IEEE Presentation 12KV Distribution Automation

Austin Walker, PE

12 kV DA Equipment

Reclosers: ~1200

Automation controllers: ~55

Automated Switchgears: ~30

12 kV line recloser

EPB "XY" Orientation

Source is on the "X" side of the recloser.

EPB "YX" Orientation

Source is on the "Y" side of the recloser.

Protection and Switching

- Switching SCADA control
 - Open or close protection device
 - Open or close switch remotely
- Protection
 - Trip = automatic open to clear fault
 - Reclose: automatic close, attempt to energize
 - Traditional circuit breaker
 - Pulse close

Pulseclosing Technology

1. Test to see if the line is still faulted

- 2. Don't stress or damage the power system equipment
- 3. Don't cause voltage sags for upstream customers

www.sandc.com

EPRI / IREQ Pulse test Let through energy

Figure 4. The pulse is a minor loop of fault current. Only the first minor loop of current (shaded area) is allowed to flow.

Figure 5. Relative let-through energy for a typical 5000 ampere fault.

APPLICATIONS ASSESSMENT OF PULSE CLOSING TECHNOLOGY

A Joint Project of the Electric Power Research Institute and Hydro-Quebec

Let Through Energy (LTE)

- Measure of stresses on electric assets
 - Conductors, splices, jumpers, transformers, protective devices
- Energy (joules) = I² x R x t
- LTE (amps squared seconds) = $I^2 \times t$
- Which fault has higher LTE?
 - 2,500 amps for 25 cycles
 - 3,500 amps for 12 cycles

Service Restored – unfaulted sections

Devices not in automatic restoration model

- Restoration model has limitations on the number of devices included in one model.

- This necessitates that system is broken into different restoration groups.

Devices not in automatic restoration model

- TIE that merges two restoration models.
 - Exceeds 128 limit

Coordination

- Utilize tolerance performance bands to coordinate devices instead of CTI
- Consider fixed-time error, clearing time, overtravel (EM), etc.

Outdoor Station 12 kV Coordination

46 kV coordination

Mis-Coordination Problem

- Wrong device(s) trips

Mis-Coordination Example (animation)

Mis-Coordination How CEC can solve this problem

recloser detects fault

- Send CEC shift message to source recloser
- If CEC message is received, shift to a slower curve
 - If no CEC message AND fault is present, then this device is closest to the fault
 - Trip on normal TCC curve

Mis-Coordination How CEC can solve this problem

Common Fault Type

Permanent

- Momentary device trips (transient fault)
 - Typical transient causes
 Conductor slap
 Animal contact
 Tree falls clear
 Vegetation contact
- Returning faults
 - Conductor slap
 - unknown

Recloser test configurations

- Hard Close (no pulse)
- Pulse Test no fault detected
- Pulse Test fault detected
- Pulse Inrush Test (inverse pulse)
- Pulse Analysis Sequence flow diagram
- Pulses reveal line conditions

Flow Diagram: one phase pulse

Pulse Analysis Sequence Flow Diagram

Traditional CLOSE: Conventional Circuit Breaker (CB)

Needs a way to mimic CB

12 kV recloser ("Hard Close" = no pulse)

Pulse Testing – no fault detected

Pulse test: L-G fault detected

Pulse test: L-L detected

L-G Fault: Reclose#1 Inverted Pulse

ep.

The Two-Phase Case

W6026 TYN201-D1LV31; v13.1-C.F23map04T3; ····; 7345 COURAGE WAY OTHEI Tue - 22/09/2015 14:24:31.570802 Delta X: 3.164 secs (189.883 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta Y: No Bars

No Fault but Delta Response

W6026 TYN201-D1LV31; v13.1-C.F23map04T3; ····; 7345 COURAGE WAY OTHEI Tue - 22/09/2015 14:24:31.570802 Delta X: 3.164 secs (189.883 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta Y: No Bars

1 pulse but 3 responses

W6026 TYN201-D1LV31; v13.1-C.F23map04T3; ----; 7345 COURAGE WAY OTHEI Tue - 22/09/2015 14:24:28.195917 Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.875 cyc @ 60.00 hz) fs: 3846.154 Hz AS: Units Delta X: 2.197 secs (131.8

but 3 responses pulse

D31051 BIG201-D3LV-1; v13.1AH.K33map04T3; ---; 4714 GANN STORE RD C Fri - 15/01/2016 14:38:56.722500 Delta X: 144.271 ms (8.656 c

Return Source

L-L Fault on Main Line

Dev#3 (green line recloser) clears fault 4 distinct waveform patterns captured by 5 devices

Difficult to align time in your mind

Same L-L Fault, Simple Case

Aggregation Benefits

- common time line
- sensors in "AFC" descending order
- easy to see time gaps
- see in seconds what many sensors recorded, this example
 - 27 voltage sensors
 - 15 current sensors
 - 5 comtrade files

Old Problem: Labor = 5 hours

Tools - Grid Protection Alliance

- Includes oscillography from substation breakers and line reclosers.

Tools - Grid Protection Alliance

- Overview of oscillography available throughout a time range.

Record Lin All Search Le Circuit	mits:														
All Search Le Circuit					Start Date:	Start Date:									
Search Le Circuit		All				09/01/2024 00:00 Time Context:									
Circuit	Search Levels: Circuit				Time Context:										
					Days	Days 🗸									
System Filter:				Number of Bucket	Number of Buckets:										
×					7	7									
< Step <	Nudge	Device	09/01/2024	09/02/2024	09/03/2024	09/04/2024	09/05/2024	09/05/2024	09/07/2024	09/08/2024	Total	ITE	POS	Nudge >	SOF
46	CNC-CNC	2	1		1	CONTRACT.	2				4	1263686	0.00	5	12
46	OGL-RID	2	1				2				3		0.00	3	5
12 470	AM7201	1	1		2						3		0.00	4	8
12 470	AM7202	1	1		2						3		0.00	4	8
12.470	401004	2		2							2		0.00	2	10
12.470	AP1201	4		4							4	10178	0.18	4	32
12.470	API207												0.10	-	40
12.470	API211	1	1								1		0.00	2	18
12.470	BAK201	9		1	8						9	9711	0.01	9	27
12.470	BAK202	9		19							19	219155	0.04	20	64
12.470	BON201	2	4								4		0.05	4	14
12.470	BON202	2	4								4	662226	0.08	4	13
	CHP201	8			11	1					12	1077715	0.20	12	40
12.470															

Easier to visualize SOE

Looks Like Miscoordination

Confirmed: Miscoordination

CAP Response

Conductor Slap

Conductor Slap

Decreasing number of recloses
 Increasing open interval between recloses

Conductor Slap

- Negative sequence instantaneous
- Phase instantaneous not as easy to set due to differences in AFC for LL and 3Ø faults

Transformer Magnetizing

 Historical waveforms provide an insight into past inrush for development of settings

DER contribution to fault and islanding

 PV islanding and supplying fault current after loss of

grid

46 kV contact with 12 kV

46 kV contact with 12 kV through a tree branch

Waveform Summary Plot

 Quickly get an idea of what the recloser saw

IEEE 1668 ride through plot

 Provide data to customers on IEEE 1668 compliance

Replay using waveforms

 Use waveforms to construct a replay of device operations

Additional uses of recloser data

- Power flow validation
- Capacitor bank placement
- Historical inrush
- Spectrograms from waveforms

Identifying miscoordination

Spectrogram – A visual representation of the frequencies of a waveform over time.

Use a CNN to classify images of spectrograms.

Identifying miscoordination

 Quickly determine miscoordination on a mass scale without in depth analysis

End

