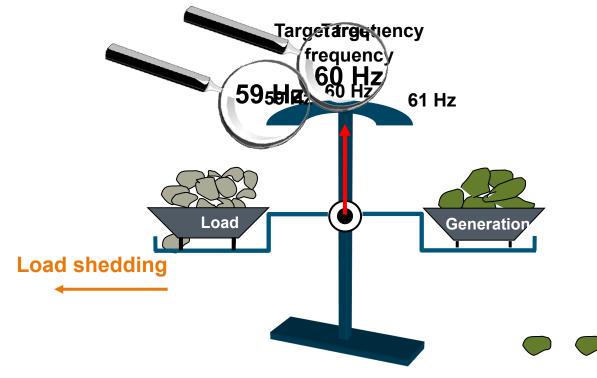

- Most frequently used operation mode
- The industrial power grid is connected to Utility
- The utility grid is leading the frequency
- Load Frequency Control (LFC) <u>not</u> necessary
- Energy import or export
- Contracts between Customer & Utility

Tasks of Power Management System: •Regulation of import/export power

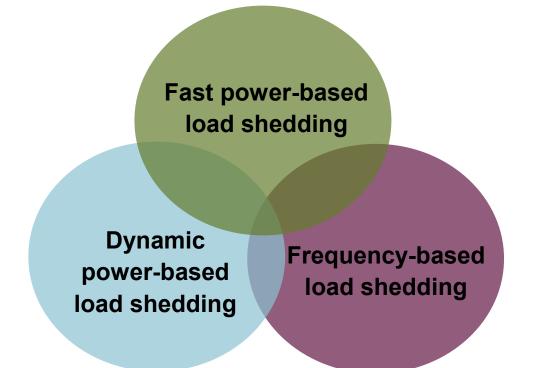
- Regulation of power factor
- Regulation of bus voltage
 - Load sharing
 - Load shedding

Operating modes

Overview of Topics


- IEC 61850
- Communications
- Advanced Applications
 - Load Shedding
 - Automatic Generation Control

What is Load shedding?

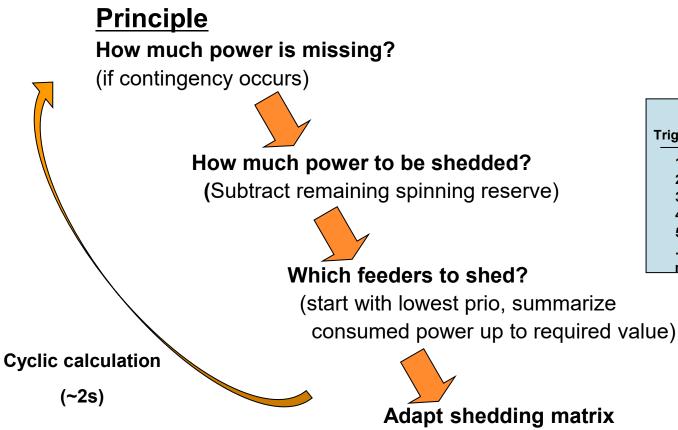

Definition

Load shedding defines <u>automatic trip</u> of <u>selected</u> consumer loads, to ensure <u>stability</u> of a defined grid in situations of insufficient energy supply.

