

Microcontrollers for Healthcare: Meeting Home Portable Healthcare Device Requirements

Donnie Garcia

Microcontroller Systems Engineer

Jan 31, 2012

Freescale, the Freescale logo, AlitNec, C-5, CodeTEST, CodeWarrior, CodiFire, C-Ware, the Energy Efficient Solutions logo, mobileGT, PowerQUICC, OorlQ, StarCore and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. BeeKll, BeeSlack, ColdFire+, CoreNet, Flexis, Kinetis, MXC, Platform in a Package, Processor Expert, CorlQ Converge, Corivo, CUICC Engine, SMARTMOS, TurboLink, Vortica and Xtrisic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2012 Freescale Semiconductor, Inc. ARM is the registered trademark of ARM Limited. Cortex is the trademark of ARM Limited.

Healthcare Market applications

Portable Medical

Diagnostic & Therapy

Imaging

Wellness/Fitness

Blood Glucose meter

Blood pressure monitor

Thermometer

Weight Scale

ECG

SP₀2

BGM, BPM, ECG

Point of Care

Defibrilators

Cardiac Implant

Respiratory, Anaestesia

Hearing Aids

Drug Delivery

Patient Monitoring

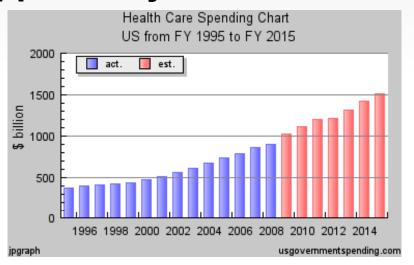
UltraSound

X-Ray

CT

Agenda

- Healthcare device trends and the impact to MCU architecture
 - SoC to DoC
- Kinetis K50
 - The new standard medical controller
- Competitive Analysis
- Summary and Conclusions

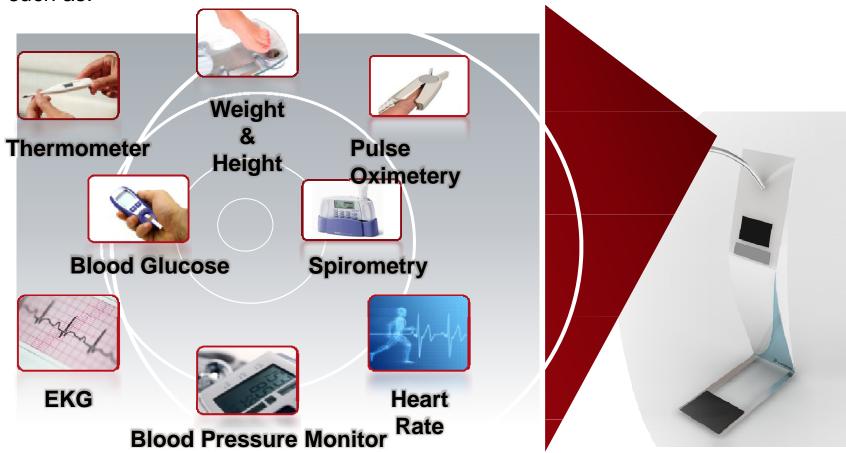


The Challenge and the Opportunity

► Worldwide today:

- 1 billion adults overweight
- **860 million** chronic disease patients
- 600 million elders age 60 or older
- 75-85% of healthcare spending is on chronic disease management
- 200K hospitals, 18M hospital beds

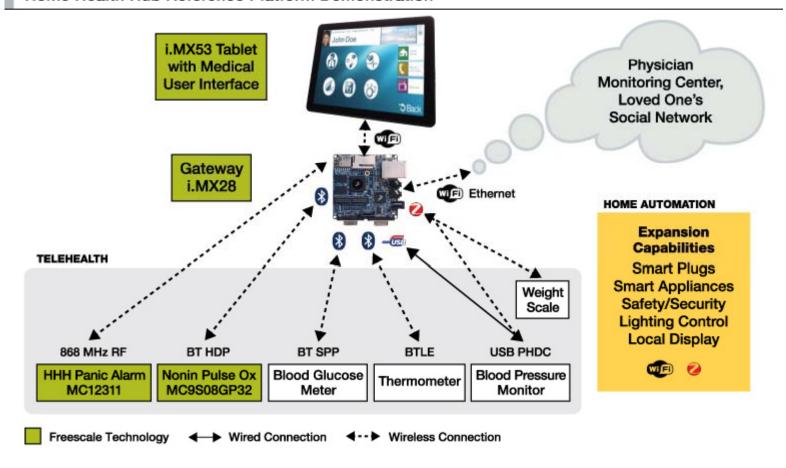
freescale™


Healthcare Device Trends

- Combinational and hub devices that provide complete diagnostic and health maintenance capabilities
- New data logging and data analysis features that improve treatment decisions
- User interfaces that adopt consumer technology trends
- Connectivity that links medical professionals to the patient and fosters patient accountability and compliance

