Enabling Millimeter Computing

Dennis Sylvester University of Michigan

Joint work with David Blaauw

Bell's Law

Bell's Law – Corollary

Bell's Law – Production Volume

Bell's Law – Production Volume

mm-Computing: Application Areas

Where Are We?

Why aren't we further along?

- Long device lifetime vs. small form factor
- The 3 most important things in miniaturization:
 - Power, Power, Power
- Circuits just are not there yet

Reducing Size

Solving the battery size bottleneck:

- Improve battery capacity
- Add harvesting
- Reduce power draw

Battery Trends

- New battery chemistries are rare
 - Li-ion ≤7%/year expected improvement (energy density)
- Energy capacity limited by safety and cost

Energy Harvesting

fundamental metric is µW/cm²

[Courtesy: Jan Rabaey, S. Roundy]

Harvesting Improvements Limited

- Energy harvester efficiency gains are modest
- Fundamentally limited by harvesting source

Best Research-Cell Efficiencies

mm³: How Do We Get There

- Microsystem functions include sensing, processing, storage, and transmission
- All components must be re-examined to fit within power envelope defined by power sources and power management

Past Michigan Sensor Designs

mm³: How Do We Get There

- Microsystem functions include sensing, processing, storage, and transmission
- All components must be re-examined to fit within power envelope defined by power sources and power management

Power consumptions in various modes of ULP sensor

Asymmetric RF communication does not require precise timing

Power consumptions in various modes of ULP sensor

Asymmetric RF communication does not require precise timing

Asymmetric RF communication does not require precise timing

- Symmetric RF communication requires precise timing
- Energy penalty for mismatch can dominate energy budget

Asymmetric RF communication does not require precise timing

- Symmetric RF communication requires precise timing
- Energy penalty for mismatch can dominate energy budget

mmotria DE communication door not require province timing

- Asymmetric RF communication does not require precise timing
- Symmetric RF communication requires precise timing
- Energy penalty for mismatch can dominate energy budget

Keeping Time with Picowatts

- Crystal oscillators bulky and power hungry
- RC oscillators preferable, exhibit accuracy vs. power tradeoff

Low power commercial crystal oscillator ~120nW [Ref: Micro Crystal Switzerland RV-2123-C2]

Keeping Time with Picowatts

- Crystal oscillators bulky and power hungry
- RC oscillators preferable, exhibit accuracy vs. power tradeoff

Low power commercial crystal oscillator ~120nW [Ref: Micro Crystal Switzerland RV-2123-C2]

Keeping Time with Picowatts

- Crystal oscillators bulky and power hungry
- RC oscillators preferable, exhibit accuracy vs. power tradeoff
- Still a need for improved accuracy at ~nW

Low power commercial crystal oscillator ~120nW [Ref: Micro Crystal Switzerland RV-2123-C2]

Leakage Timer with Temperature Compensation 660pW power

but... 275ppm jitter 31ppm/°C temp variation

Previous Voltage Reference Designs

Voltage references used in regulators, timers, radios

- Previous work
 - Consumes 100-1000X more power
 - Typically needs higher supply voltage
- Reasons: transistors in saturated region (power & headroom)

pW Voltage Reference

- New design achieves
 - Ultra-low power down to 2.2pW at Vdd=0.5V
 - Good TC, LS, PSRR, excellent footprint, power

- $VDD_{min} = 0.5V$
- Power = 2.3pW
- TC=19.4ppm/°C
- LS=0.033%/V
- PSRR = -70dB at 100kHz
- Area = $1350 \mu m^2$

Tightening Variability

 1-pt temp trimming over 25 dies

↓ TC and V_{out} spread by 9.6X and 9.8X 25 dies: TC<50ppm, ±0.36% Vout</p>

1.5 mm³ Intraocular Pressure Monitor

- Continuous IOP monitoring
- Wireless communication
- Energy-autonomy
- Device components
 - Solar cell
 - Wireless transceiver
 - Cap to digital converter
 - Processor and memory
 - Power delivery
 - Thin-film Li battery
 - MEMS capacitive sensor
 - Biocompatible housing [Haque, Wise]