Best performance and availability by combining all principles

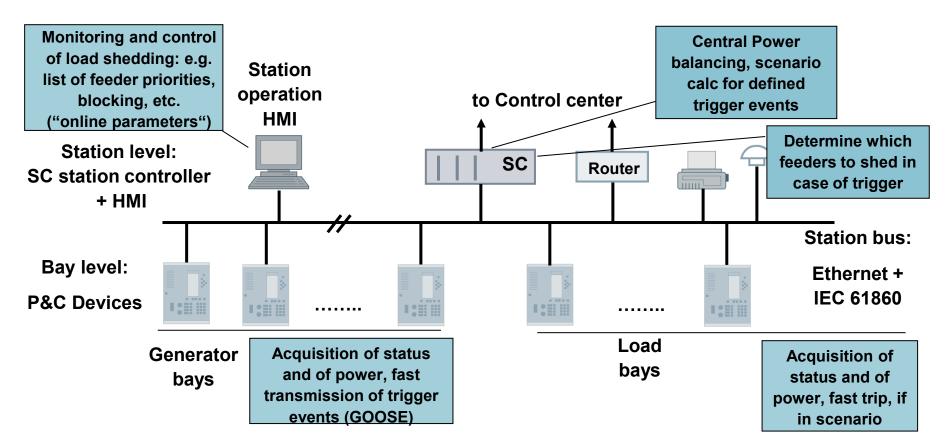
Fast power-based load shedding:

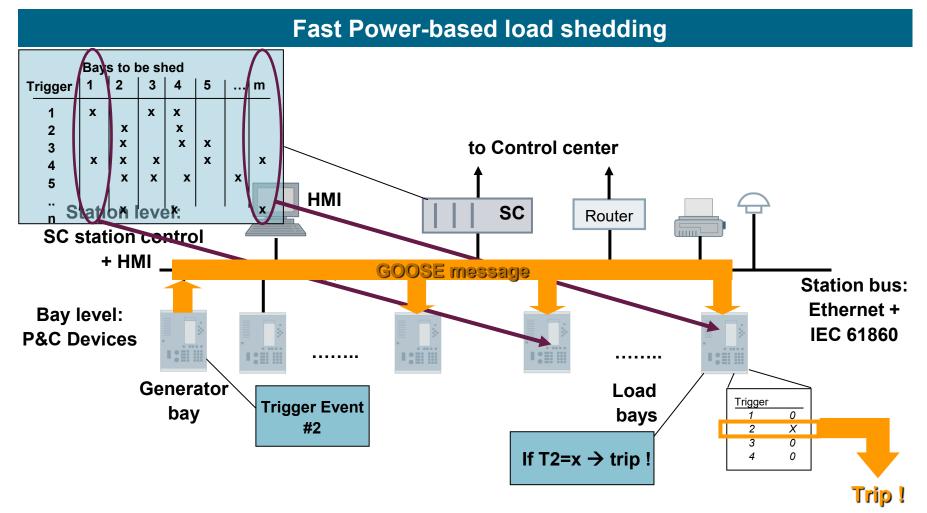
Calculates continuously balance of


- Generated power
- Consumed power

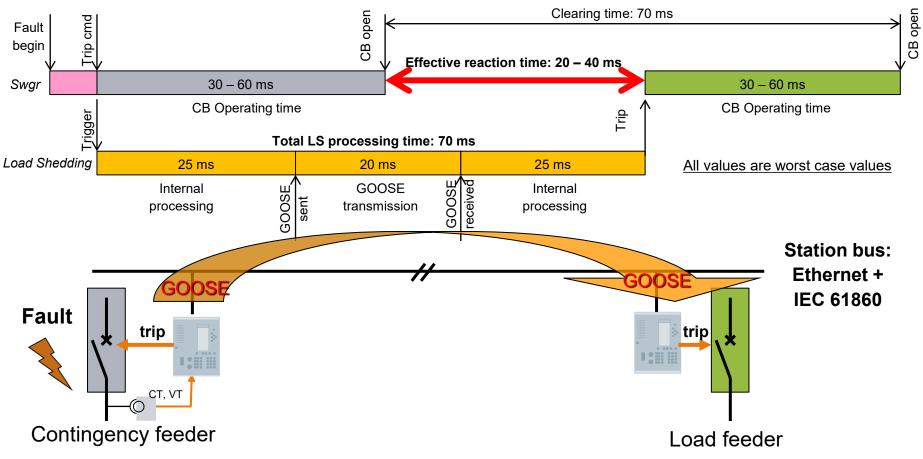
For each critical event a shedding scenario is precalculated, e.g.:

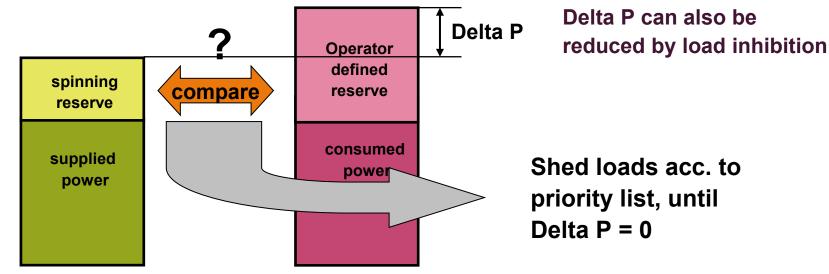
- 1. "If generator 2 would trip now, how much power is to be shed?"
 - 2. "which bays to shed?" according to priority and power.
 - 3. Adaption of shedding-matrix in the bay units.


Fast power-based load shedding:


Bays to be shed Trigger 2 3 4 5 1 ...|m Х x Х 1 2 Х Х Х Х Х 3 Х 4 Х Х X Х Х Х Х Х 5 •• Х х Х n

Fast Power-based load shedding




Dynamic power-based Load Shedding

Goal: Maintain balance of power during stable island operation:

Supervision of Spinning Reserve

i.e. difference between current generated Power and

max. possible Power to be generated.

Frequency-based Load-Shedding

f_n

f _{lim1}

f lim2

uses predefined table, with loads to shed:

- in case of f < f_{lim1}
- in case of f < f_{lim2}
- in case of f < f_{lim3}
- in case of f < f_{lim4}

Load-table is based on grid-constant

for $\Delta P / \Delta f$, and the calculated P,

Shed 1 Shed 2

which is the equivalent of f_{lim}

Shed 1 Shed

The load – tables can easily be monitored and/or

adapted on the HMI of the control and protection system.

Summary

Features

Use of IEC 61860
Fast GOOSE comm.
Integration in SAS
Decentral configuration
Combined LS-functions: Fast / Dynamic / f-based
Predictive fast LS
One joint HMI

Advantages

Use of bay units -> reduction of devices
Reduction of wiring
Self supervised comms
Graphic definition of topology

Benefits

P-based LS sheds very accurate
Very fast LS
Autom. calc of topology
Future-proof by IEC61860
Economic solution: integration in SAS
Very high availability: redundant controller
+ backup LS

Improve reliability of energy supply

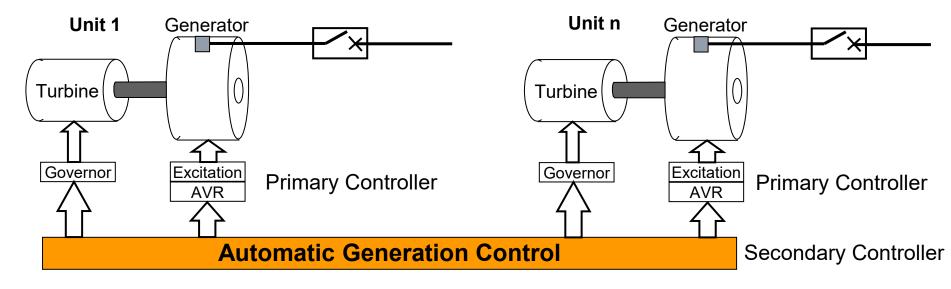
Overview of Topics

- IEC 61850
- Communications
- Advanced Applications
 - Load Shedding
 - Automatic Generation Control

Generation Control in industry grids

Automatic Generation Control is designed for:

- electric power grids in industry with own generation
- multiple generator units in one grid
- for steam- / gas- / diesel turbines
- industry grids with several areas / islands
- usually combined with load shedding function