Intelligent Hospital

Our Medical Center of Excellence has developed several reference designs essentially creating an Intelligent Hospital featuring a biometric acquisition system that acquires vital signs, performs basic medical tests, and incorporates devices such as:

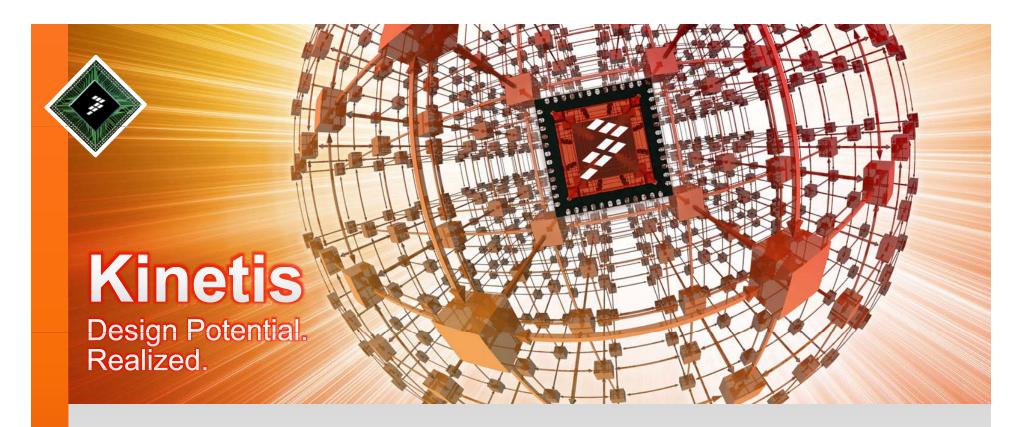


Platform Demonstration

Home Health Hub Reference Platform Demonstration

The Microcontroller Systems View of Healthcare Device Trends

SoC DoC



System Doctor on Chip

- ▶ DoC will be able to measure, process and administer
- DoC features
 - Measurement unit with analog front end, high accuracy ADC, PDB to control measurement timing and DMA to allow measurement processing
 - Efficient CPU instructions that process measurement data
 - ▶ Low power operation with Low power CPU and low power time keeping capability
 - Connectivity through Ethernet, USB and RF
 - Graphical display interface capabilities
 - Biosensors generated from special processes that create FETs that react to medical stimuli

Ultra-Scalable – Market's most scalable portfolio of low-power ARM[®] Cortex[™]- M4 MCUs with over 200 hardware and software compatible devices

Mixed Signal – Exceptional integration with fast 16-bit ADCs, DACs, PGAs and more. Powerful, cost-effective signal conversion, conditioning and control

Innovative Flex Memory – Low Power 90nm Thin-Film Storage Flash with FlexMemory offers EEPROM capability with unprecedented programming speed and endurance

Comprehensive Enablement – Freescale MQX RTOS and Eclipse-based CodeWarrior IDE, as well as IAR, KEIL and other ARM ecosystem providers

Hello Kinetis K50 Microcontrollers

The Integration Benchmark for Measurement and Monitoring

Integrated Measurements

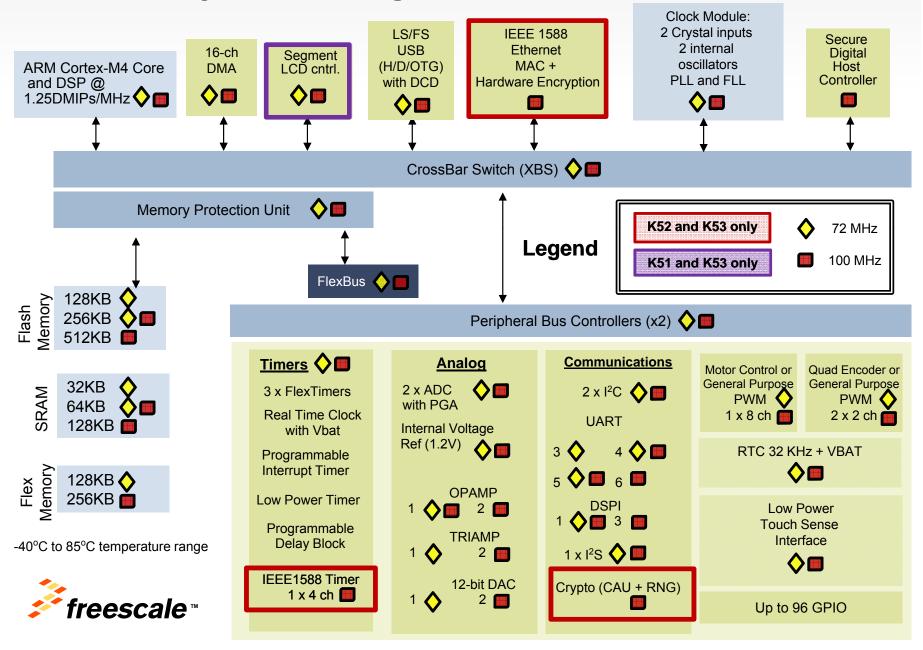
NEW

Kinetis K50 integrates a measurement engine, allowing reliable processing of analog signals

