
A Comparative Analysis Between
Embedded Linux Flash File Systems

Ahmed Lutful Sharif
lutfulsharif@yahoo.com

About me

• Oakland Alumni

• Finished MS Embedded Systems in 2008.

• Only working in Embedded Systems Field last
10 years.

Objective

• Clarify design decisions behind choosing
embedded linux file systems.

• There may not be a clear winner of a certain
file-system over all others, with the
performance parameters, it can be deduced
what would be a suitable for a particular
system.

Flash Type: NAND vs NOR

Flash Type: NAND vs NOR

• NAND is faster during erase/write than NOR.

• NAND less reliable and need ECC support for
bit correction.

• NAND erase cycle (100k-1M) and NOR erase
cycle (10k-100k). MLC NAND is much lower –
max 10k.

• NOR can be memory mapped, NAND is I/O
only.

Flash Type: NAND vs NOR

• NAND is more compact.

• NOR is for code storage, NAND can be used for
both code and data. For code NAND usage,
need to have ECC correction.

Flash Type: NAND vs NOR

NAND Flash issues:

• Bit-Flipping: Inconsistent read (a bit value is
read randomly reversed), more happening in
NOR – EDC/ECC can correct to some extent.

• BAD Block Management: NOR doesn’t need it.
NAND comes with BAD blocks and in course of
time develops more. Need BAD block
handling.

Flash Type: NAND vs NOR

• Life Span/Endurance:

Flash Type: Other

• Some new options i.e. eMMC

Flash Device

• Can’t do in-place update like a HDD device or RAM.

• Have to copy erase-block, update contents (to be
written), erase the block and write again the whole
erase block – impractical and will result slowness.

• More practical to adopt a log structure – whenever it’s
time to update, find a fresh erase-block (already
erased) and continue writing there.

• Need some special handling/mechanism in case the log
structure is corrupt in any time of the update (i.e.
power cut, user reboot etc.)

Flash Device Write

Flash Device Write
(Wandering Tree)

Linux Filesystems

Linux Filesystems:Unsorted Block
Image (UBI)

…

Physical flash

MTD layer

UBI layer

Flash File System (e.g., UBIFS)

Linux Filesystems:UBI

…

Static read-only data

PEB 0 PEB 6 PEB 6 PEB 7 PEB 1 PEB 2 PEB 3 PEB 4 PEB 5 PEB 8 PEB 9 PEB 10

MTD device

LEB 0 LEB 1 LEB 2 LEB 3 LEB 4 LEB 0 LEB 1 LEB 2

Volume A Volume B

UBI layer

Return 0xFFs

Low erase counter High erase counter

Move data Re-map LEB

E
ra

s
e

/w
ri
te

/r
e

a
d

Linux Filesystems:UBI

When a erase block is to be erased, the current erase count is kept in RAM and
after the erase has completed, the incremented erase count is written back to
FLASH. When the operation is interrupted, the erase counter is lost. Later after
discovering this the affected block is set to the average erase count of all blocks.

Journaling Flash File System Version 2
(JFFS2)

-Economical Flash usage

-On-flight flash compression

-Unclean reboot robustness

-Good enough wear-leveling

Has scalability issues

-Needs to scan whole flash/partition to mount

-JFFS2 index is maintained in RAM – larger flash,
larger RAM usage.

Unsorted Block Image FS
(UBIFS)

• UBIFS must work on top of UBI volumes MTD-
>UBI->UBIFS

• Scalability – Scales well w.r.t. flash size and
mount time, memory consumption doesn’t
depend on flash size.

• UBIFS doesn’t need to need scan the whole
media for mounting, it takes msecs to mount
UBIFS.

• UBIFS has write-back support.

UBIFS

• UBIFS has tolerance against unclean reboots.

• UBIFS can do on-flight compression during
writing.

• UBIFS can recover itself if the indexing
information got corrupted.

• UBIFS checksums everything it writes to flash
to guarantee data integrity.

Compressed ROM FS
(CRAMFS)

• Read-only filesystem.

• Free GPL Linux FS.