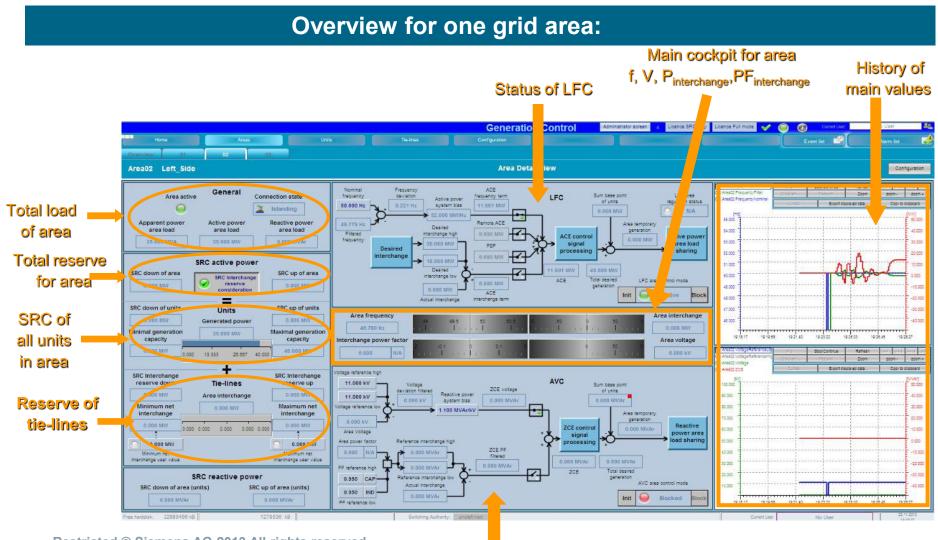


Generation Control in industry grids

Generator sets are equipped with primary controllers for:

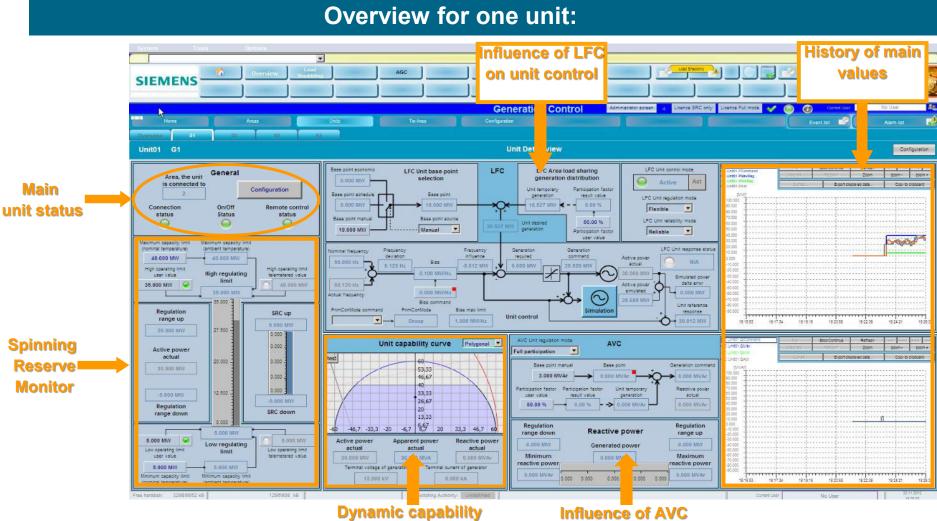
- frequency/active power control
- voltage/reactive power control

