

www.silabs.com

ISSCC 2011 RF Highlights

Ramin K. Poorfard 03/09/2010

Outline

Overall and RF Paper Statistics

Trends in Wireless architectures

- SAW-less WBCDMA transceivers
- Technology Scalable RF front-ends

F RF Building Blocks

- Push-pull LNA's
- Phase shifters
- Harmonic reject mixers
- Noise cancelling LNA's

Overall papers statistics

669 submission with 211 accepted (32% acceptance rate)

> 28 paper sessions

RF papers statistics

RF session titles:

- RF techniques
- PLLs
- Wireless & mm-Wave Connectivity
- mm-Wave Design Techniques
- Cellular
- Transmitter blocks
- Low power wireless

Trends in Wireless architectures

- F RF topics were fairly diversified.
- Two trends, however, stood out.

1. SAW-less WBCDMA transceivers

- TX side solutions (Polar transmitters, 25% duty cycle passive mixing)
- RX side solutions (High IIP2 RX path)

2. Technology scalable RF circuits

- Wide-band Inductor-less designs
- High-IF architectures with no SAW filter

WBCDMA Issues

- Simultaneous operation of TX and RX.
- The out-of-band TX noise can become in-band at RX.
- Large TX blockers also affect the RX through its nonlinearity.
- Duplexers are used to facilitate this.
- The TX/RX isolation, however, was not sufficient and further filtering was needed (Hence the extra SAW filters).
- The TX out-of-band noise can be overcome by using polar modulators
 - Several papers were devoted to how to implement a practical polar modulator
- > A high dynamic RX chain would handle large TX blockers
 - High IIP2 and IIP3 LNA and mixer architectures were proposed.

Polar modulators

- The Cartesian (I/Q) up-conversion, while simple, has extra noisy components (such as DACs, image filters and mixers)
- Also needs a low efficiency PA.
- > Alternatively, one can convert I/Q to ρ (AM) and θ (PM).
- The AM path can be applied to the PA gain and/or supply hence improving the power efficiency.
- > The PM can be done by modulating a VCO phase via a PLL.
- > This approach is inherently less noisy. However, ...
- The delay between the two paths is crucial
 - Less than 1ns in WBCDMA
- The PM BW (8MHz) is wider than that of AM (3.84MHz) and is much wider the RF synthesizer BW (200 to 300kHz).
- Two point injection is usually used to solve this issue.

Two point injection

- > Any injection at the VCO is HPF.
- > Any injection at the PFD is LPF.
- Combined they can be ALL-pass filtered.
- VCO gain and linearity is a challenge.

3.1: Spur-Free All-Digital PLL

3.1: Spur-Free All-Digital PLL (cont.)

- Digital implementation handles the AM/PM delay problem.
- PLL blocks are implemented digitally, except VCO and PFD
 - ADC role is via Time-to-Digital Converters (TDC)
 - DAC role is played by switched cap varactor in the VCO
- Dithering is required to break periodic quantization noise
 - But it will increase phase noise
 - Use out-of-band tonal dither
- VCO gain calibration is still required.

21.8 Wide-band polar transmitter

- Focuses on VCO gain and linearity issue
- Applied a feedback around the VCO to control its gain.
- The loop consists of:
 - V/F -> VCO
 - F/V -> Based on switched cap
- Switched capacitor is essentially a resistor which is a function of switching frequency.
- RC calibration can bring the VCO gain to within +-1%
- This is excluding Vref accuracy which needs a one-time factory calibration.
- The AM/PM delay matching is still a concern.

21.7 Polar transmitter employing RFDAC

All digital approach to solve the AM/PM problem.

All digital PLL with two point injection

A High DR mixing DAC is used to merge the AM and PM paths.

- 10 thermometer, 4 binary
- Oversampled to GHz range
- 17-bit resolution in 3.84MHz (CDMA)
- 19-bit resolution in 200kHz (EDGE)

LO leakage is managed by:

- Single ended tail currents
- Cross coupled caps.
- Shutting off LO signal to the unused portion of the mixer when the gain is lowered.

Interesting, but:

- Higher power
- Low efficiency PA.

21.6: Multiband LTE in 40nm CMOS

Passive mixers with 25% duty cycles are used.

- Seamlessly performs the adding function by utilizing non-overlapping LO's
- Reduces the number of V→I and I→V converters, hence enhancing out-ofband noise and linearity.
- The switching along with the load capacitor synthesizes a load resistance.
 - Affects the mixer gain
 - Compensate via variable resistor
 - Also allows variable BW.

Variable resistor are nonlinear

Put the switch in the feedback path.

Technology Scalable RF front-end

- Finer line geometries allow digital circuit scaling.
- The conventional analog/RF circuits, however, do not.