Multiple Monitoring Options

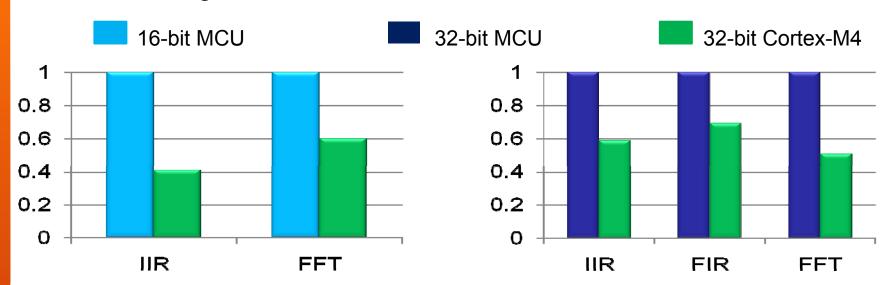
Kinetis K50 offers multiple connectivity options to constantly monitor, evaluate and control system variables

Freedom


Kinetis K50 delivers exceptional scalability within the Kinetis portfolio

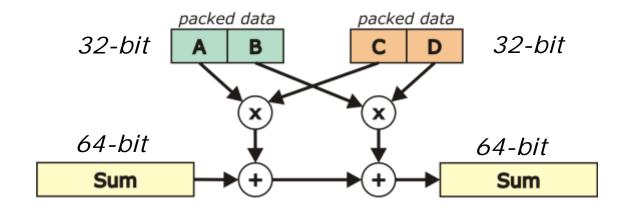
Design Ease

Kinetis K50 delivers exceptional design ease within the Kinetis portfolio, easy-to-use software and modular hardware development tools


K50 Family Block Diagram

Cortex-M4: Efficient Blend

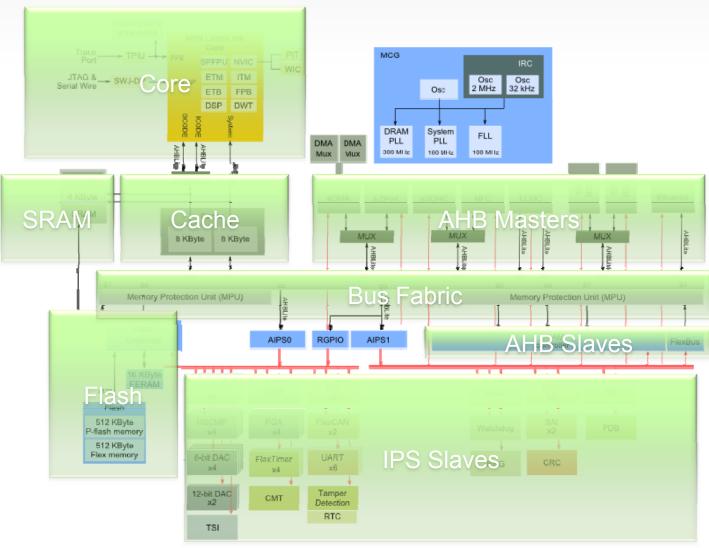
The Cortex-M4 is ~2X more efficient on most DSP tasks than leading 16 and 32 bit MCU devices with DSP extensions



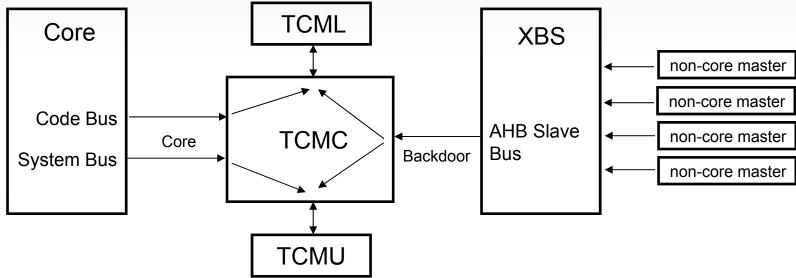
SIMD Operations

SIMD extensions perform multiple operations in one cycle

$$Sum = Sum + (A \times C) + (B \times D)$$



SIMD techniques operate with packed data


Kinetis Platform

SRAM Memory Controller (aka TCMC)

- TCMC (Tightly Coupled Memory Controller) manages accesses to TCML/TCMU arrays via configurable arbitration mechanism:
 - Round Robin, Special Round Robin, or Fixed Priority (core or backdoor)
- The following simultaneous accesses can be made to TCML and TCMU SRAM arrays:
 - Core instruction (TCML) and core data (TCMU)
 - Core instruction (TCML) and non-core master (TCMU)
 - Core data (TCMU) and non-core master (TCML)
- Two non-core masters cannot access the same SRAM array simultaneously because of crossbar switch arbitration

Multi-master Crossbar Features

Excerpt from Kinetis Reference Manual

Concurrent accesses

17.1.1 Features

The crossbar switch includes these distinctive features:

- Symmetric crossbar bus switch implementation
 - · Allows concurrent accesses from different masters to different slaves
 - Slave arbitration attributes configured on a slave by slave basis

Slave by slave arbitration options

- 32 -bit wide and supports byte, 2 byte, 4 byte, and 16 byte burst transfers
- Operates at a 1-to-1 clock frequency with the bus masters
- · Low-power park mode support

Burst transfers (16 byte)

What is FlexMemory?