Multiple generator sets need <u>coordination</u>

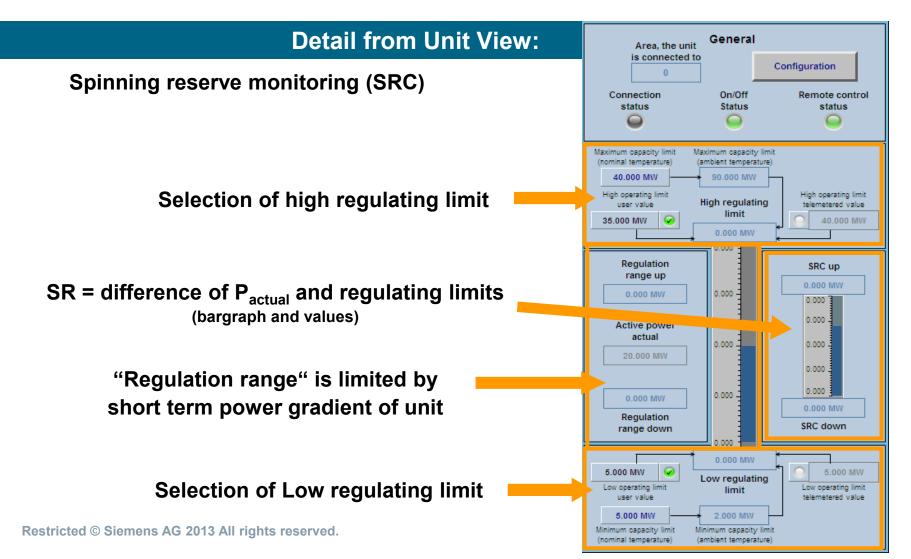

Generation Control in industry grids

Automatic Generation Control is necessary to:

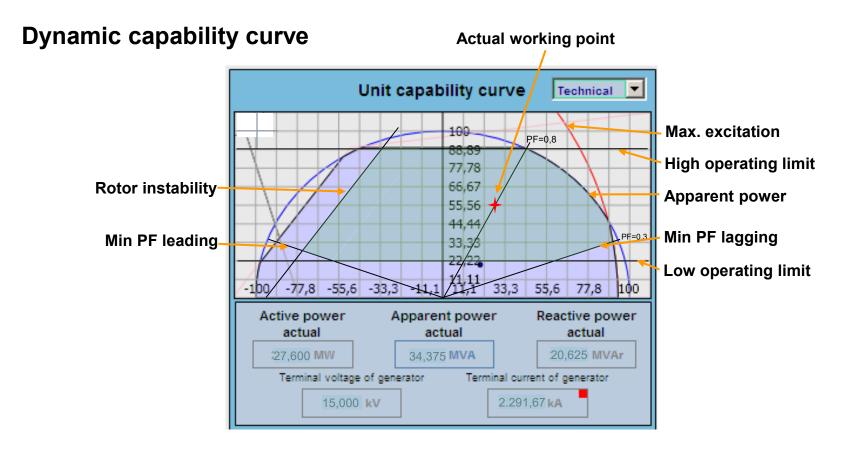
- keep system frequency and voltage in a specified range
- maintain intended value of <u>interchange at Utility Connection</u>
- share total generated power between assigned generators



Restricted © Siemens AG 2013 All rights reserved.


Status of AVC

Restricted © Siemens AG 2013 All rights Genve with working point


Influence of AVC on unit control

SIEMENS

Detail from Unit View:

Energy Management | Energy Automation

Thank You!