Two main reasons

- Matching requirements
- Inductors
- Low-IF and Zero-IF architectures eliminate the SAW filters but need high IIP2, low 1/f noise and small DC offsets
 - All function of circuit area and hence non-scalable.
 - One paper proposed going back to high IF architectures which is insensitive to IIP2, 1/f noise and DC offset and therefore scalable.
 - A new method was proposed for highly selective filtering in lieu of SAW filters.

Narrow-band LNA's require on-chip inductances.

Use wide-band LNA's (no inductor) with sufficient dynamic range instead.

3.5 Process scalable high-Q filters

Zero-IF and Low-IF Architectures

- Large RC time constants for BB
- 1/f noise sensitive
- IIP2 sensitive
- DC offset sensitive

These are all non-scalable

Use High-IF architecture

- Back to the past, but scalable
- Small RC for BB
- No 1/f noise, IIP2 or DC offset issues
- Channel selection and Image rejection is an issue (SAW?)
- Need a BPF for channel selection and image rejection
 - Channel selection: Use real_in/real_out Z for BPF centered at F_{sw}.
 - Image Rejection: Use Complex_in/Complex_out Z

3.5: Process scalable high-Q filters (cont.)

A complex loaded switched BPF at LNA input

- Protects the LNA from blockers and image.
- 10dB image rejection.
- The complex load is based on a 16phase (16-path) switched capacitor.
- 16*F_{if} is chosen to push the folding frequencies to 15*F_{if} and 17*F_{if}
- Use cascaded complex loaded switched BPF at BB for more IR.

Issues:

- Some preselect filtering is still required to attenuate folding frequencies.
- Also, blockers at LO harmonics needs rejection.
- LO feed though to antenna.
- No Phase noise relaxation.
- Only 50dB image rejection.

¹⁶⁻phase complex BB impedance at f_{IF} = f_{LO} /16

21.4 Inductorless WBCDMA/EDGE in 65nm

Multi-band RX need multiple LNA's

No tunable pre-select filters

Each NB LNA has inductors

- Too many inductors
- Not scalable

Use WB shunt feedback

- To change the gain turn portion of the FB resistor into load.
- To keep the Z_{in} change the Gm.

Current-mode mixer

- DC to RF virtual ground
- RI acting as degeneration for SW's making them linear.
- AC coupling help 1/f noise and IIP2

Highly linear LNA and mixer

- No need for inter-stage SAW
- LO coupling to RF minimized since there are no inductive coupling

Silicon Laboratories Confidential

3.3: Push Pull LNA in 32nm

Use both PMOS and NMOS Gm's

- Intel's 32nm High-K metal gate process has similar strength PMOS and NMOS
- Similar value for Lp and Ln.

Stacked output to ensure reliability

- But twice an many inductors are used compared to the single-ended case.
 - The gate inductors are used by the transmitter as well.
 - Since the current in the four inductors are either in-phase or out-of-phase, they can be closely coupled.
 - This will increase the effective inductance.
 - It also allows them to be laid out on top of one another.

Silicon Laboratories Confidential

3.7: Phase shifter in 65nm

Multiple antenna Phased arrays

- Increase SNR
- Spatial interferer rejection

Vector rotation

- Quadrature down conversion
- Sine and Cosine gains

Sine and Cosine gains

- Non-uniform Sine step vs. phase step
- Gain need high resolution

Approximate Sine and Cosine

- Use a fractional ratio
- Uniform phase step -> almost uniform alpha step (cap steps)
- Switch capacitor compatible
- The final summation is done via charge sharing as well.

3.8: Harmonic rejection mixer (HRM)

LO waveform is rectangular

Rich in higher harmonics

Conventional HRM

- Uses RF weighting
- Needs RF matching (hard to do)
- Any imperfect matching causes HR deterioration

What if the weighting is done in IF

- Lower frequency
- Easier to match

Furthermore two layers of switches are used

- By commutating the second switch after the first one is done:
 - Second layer switch mismatch irrelevant
 - Robust 1/f noise and IIP2
 - Improved image rejection

SILICON LABS

9.7: Noise cancelling LNA

TV application

Wide-band input matching

Conventional noise cancelling LNA

- Loop gain around M1 reduces its input impedance and noise.
- M2's gm is higher to reduce NF.

But the output is not balanced.

- Higher IIP2
- Output buffers

Use similar M1 and M2

- Use auxiliary G_{mx} for gain boosting around M1.
- Also biases the two gates.

Use current balancer to enforce isig+ = -iseg-

- R_{in,CM} >> R_{in,DM}
- Rds will reduce the impact
- Use cascade stages.

www.silabs.com

www.silabs.com/redirect