Design For Testability for Integrated Circuits

Luis Basto Nov. 16, 2011

Outline of Presentation

Introduction

- ♦ What is DFT?
- ♦ Why do we need DFT?
- ♦ Structural vs. functional testing
- Test Economics
 - ♦ Cost of test
- Basic Test Theory
 - ♦ Fault Models
 - ♦ Fault Coverages
- DFT Methodologies
 - ♦ Functional Tests
 - ♦ Scan design
 - ATPG
 - ♦ Memory BIST
 - ♦ Logic BIST
 - Boundary Scan (JTAG)

Outline of Presentation

Introduction

- ♦ What is DFT?
- ♦ Why do we need DFT?
- ♦ Structural vs. functional testing
- Test Economics
 - ♦ Cost of test
- Basic Test Theory
 - ♦ Fault Models
 - ♦ Fault Coverages
- DFT Methodologies
 - ♦ Ad Hoc Techniques
 - ♦ Scan design
 - ♦ ATPG
 - ♦ Memory BIST
 - ♦ Logic BIST
 - Boundary Scan (JTAG)

Introduction

• What is DFT?

DFT from Google

♦ DFTBA --- Don't forget to be awesome

♦ dft matrix --- Discrete Fourier transforms

♦ dft interview questions --- Will discuss later

♦ dft --- Design for Test or Design for Testability

Resistive open

Resistive bridge

Issues with Traditional Test Flow

- DFT is usually added late in the design cycle, which may adversely affect area, timing, and power
- More iterations may be needed to fix RTL issues, timing, and physical implementation
- May cause more routing congestion
- When crunch comes, test is usually sacrificed to function

What is Design For Testability ?

"Testability is a feature that is either added or not added at design time."

Why Do We Need Design For Test?

Product Quality

- ♦ Reduce field returns
- ♦ Improve yield

Time to Market

- ♦ Test automation
- ♦ Hit your market window

Test Cost

- ♦ Reduce cost of testing
- ♦ Improve your profits

Defect Level vs. Fault Coverage

$D = [1 - Y^{(1-T)}] \times 100 \quad D = defect \ level$ $Y = process \ yield \quad T = Fault \ coverage$ $Williams, \ IBM, \ 1981$

Functional vs. Structural Test

Functional Test

- Designed to exercise the device's intended functionality
- Usually requires manual test generation or conversion
- ♦ Expensive to generate and run
- ♦ Unknown test coverage
- May be difficult to diagnose test failures

Structural Test

- Alters design to make it easier to test
- ♦ Generates tests targeted at manufacturing defects
- ♦ Automates test generation
- ♦ Industry accepted test coverages
- Facilitates diagnostics of failing devices

System-on-Chip DFT Requirements

- Hierarchical test insertion
- Multiple clock domains
- Mix of clock edges
- Scan chain balancing
 - Embedded IPs and memories
 - Memory Built-In Self-Test
 - Logic Built-In Self-Test
 - Internal core wrapping
 - JTAG boundary scan

Outline of Presentation

Introduction

- ♦ What is DFT?
- ♦ Why do we need DFT?
- ♦ Structural vs. functional testing
- Test Economics
 - ♦ Cost of test
- Basic Test Theory
 - ♦ Fault Models
 - ♦ Fault Coverages
- DFT Methodologies
 - ♦ Ad Hoc Techniques
 - ♦ Scan design
 - ♦ ATPG
 - ♦ Memory BIST
 - ♦ Logic BIST
 - Roundary Scan (JTAG)

DFT Reduces Test Cost

DFT reduces test volume

- ♦ Reduces ATE memory requirements
- ♦ Reduces test time
- ♦ Minimizes or eliminates tester reloads
- ♦ Improves tester throughput

DFT provides higher quality and lower cost

DFT Reduces Test Cost (cont'd)

• Cost increases exponentially with respect to where undetected defects are found

Cost of Test Increasing

- Chip operation at full speed depends on the manufacturing process
- According to Silicon Industry Association (SIA), cost to test will soon equal the cost to manufacture

Cost of Test Increasing (2)

Test cost/unit vs. Interface Cost.

International Technology Roadmap for Semiconductors (ITRS) 2009.

Outline of Presentation

Introduction

- ♦ What is DFT?
- ♦ Why do we need DFT?
- ♦ Structural vs. functional testing
- Test Economics
 - ♦ Cost of test
- **Basic Test Theory**
 - ♦ Fault Models
 - ♦ Fault Coverages
- **DFT** Methodologies
 - ♦ Ad Hoc Techniques
 - ♦ Scan design
 - ♦ ATPG
 - ♦ Memory BIST
 - ♦ Logic BIST
 - Boundary Scan (JTAG)

What is Manufacturing Test

- High volume production testing
- ATE generally targets pass/fail
- ATE runs a test program that serially steps through multiple tests
- Only those devices that pass EVERY test are shipped
- Devices that failed are either sent to failure analysis or discarded

What is a Physical Defect?