IOP Monitor Block Diagram

Cross sectional view of microsystem

Usage Model Example

CDC converts pressure to a digital value

Stores IOP data to a memory mapped location

Usage Model Example

Processor extracts medical information from IOP data

Stores its result into SRAM

Usage Model Example

User wirelessly queries microsystem

Responds by retrieving and transmitting data

Standby Mode

Energy harvesting and low-load power management
 Data stored in SRAM

IOP Transmitter

- Main radio challenge: very small coils
- FSK receiver with dual-resonator LC tanks
- Transmitter sends 1 bit (100ns), drawing from 1.6nF decap, recovers droop (~100us) then sends another bit
- Transmit media is 0.5 mm saline + air
- Transmitter: 4.7nJ/bit, improves upon prior implantable work

Power Delivery and Management

- Battery powers CDC and wireless TRx
- Isolated local TRx power supply prevents catastrophic V_{DD} drop
- CDC and TRx designed with high-V_{TH} thick-t_{OX} IO devices and no bias currents for low leakage during standby mode

Power Delivery and Management

- 8:1 Switch Cap Voltage Regulator (SCVR) delivers 0.45 V
- µP is power gated in standby mode and uses logic devices
- SRAM and WUC use IO devices for low standby leakage
- SCVR clock is reduced to 50 Hz clock in standby mode Bottom Chip Top Chip

Power Delivery and Management

- Solar cell connected when open circuit V_{SOLAR} exceeds V_{0P45}
 - Check voltage on solar cell with small replica
 - Compare using clocked comparator
- SCVR up-converts solar energy to recharge battery

Power Sources

- 0.07 mm² solar cell
- 0.18 µm CMOS
- No post-processing
- 5% solar efficiency

- Cymbet thin-film Li battery
- 1 mm² custom size
- 1µAh capacity
- 40µW peak power

SCVR Measurements

75% efficiency with 90 nW processor load in active mode

40% efficiency with 72 pW load in standby mode

IOP Monitor Power Consumption

- Measure IOP every 15 minutes
- DSP with 10k processor cycles @ 100 kHz per measurement
- Daily wireless transmission of 1344b raw IOP data

Active Mode	Power	Time/Day	Energy/Day
CDC	7.0 μW	19.2 sec	134.8 µJ
Transceiver	47.0 mW	134.4 µsec	6.3 µJ
SCVR	116.9 nW	19.2 sec	2.2 μJ
• µP @ 100 kHz	90.0 nW	19.2 sec	1.7 µJ
Standby Mode	Power	Time/Day	Energy/Day
CDC	172.8 pW	24 hours	14.9 μJ
Transceiver	3.3 nW	24 hours	285.1 µJ
SCVR	174.8 pW	24 hours	15.1 μJ
4kb SRAM	9.8 pW	24 hours	846.7 nJ
• WUC	62.0 pW	24 hours	5.2 µJ

5.3 nW average power \rightarrow 1 month lifetime with no harvesting

PMU Measurements

Leveraging Ideas for Other Domains

<u>3D NTC</u>

- Centip3De, 7-layer 128-core system with stacked DRAM
- NTC: 5-10 GOPS/W general purpose in 130LP

University of Michigan

ULP DSP

- FFT accelerator with record energy efficiency (ISSCC11)
 - 15.8nJ/FFT @ 240MS/s
- Aggressive pipelining to drive down Vmin and Emin
- Minimize leaky memory

41

Conclusions

- Applications of mm-scale computing are endless and often unimaginable today
 - But first the hardware must get there
- Power minimization is paramount
 - Few nW power budget
 - Re-think entire sensor system from bottom up
- For the next decade:
 nanowatt challenge
 - Trickle up effect to servers, mobile platforms
- Acknowledgements:
 - Many UM grad students