User Configurable As...

Main Program

Memory

EEPROM:

- No external EEPROMs
 - Reduced system cost
- ▶ No system resource impact
 - System performance maintained
 - No complex coding schemes
- ▶ Configurable & high endurance
 - Up to 10 Million w/e cycles
- ► High performance
 - Fast write time = 100 usec
 - Erase+write = 1.5 msec
- Use cases
 - Critical data retention (power loss)
 - Frequently updated data

EEPROM

FlexMemory

Or a combination of both

Program or Data Flash:

- Flexibility
 - Space for future expansion needs
- Efficient
 - Read-while-write with the main program Flash
- Use cases
 - Program Flash: bootloader code space
 - · Data Flash: large data tables

Program/Data Flash

FlexMemory vs. Traditional EEPROM

Attribute	Traditional Embedded EEPROM	FlexMemory		
Read-while-write with program memory	Yes	Yes		
Granularity	Byte write/erase	Byte write/erase		
Write time	~1-5 msec (byte write only)	~100 µsec (byte or word program to erased location, brown-outs w/o loss or corruption of data)		
Erase + write time	~5-10 msec	~1.5 msec (byte or word erase and program, erase is automatic by executing write)		
Endurance	50-300K cycles (fixed)	SoC implementation and user configurable, can exceed 10M cycles		
Minimum write voltage	≥ 2.0V	1.71V		
Flexibility	Fixed by part number	Programmable trade-off - quantity vs. endurance		

Key Human to Machine Interface Peripherals

Segment LCD Controller (K51 and K53 only)

- Segment fault detection capability
- Up to by 8 multiplexing
- Low power blinking mode
- Front and back plane re-assignment
- Internal charge pump

Hardware Touch-Sensing Interface (TSI)

- Capacitive touch sensing detection across all low power modes
- 16 input capacitive touch sensing pins
- TSI interrupts

External Bus Interface (FlexBus)

- 8-,16-, and 32-bit port sizes with configuration for multiplexed or non-multiplexed address and data buses
- Connect a QVGA display easily
- Interface with SRAM, PROM, EPROM, EEPROM, flash, and other peripherals

Support for up to 320 segments!!

Segment LCD Controller

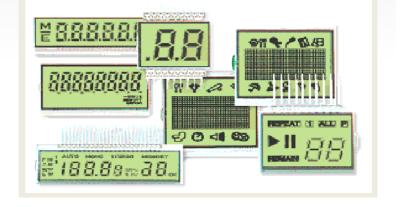
Segment fault detection capability

- Hardware support for segment LCD display errors
 - Essential when displayed data is safety critical
 - Automates factory test for end product

Up to by 8 multiplexing

- Fewer pins required to drive LCD segments
 - Kinetis: 48 pins needed to drive 320 segments
 - Competition: 80 pins needed to drive 320 segments

Front and back plane re-assignment


- Any LCD pin can be a frontplane or backplane pin or GPIO function
- Assist in vertical scrolling on dot-matrix displays

Internal charge pump provides voltage required to power LCD glass

- Internally regulated voltage for constant contrast across MCU VDD
- Trim register for software contrast control
- Drive for 3V or 5V LCD glass

Low power blinking mode

- LCD glass blink capability in low power modes
- Alternate display feature can be activated to display alternate data (i.e. blink temperature and time)

Low Power Capabilities

- >Flexible power modes
 - > 11 Run, Wait & STOP modes (2x competition devices)
 - customize power usage to application requirements

- >Industry leading 90nm process technology
 - > 1/3 dynamic power reduction vs. existing technologies
 - Intelligent power management controller reduces dynamic and leakage currents
- >Low power design techniques
 - > Clock gating: only leakage currents are incurred
 - Power gating: shuts down unused modules and memories reducing leakage
- >Ultra fast wake up times
 - > 6µs wake up from low leakage stop (LLS) mode
 - New Low Leakage Wake-up Unit for leakage current reduction

