Solid-State Circuits Society

"Where ICs are in the IEEE"

Professional Organization

- 10,000 members
- 70+ chapters located worldwide
- Foster information exchange in electronics
- Distinguished Lectures
- Online tutorials
- International and regional conferences
- Journals \& magazines
- Part of IEEE with 400,000 members

Journal of Solid-State Circuits (JSSC)
> \#1 technical source for circuits
> Most downloaded IEEE journal articles
> Top cited reference in US Patent applications

SOLID-STATY CIRCUITS

Solid-Sate Circuits Magazine
> Discusses historical milestones, trends and future developments
> Articles by leaders from industry and academia in a tutorial and editorial style

International and Regional Conferences
> 4 International Sponsored Conferences
> Technically co-sponsored conferences

Chapter \& DL Events

Swedish SOC Conference (May 2011)

Individual DL
Presentations

SSCS-Italy: International Analog VLSI Workshop (September 2011)

Annual SSCS DL Tour

Why join IEEE and SSCS?

Knowledge ...
staying current with the fast changing world of solid-state circuit technology
Community ...
local and global activities, unparalleled networking opportunities, chapter activities, electing IEEE SSCS leadership
Profession ...
empowering members to build and own their careers, mentoring, making the world a better place
Recognition ...
Best Paper Awards, IEEE Fellow \& Field Awards, Student Travel Grants \& Pre-doctoral Achievement Award

Getting Involved

- Organize chapter events
- Participate in \& organize conferences
- As an author
- As a reviewer
- Compete in a student design contest
- Nominate senior members \& fellows

Energy Limits in A/D Converters

August 29, 2012
 Boris Murmann murmann@stanford.edu

A/D Converter ca. 1954

Figure 4.3: 1954 "DATRAC" 11-bit, 50-kSPS SAR ADC Designed by Bernard M. Gordon at EPSCO
http://www.analog.com/library/analogDialogue/archives/39-06/data_conversion_handbook.html

ADC Landscape in 2004

B. Murmann, "ADC Performance Survey 1997-2012," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.htm|

ADC Landscape in 2012

B. Murmann, "ADC Performance Survey 1997-2012," [Online]. Available: http://www.stanford.edu/~murmann/adcsurvey.htm|

Observation

- ADCs have become substantially "greener" over the years
- Questions
- How much more improvement can we hope for?
- What are the trends and limits for today's popular architectures?
- Can we benefit from further process technology scaling?

Outline

- Fundamental limit
- General trend analysis
- Architecture-specific analysis
- Flash
- Pipeline
- SAR
- Delta-Sigma
- Summary

Fundamental Limit

$S N R=\frac{\frac{1}{2}\left(\frac{V_{F S}}{2}\right)^{2}}{\frac{f_{s}}{C}} \begin{gathered}f_{\text {snyq }} \\ \text { OSR }\end{gathered} \quad P_{\min }=C V_{F S} f_{s} \cdot V_{D D} \quad V_{D D}=V_{F S}$

$$
\mathrm{E}_{\text {min }}=\frac{\mathrm{P}_{\text {min }}}{\mathrm{f}_{\text {snyq }}}=8 \mathrm{kT} \cdot \mathrm{SNR}
$$

ADC Landscape in 2004

ADC Landscape in 2012

Normalized Plot

Aside: Figure of Merit Considerations

- There are (at least) two widely used ADC figures of merit (FOM) used in literature
- Walden FOM
- Energy increases 2x per bit (ENOB)
- Empirical

$$
\mathrm{FOM}=\frac{\text { Power }}{2^{\mathrm{ENOB}} \cdot \mathrm{f}_{\text {snya }}}
$$

- Schreier FOM
- Energy increases 4x per bit (DR)
- Thermal
- Ignores distortion

$$
\mathrm{FOM}=\mathrm{DR}(\mathrm{~dB})+10 \log \left(\frac{\mathrm{BW}}{\mathrm{P}}\right)
$$

FOM Lines

- Best to use thermal FOM for designs above 60dB

Walden FOM vs. Speed

- FOM "corner" around 100...300MHz

Schreier FOM vs. Speed

Energy by Architecture

Flash ADC

- High Speed
- Limited by single comparator plus encoding logic
- High complexity, high input capacitance
- Typically use for resolutions up to 6 bits

Encoder

- Assume a Wallace encoder ("ones counter")
- Uses $\sim 2^{B}-B$ full adders, equivalent to $\sim 5 \cdot\left(2^{B}-B\right)$ gates

$$
\mathrm{E}_{\mathrm{enc}} \cong 5 \cdot\left(2^{\mathrm{B}}-\mathrm{B}\right) \cdot \mathrm{E}_{\mathrm{gate}}
$$

Matching-Limited Comparator

Simple Dynamic Latch
Assuming $\mathrm{C}_{\mathrm{cmin}}=5 \mathrm{fF}$ for wires, clocking, etc.