• Simple and Space-Efficient.

• Suitable for small/embedded systems.

• zlib-compressed one page at a time to allow
random read access. (metadata not compressed)

• Filesize limited to 16MB. (max filesystem size
272MB).

http://en.wikipedia.org/wiki/Zlib
http://en.wikipedia.org/wiki/Page_(computer_memory)

SquashFS

• Read-only filesystem.

• SquashFS
compresses files, inodes and directories.

• Supports block size upto 1MB for greater
compression.

• Very Suitable for small/embedded systems.

• Supports gzip, lzma, lzo and xz (lzma2).

• No Filesize or rootfs size limitation.

http://en.wikipedia.org/wiki/Computer_file
http://en.wikipedia.org/wiki/Inode
http://en.wikipedia.org/wiki/Directory_(file_systems)

Test Platform

• ARM9 S3C2440 FriendlyARM board with 64MB RAM and 64MB NAND
Flash.

• Initramfs is used for ease of deducing different performance
parameters.

• Different Filesystems are mounted and switch rooted to the
corresponding filesystems.

FileSystem Comparison
(Boot Time)

 JFFS2 Raw
JFFS2 over

UBI
UBIFS

Cramfs (var
JFFS2)

Squashfs
(var UBIFS)

LZO
Compression

Squashfs
(var UBIFS)

XZ
Compression

Mount
Time

5.962330794 4.736091375 0.098302627 0.019719791 0.020023394 0.02244997

Rootfs
 Load Time

8.540637016 8.755834818 7.227636385 8.354395413 8.08851521 9.751157379

Total
Boot Time

14.50296781 13.49192619 7.325939012 8.374115205 8.108538604 9.773607349

Write-back vs Write-through

Write-back:
• File changes do not go to the flash media straight away.

• They are cached and go to the flash later, when it is
absolutely necessary.

• Helps to greatly reduce the amount of I/O which
results in better

Write-through:

• File system changes go the flash synchronously.

• Sometimes a small buffer is maintained as a cache but
once the buffer is full, it’s flashed immediately.

Write-back vs Write-through

System calls fsync and API fsync() can provide a file-
specific write-through for a filesystem that supports
write-back. (i.e. UBIFS)

Also, during mount time, a write-back system can be
converted to write-through by changing options in the
mount command

i.e. For UBIFS

mount –t ubifs –o sync ubi0:rootfs /mnt

Write Performance (one 10MB file)

 JFFS2 UBIFS UBIFS with sync

Mount time 5.908775 0.123646021 0.146992922

Big File(10MB) copy 28.20541 25.52733696 29.05287504

Unmount Time 0.164276 0.962749958 0.102820992

Total 34.27846 26.61373293 29.30268896

Write Performance (small files)

 JFFS2 UBIFS UBIFS with sync

Mount time 5.912980914
0.136153936

0.155074

Copy Small Files
(35 files total 5.4MB)

16.87158704 6.717770934 18.912269

Unmount Time 0.052031994 12.38501 0.192489982

Total 22.83659995 19.23893487 19.25983298

Conclusion

• Small embedded systems (low RAM and ROM space):
We can use cramfs or squashfs. Squashfs is better as xz
compression is supported.

i.e. Small automotive telematics module.

• Full blown embedded systems: All UBIFS or Squashfs

for the read-only part and UBIFS for the writable part.
i.e. Automotive Media player, infotainment systems.

• For read-only systems, in system init time, some tmps

or RAMFS folder can be mounted for temporary files.

Reference

• Wikipedia

• http://linux-mtd.infradead.org

• FriendlyARM.net

• Linux Kernel Docs.

• http://www.cs.fsu.edu/~baker/devices/lxr/htt
p/source/linux/Documentation/filesystems/ub
ifs.txt

• www.embedded-linux.co.uk/

http://linux-mtd.infradead.org/
http://linux-mtd.infradead.org/
http://linux-mtd.infradead.org/
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/Documentation/filesystems/ubifs.txt
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/Documentation/filesystems/ubifs.txt
http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/Documentation/filesystems/ubifs.txt