Kinetis Power Outlook

Typical Power Modes in an embedded system	Cortex-M4 Power Modes	Run Kinetis Extended Power Modes Run	Recovery Time	"Typical" Idd Range Starting @ <200uA/MHz Starting @
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Cloop	VLPR Wait	-	<200uA/MHz
Wait	Sleep	VLPW	4us	
Stop	DeepSleep	Stop	4us	300uA - 400uA
Отор	Deepoleep	VLPS	4us	10uA - 30uA
Freescale Adds Low Lea	LLS	6us	4uA - 12uA	
 Enables complete shut-do including WIC, further reduc all low power modes 	VLLS3	75us	920nA - 8uA	
 Supports 16 external inpu modules as wakeup sources 	VLLS2	75us	850nA - 4uA	
Wakeup inputs are activated modes		VLLS1	120us	840nA – 2uA
		VBAT only (RTC + OSC)	2	200nA off /750nA on

Module Operation in Low Power Modes

Table 7-2. Module operation in low power modes

Modules	Stop	VLPR	VLPW	VLPS	LLS	VLLSx
			Core modules			
NVIC	static	FF	FF	static	static	OFF
			System modules			
Mode Controller	FF	FF	FF	FF	FF	FF
LLWU ¹	static	static	static	static	FF	FF
Regulator	ON	low power	low power	low power	low power	low power
LVD	ON	disabled	disabled	disabled	disabled	disabled
Brown-out Detection	ON	ON	ON	ON	ON	ON
DMA	static	FF	FF	static	static	OFF
Watchdog	FF	FF	FF	FF	static	OFF
EWM	static	FF	static	static	static	OFF
			Analog			
16-bit ADC	ADC internal clock only	FF	FF	ADC internal clock only	static	OFF
CMP ⁷	HS or LS compare	FF	FF	HS or LS compare	LS compare	LS compare
6-bit DAC	static	FF	FF	static	static	static
VREF	FF	FF	FF	FF	static	OFF
12-bit DAC	static	FF	FF	static	static	static

Polling Operation

- Polling States and Power:
- Test Case 1 >>>VLPS mode Base Current, no Analog modules enabled

= 150uA

Test Case 2 >>>VLPS mode with ADC continuous conversions

= 560uA

Test Case 3 >>>VLPS mode with ADC Triggered by Low power timer every 33ms

= 160uA

Test Case 4 >>>VLPS mode with ADC Triggered by Low power timer, OPAMP and DAC in Low power modes

= 310uA

Test Case 5 >>>VLPS mode with ADC Triggered by Low power timer, OPAMP and DAC in high performance modes

 Test Case 6 >>>VLPS mode with ADC Triggered by Low power timer, VREF, OPAMP and DAC in Low power modes

=440uA

Test Case 7 >>>VLPS mode with ADC Triggered by Low power timer, VREF, OPAMP and DAC in high performance modes
 = 1250uA

Key Connectivity Peripherals

10/100-Mbps Ethernet MAC (ENET) (K52 and K53 only)

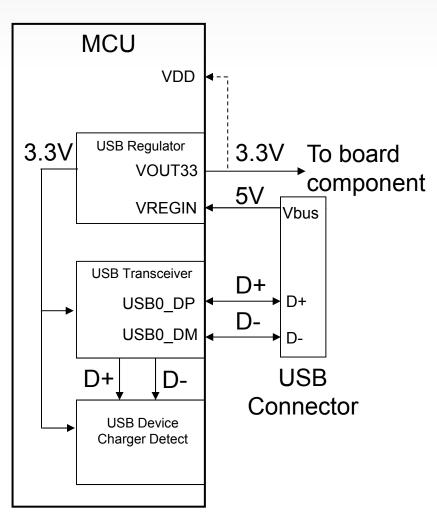
- Implements the full 802.3 specification
- Supports 10/100 Mbps full duplex and configurable half duplex operation
- Supports AMD magic packet detection with interrupt for node remote power management
- Seamless interface to commercial Ethernet PHY device
- Hardware time stamping support for IEEE 1588 provides precision clock synchronization for real-time control

USB FS/LS OTG Controller

- USB 1.1 and 2.0 compliant host, device and on-the-go (OTG) controller
- 5V regulator sources up to 120 mA in output pin and Eliminates LDO cost
- USB device charger detect

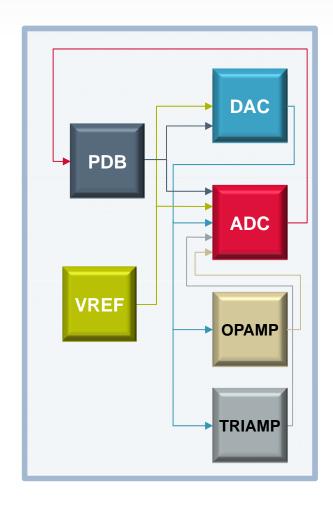
Other Interfaces

- Up to 3 x DSPI, 6 x UARTS, 2 x I2C
- I2S
- SDHC (100 MHz devices only)



USB Subsystem - More Than USB Connectivity

- 5V regulator input (VREGIN) typically provided by USB Vbus or Rechargeable Battery power
- 3.3V regulated output powers on-chip USB transceiver and device charger detect
- Output pin (VOUT33) from regulator can be used to power external board components and source up to 120mA
- 120uA quiescent current in run mode
- 1uA quiescent current in standby mode
- Eliminates cost of external LDO
- 3.3V regulated output can power MCU main power supply