Load Shedding System HMI Screens

Load List – Priority Setting, etc.										
System Tools	Options	•		P N	IS Demo	_				
		Load AGC						1		2 PISICAM 230
ENEAS PMS	Overview	heddding								SICAM 230
Start picture	Load list	Source list	Areas	<u>b</u> .					7 3 Current Us	Exit LoadShedding: 🐼
Consumer	Priority RV SV	Status	Active Power	Active Power Peak	Manual LS Trip delay	Area	Frequency LS	СВ		
52-SG-001 F03 LOAD 01	2 0		2.0 MW / 0.00 MW 0.00 MW	0.00 MW 0.00 MW	0 s 0 s	0		•		
52-SG-001 F04 LOAD 01	RV SV		metered RV SV 3.0 MW / 0.00 MW 0.00 MW	RV SV 0.00 MW 0.00 MW	RV SV 0 s 0 s	0 St		.		
0 52-SG-001 F05 LOAD 01	RV SV 7 0		metered RV SV 2.0 MW 0.00 MW 0.00 MW	RV SV 0.00 MW 0.00 MW	RV SV 0 s 0 s	0 St	age 1 2 3 4 OFF	.		
0 52-SG-001	RV SV 1 0		metered RV SV 4.0 MW / 0.00 MW 0.00 MW	RV SV 0.00 MW 0.00 MW	RV SV 0 s 0 s	0 St				
F06 LOAD 01	RV SV 3 0		metered RV SV 3.0 MW / 0.00 MW 0.00 MW	RV SV	RV SV 0 s 0 s	0 St	age 1 2 3 4 OFF			
F07 LOAD 01	RV SV 9 0		metered RV SV 0.0 MW / 0.00 MW 0.00 MW	RV SV	RV SV 0 s 0 s	0 St	age 1 2 3 4 OFF			
F08 LOAD 01	RV SV		metered RV SV	RV SV	RV SV	0 St	age 1 2 3 4 OFF	 ~		
F09 LOAD 01	10 0 RV SV	N T R B U I L	6.0 MW / 0.00 MW 0.00 MW metered RV SV	RV SV	0 s 0 s RV SV		age 1 2 3 4 OFF			
F10 LOAD 01	11 0 RV SV		0.0 MW / 0.00 MW 0.00 MW metered RV SV	0.00 MW 0.00 MW RV SV	0 s 0 s RV SV	St	age 1 2 3 4 OFF			
52-SG-001 F11 LOAD 01	4 0 RV SV		6.0 MW / 0.00 MW 0.00 MW	0.00 MW 0.00 MW	0 s 0 s RV SV	0 	age 1 2 3 4 OFF	•		
52-SG-001 F12 LOAD 01	6 0		3.0 MW / 0.00 MW 0.00 MW		0 s 0 s RV SV	0	age 1 2 3 4 OFF			
52-SG-001 F14 LOAD 01	RV SV		3.0 MW / 0.00 MW 0.00 MW	0.00 MW 0.00 MW	0 s 0 s	0	$\bigcirc \bigcirc $	•		
52-SG-001 F16 LOAD 01	RV SV		metered RV SV 6.0 MW / 0.00 MW 0.00 MW		RV SV 0 s 0 s	0	rage 1 2 3 4 OFF	.		
52-SG-007 M1 LOAD 01	RV SV 13 0		metered RV SV 5.0 MW / 0.00 MW 0.00 MW	RV SV 0.00 MW 0.00 MW	RV SV 0 s 0 s	0 St	age 1 2 3 4 OFF	9 <mark></mark>		
52-SG-007 M2 LOAD 01	RV SV		metered RV SV 3.0 MW / 0.00 MW 0.00 MW	RV SV 0.00 MW 0.00 MW	RV SV 0 s 0 s	0 St		•		
Priorities for F	-ast Statu	us of					es for frequer			
Power based		- meas	ured P:		ba	ased	Loadshedding	9		
Loadshedding	Load	10(0)		stitute						8
	(See H	eip)	Valu	e for						
			P		0.1/201					
Free harddisk: 7128916 kB	1092048 kE	3	Switching Authority:		Sort [F2]				Current User Operator	14.11.2013

Load Shedding System HMI Screens

Possible contingencies	<i>Currently active and Reactive power</i>	Biggest priority tripped in case Contingency occurs	Area#, the contingency is belonging to
	Tripped power case contingen occurs		by the

Free harddisk: 7128916 kB	1113460 kB	Switching Authority:	Current Control Contro	nt User Operator	14.11.2013
Flee Hardulsk. 7120910 KB	1113400 KB	Switching Automy.	Curr	operator	14:17:25

Presentations will be Posted on IEEE Central TN Website

https://ewh.ieee.org/r3/nashville

(Address is also in the WebEx Link Email)

54