- A physical defect is a flaw introduced into a chip during manufacturing which makes the chip fails or behaves different from specification
 - Some common physical defects
 - ♦ Surface effects and gate oxide breakdown
 - ♦ Metalization and electromigration
 - ♦ Impurities
 - ♦ Opens and shorts
 - ♦ Bridging

Fault Models

Fault models attempt to represent manufacturing defects. A fault model is a <u>logical model</u> representing <u>physical</u> <u>defects</u>.

Types of fault models:

- Stuck-at fault most common
- Bridging
- IDDQ transistor shorts cause higher current
- Delay faults
 - Transition delay
 - Path delay

Stuck-at Fault Model 1/3

- Many physical defects behave like shorts to power or ground
- This have the appearance of being stuck-at logic 1 or stuck-at logic 0
- Faults only at input and output pins of logic gates
- Each pin of device modeled as stuck-at-1 (s-a-1) or stuck-at-0 (s-a-0)
- Test required to sensitize inputs to detect faults and propagate results to outputs

Stuck-at Fault Model 2/3

Examples of logic gates for stuck faults
Input stuck fault

Good circuit

А	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

Defective circuit

Α	В	Y
0	0	0
0	1	1
1	0	0
1	1	1

Stuck-at Fault Model 3/3

Examples of logic gates for stuck faults
Output stuck fault

27

Number of Stuck-at Faults

- How many are there in a circuit?
- Considered only at the boundary of a logic gate or cell

Undetectable Faults

- Why can't we get 100% coverage?
- When there is fanout, we can no longer guarantee that all faults are detectable.
- Fault models are approximations.
- Many other reasons for undetectable faults.

Bridging Fault Model

- Defects that crosses two or more wires or nodes
- Needs physical layout information for correct modeling

Iddq Fault Model

- Single SAF model cannot cover all defects
- Single SAF model is voltage-based
- Iddq fault model is current-based
- Physical defects such as bridging and stuckon transistors cause a rise in static current
- Failure is detected by measuring current and noting that its level higher than fault-free threshold

Transition Fault Model

- At-speed test
- Model large delay defects
- Behaves as a temporary stuck-at fault
- Slow-to-rise and slow-to-fall model
- Two test patterns required initialization vector and transition vector

Transition Fault Testing

Path Delay Fault Model

At-speed critical path test

- Targets specific paths in design
 - Path topology launch and capture points are either scan registers or device pins
 - ♦ Rising or falling edge

- Two test patterns required launch and capture vectors
- Disadvantage large number of potential paths; grows exponential with size of design

Path Delay Fault Testing

- Paths A E (shortest)
- Paths A B D E (longest)
- Paths A C D E
- All of the above

Dynamic (AC) Fault Models Benefits

- Transition Fault Model
 - Finds gross dynamic defects not identified by stuck-at fault model
 - Similar to stuck-at model, targets entire chip
- Path Delay Model
 - Targets critical paths only
 - Used to find dynamic defects and for speed binning

Why multiple fault models?

- Test Chip* (experimental results)
 - Standard cell (8577 gates/36k transistors)
 - 436 state element (flip flops)
 - Test of 3 wafer lots, 26,415 die (excludes wafer test fails)

CONCLUSION

"... a combination of high static stuck-at coverage, Iddq tests and automatically generated timing tests will result in excellent quality levels..."

(at speed test)

Fail Iddq

*P.C. Maxwell, R.C. Aitken, V. Hohansen, I. Chiang

Uncover defects not identified by Stuck-At fault model.

Outline of Presentation

Introduction

- ♦ What is DFT?
- ♦ Why do we need DFT?
- ♦ Structural vs. functional testing
- Test Economics
 - ♦ Cost of test
- Basic Test Theory
 - ♦ Fault Models
 - ♦ Fault Coverages
- DFT Methodologies
 - ♦ Ad Hoc Techniques
 - ♦ Scan design
 - ATPG
 - ♦ Memory BIST
 - ♦ Logic BIST
 - Boundary Scan (JTAG)

DFT Methodologies

Functional Testing

- Scan Design
- Compression
- ATPG
- Memory BIST
- Logic BIST
- Boundary Scan

Major EDA Vendors

Synopsys

- Cadence Design Systems
- Mentor Graphics

Other Topics and Newer Challenges

Core Wrapping

- Adaptive testing
- Small delay defects
- 3-D testing
- Debug and Diagnostics

DFT Careers

- Covers many disciplines
 - Design knowledge
- Understands DFT concepts
- Manufacturing and test experience
- Scripting/automation experience

Job Openings in DFT – from LinkedIn

- Field Application Engineer Noida
- Physical design/DFT/RTL/STA Bangalore
 - DFT Lead Engineer Bangalore
- DFT Specialist Pune and Noida
- DFT Lead Engineer RIM, Waterloo
- Physical Design Engineer RTL to GDSII Hyderabad
- DFT Lead Architect Bangalore
- DFT Engineer Hyderabad

End of Presentation

Questions and Comments?