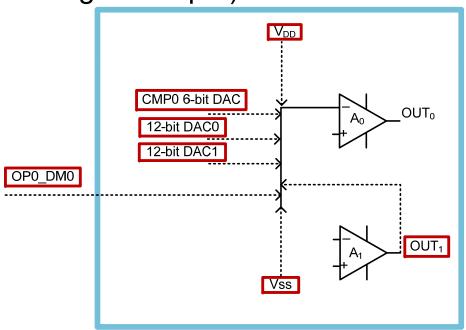

Measurement Engine IP Specifics

Measurement Engine Functions

- · Static and Dynamic Biasing
- Signal Conditioning
- Accurate Measurements

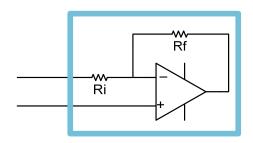
Measurement Engine Contains

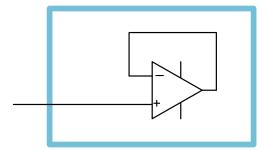
- 16b Analog-Digital Converter
 - SAR type; typical 14b accuracy
- 12b Digital-Analog Converter
 - 1us settling time (min)
- Programmable Delay Block
 - Synchronizes ADC and DAC operations
- 1.2 V Trimmable Voltage Reference
- General Purpose Operational Amplifier
 - Customizable function filter, PGA
- Trans-Impedance Amplifier
 - 300 pA input bias current operation
- Analog Comparator with Prog. Reference
 - Low power wakeup on analog threshold



Operational Amplifier (OPAMP) Input Selector

- Selectable input terminal
- Possible sources (OPAMP0 negative input)
 - VDD
 - VSS
 - OPAMP1 output
 - CMP0 6-bit DAC output
 - 12-bit DAC0 output
 - 12-bit DAC1 output
 - -PAD

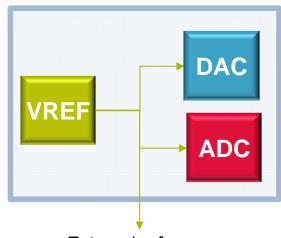


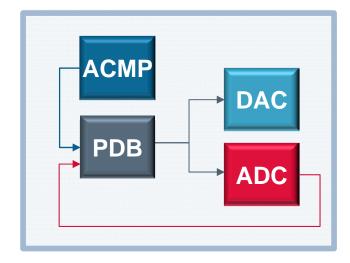


Operational Amplifier (OPAMP) Modes

- Programmable gain (Inverting or Non Inverting)
 - Possible gains = $\pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 7, \pm 8, \pm 9, \pm 10, \pm 11, \pm 12, \pm 13, \pm 14, \pm 15, \pm 16, -17$

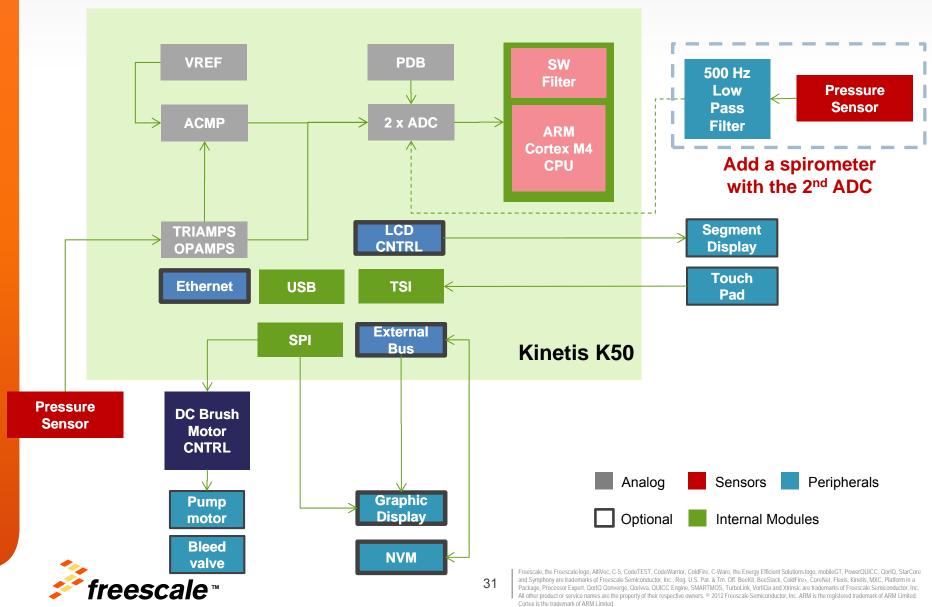
Buffer mode



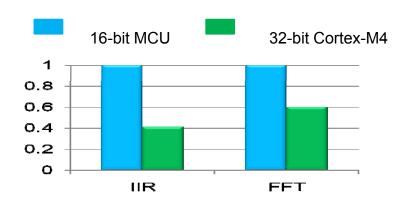

VREF

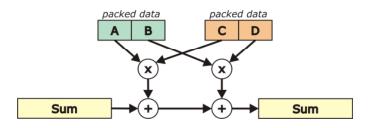
Voltage Reference Module (VREF) and Programmable Delay Block (PDB)

- Programmable trim register with 0.5 mV steps
- Dedicated output pin (VREFO)
- Programmable mode selection
 - 1.2 V output at room temperature
- Allows timing control over ADC conversions / DAC updates
 - Programmable delay intervals
 - Sample trigger input of one or more ADCs
 - Hardware trigger to the DAC
- Trigger output to advance the DAC buffer pointer
- 4 delay registers to schedule delays with 4 ADC channels
- Is a timer with Counting register and Modulo register
- Up to eight DAC interval triggers


External reference

Blood Pressure Monitor (BPM)


+ Spirometer

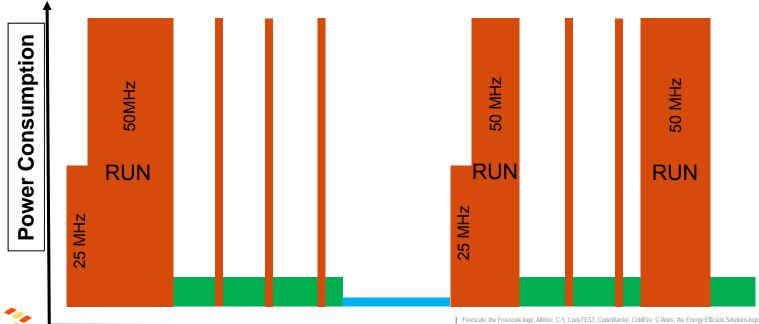


Hello Kinetis K50. Goodbye Competition.

- Kinetis platform performance and efficiency allow improvements to healthcare device diagnostic capabilities that are not achievable with legacy microcontrollers
 - ARM Cortex-M4 core with DSP instructions can improve measurement accuracy with real time software filtering
 - Freescale's platform supports multiple master operations
 - Performance levels up to 100MHz provide the bandwidth needed to make diagnostic calculations

Kinetis K50 vs. Competition.

- Unique integration reduces system cost and allows healthcare device manufacturers to provide devices with more functionality
 - Over 40 Kinetis K50 family devices with Flash Memory sizes up to 512KB and up to 128KB of SRAM
 - USB sub-system with integrated LDO regulator and device charge detection capability
 - Integrated Human to Machine Interface peripherals and analog front end



freescale •

Kinetis K50 vs. Competition

- Kinetis low power architecture helps ensure that healthcare devices can satisfy battery life requirements
 - LCD blink modes support user feedback during Deep Sleep modes
 - Module functionality in low power modes:
 - Integrated Touch sensor functionality in all modes
 - Analog peripheral functionality in Sleep modes

Kinetis K50

 Kinetis feature rich serial communications peripherals support a wide range of connectivity options

10/100-Mbps Ethernet MAC (ENET) (K52 and K53 only)

- Supports 10/100 Mbps full duplex and configurable half duplex operation
- Seamless interface to commercial Ethernet PHY device

USB FS/LS OTG Controller

- USB 1.1 and 2.0 compliant host, device and on-the-go (OTG) controller
- 5V regulator sources up to 120 mA in output pin and Eliminates LDO cost
- USB device charger detect

Other Interfaces

- Up to 3 x DSPI, 6 x UARTS, 2 x I2C
- I2S
- SDHC

Kinetis K50

Key Feature	Kinetis K50	Competition
Performance	Up to 100Mhz	Up to 20Mhz with limitations at lower Voltage levels
DSP Instructions	Yes	32b Multiply Peripheral
Platform	16ch DMA, Concurrent access crossbar	6-ch DMA, SYS module arbitrates memory accesses
Memory	Up to 512KB Flash Up to 128KB RAM	Limited to 256KB Flash Limited to 16KB RAM
Module operation in low power modes	DAC, VREF, ADC and OPAMPs for low power measurements	No
Connectivity	Ethernet, SDHC	No
HMI	Integrated Touch	No
Misc.	Integrated USB Regulator	No

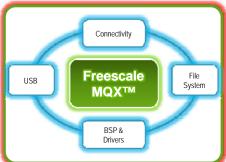
Get Started with Modular Development Platform TWR-K53N512-KIT

- Features K53N512CMD100 MAPBGA 144 pins MCU
- Tower compatible processor module
- S08JM60 based Open Source JTAG (JTAG) circuit
- User-controlled status LEDs
- Medical expansion connector
- SD Card Slot
- Connect TWRPI-SLCD board (28 segment LCD) through TWRPI interface
- Capacitive Touch Pad sensors and mechanical push buttons
- Compatible with TWR-SER (Ethernet, USB connectivity)
- MMA7660 Accelerometer

Kit TWR-K53N512 TWR-ELEV

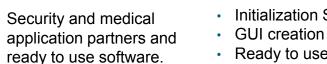
contains: TWR-SER TWRPI-SLCD

http://www.freescale.com/TWR-K53N512


Easy Enablement -**Rapid Prototyping for Quality Software Development**

Modular, expandable and cost-effective development platform

Premier suppliers of *IDE*: Tools and Compliers.

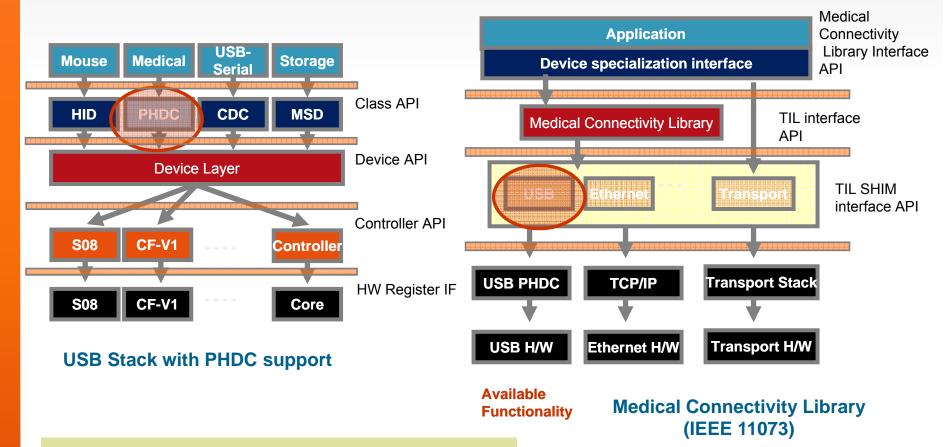


Full-featured, scalable, proven RTOS

HW BDM Debugger/Emulators

- **Initialization Setup**
- Ready to use libraries

EGUI/PEG


Documentation

- MQX support
- **Design Services**

Medical USB Connectivity

Use both stacks to enhance Medical USB connectivity!

- Developed under Continua Guidelines
- IEEE 11073
- PHDC support

http://www.freescale.com/medicalusb

Product Longevity Program

- The embedded market needs long-term product support
- Freescale has a longstanding track record of providing long-term production support for our products
- Freescale is pleased to introduce a formal product longevity program for the market segments we serve
- For the Automotive and Medical segments,
 Freescale will make a broad range of program devices available for a minimum of 15 years
- For all other market segments in which Freescale participates, Freescale will make a broad range of devices available for a minimum of 10 years
- Life cycles begin at the time of launch
- For Terms and Conditions and to obtain a list of available products please see:
 www.freescale.com/productlongevity

Product Longevity

Freescale Product Longevity Statemen

Freescale Semiconductor provides a product longevity program for the market segments we serve. For the automotive and medical segments, Freescale will make a broad range of devices available for a minimum period of 15 years. For all other market segments in which Freescale participates, Freescale will make a broad range of devices available for a minimum period of 10 years.

Life cycles for participating Freescale products will begin at the time of product launch and will include the standard Freescale end-of-life notification policy (one-year notice for placement of final orders and an additional year until the last ship date). Freescale will manage the program through our own factories, outside foundries and other manufacturing resources. If it becomes necessary to transfer the production of a participating product to an alternate manufacturing facility, Freescale will re-qualify that product. These actions demonstrate our intention to provide supply stability to our customers.

Products included in the Freescale product longevity program

				Searchi-liter.			
Category	$\stackrel{\mathbb{A}}{\mathbb{V}}$	Family	•	10-Year	÷	15-Year	Product Launch 🝦
Industrial MCU		16-bit DSC		MC56F803X		-	2009–07
Industrial MCU		16-bit DSC		MC56F802X		-	2007-08
Industrial MCU		16-bit DSC		MC56F8013/14			2005-04
Industrial MCU		16-bit DSC		MC56F8006/2		-	2009-03
Auto MCU		16-bit S12		-		S12HYx	2009-10
Auto MCU		16-bit S12		-		S12Px	2009-07
Auto MCU		16 bit S12				8120	2010 10
Auto MCU		16-bit S12 MagniV		-		S12VR64	2011-12
Auto MCU		16-bit S12X		-		S12XS	2009-09
Auto MCU		16-bit S12X		-		S12XE	2009-09
Auto MCU		16-bit S12X		-		S12XF	2009-03

Resources

- Home Health Hub Reference Platform
 - www.freescale.com/homehealthhub
- Freescale Medical Homepage
 - www.freescale.com/medical
 - Applications, block diagrams, product details
 - Demo videos, reference designs
 - Development tools
- Medical Applications Guide
 - www.freescale.com/medicalappsguide
 - Complete guide with over 16 chapters of medical applications and 150 diagrams
- Medical By Design Blog
 - blogs.freescale.com/category/medical-bydesign