$$
\begin{aligned}
& \sigma_{\mathrm{VOS}}^{2} \cong \frac{A_{V T}^{2}}{W L}=A_{V T}^{2} \frac{C_{c}}{C_{0 x}} \quad \text { Offset } \\
& \begin{array}{cc}
\mathrm{C}_{\mathrm{c}}=\frac{\mathrm{A}_{\mathrm{VT}}^{2} \mathrm{C}_{\mathrm{ox}}}{\sigma_{\mathrm{VOS}}^{2}}+\mathrm{C}_{\mathrm{cmin}} & \begin{array}{c}
\text { Required } \\
\text { capacitance }
\end{array} \\
3 \sigma_{\mathrm{Vos}}=\frac{1}{4} \frac{\mathrm{~V}_{\text {inpp }}}{2^{B}} & \begin{array}{c}
\text { Confidence } \\
\text { interval }
\end{array}
\end{array} \\
& \mathrm{B} \cong \frac{\mathrm{SNR}[\mathrm{~dB}]+3}{6} \quad \begin{array}{l}
\text { 3dB penalty } \\
\text { accounts for } \\
\text { "DNL noise" }
\end{array}
\end{aligned}
$$

$$
\mathrm{E}_{\mathrm{comp}} \cong(144 \cdot 2^{2 \mathrm{~B}} \cdot \underbrace{\mathrm{C}_{o \mathrm{o}} \mathrm{~A}_{\mathrm{VT}}^{2}}_{\substack{\text { Matching } \\ \text { Energy }}} \cdot \frac{\mathrm{V}_{\mathrm{DD}}^{2}}{\mathrm{~V}_{\text {inpp }}^{2}}+\mathrm{C}_{\mathrm{cmin}} \mathrm{~V}_{\mathrm{DD}}^{2}) \cdot\left(2^{\mathrm{B}}-1\right)
$$

Typical Process Parameters

Process $[n m]$	$\mathbf{A}_{V T}$ $[\mathrm{mV}-\mu \mathrm{m}]$	C_{ox} $\left[\mathrm{fF} / \mu \mathrm{m}^{2}\right]$	$\mathrm{A}_{V{ }^{2}{ }^{2} \mathrm{C}_{\mathrm{ox}} / \mathrm{kT}}$	$\mathrm{E}_{\mathrm{gate}}[\mathrm{fJ}]$
250	8	9	139	80
130	4	14	54	10
65	3	17	37	3
32	1.5	43	23	1.5

[1] Van der Plas, ISSCC 2006
[2] El-Chammas, VLSI 2010
[3] Verbruggen, VLSI 2008
[4] Daly, ISSCC 2008
[5] Chen, VLSI 2008
[6] Geelen, ISSCC 2001 (!)

Impact of Scaling

Impact of Calibration (1)

Ways to Approach $E_{\text {min }}$ (1)

- Offset calibrate each comparator
- Using trim-DACs
[El-Chammas, VLSI 2010]

Ways to Approach $\mathrm{E}_{\text {min }}$ (2)

- Find ways to reduce clock power
- Example: resonant clocking

[Ma, ESSCIRC 2011]

Raison D'Être for Architectures Other than Flash...

Pipeline ADC

Pipelining - A Very Old Idea

Typical Stage Implementation

Simplified Model for Energy Calculation

- Considering the most basic case
- Stage gain = $2 \rightarrow 1$ bit resolution per stage
- Capacitances scaled down by a factor of two from stage to stage (first order optimum)
- No front-end track-and-hold
- Neglect comparator energy

Simplified Gain Stage Model

Feedback factor

Assumptions
Closed-loop gain $=2$
Infinite transistor $\mathrm{f}_{\mathrm{T}}\left(\mathrm{C}_{\mathrm{gs}}=0\right)$
Thermal noise factor $\gamma=1$, no flicker noise

Bias device has same noise as amplifier device
Linear settling only (no slewing)
$C_{\text {eff }}=\frac{C}{2}(1-\beta)+\frac{C}{2}=\frac{5}{6} C$
Effective load capacitance

$$
\mathrm{N}_{\text {out }}=2 \frac{1}{\beta} \frac{\mathrm{kT}}{\mathrm{C}_{\text {eff }}}=6 \frac{\mathrm{kT}}{\mathrm{C}_{\text {eff }}}=5 \frac{\mathrm{kT}}{\mathrm{C}}
$$

Total integrated output noise

Total Pipeline Noise

$$
\begin{aligned}
\mathrm{N}_{\text {in,tot }} & =\underbrace{\frac{\mathrm{kT}}{\mathrm{C}}\left(1+\frac{1}{2}\right)}_{\text {First sampler }}+5 \frac{\mathrm{kT}}{\mathrm{C}}\left\{\frac{1}{2^{2}}+\frac{1}{\frac{1}{2} 4^{2}}+\frac{1}{\frac{1}{4} 8^{2}}+\ldots\right\} \\
& =\frac{3 \mathrm{kT}}{2} \frac{\mathrm{kT}}{\mathrm{C}}+5 \frac{1}{\mathrm{C}}\left\{\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots\right\} \\
& \cong 4 \frac{\mathrm{kT}}{\mathrm{C}}
\end{aligned}
$$

Key Constraints

$$
\begin{gathered}
\mathrm{SNR} \cong \frac{\frac{1}{2}\left(\frac{\mathrm{~V}_{\text {inpp }}}{2}\right)^{2}}{4 \frac{\mathrm{kT}}{\mathrm{C}}} \\
\tau=\frac{\mathrm{C}_{\text {eff }}}{\beta \mathrm{g}_{\mathrm{m}}}=\frac{\mathrm{T}_{\mathrm{s}} / 2}{\ln \left(\frac{1}{\varepsilon_{d}}\right)} \cong \frac{\mathrm{T}_{\mathrm{s}} / 2}{\ln (\sqrt{\mathrm{SNR})}} \\
\mathrm{P}=\mathrm{V}_{\mathrm{DD}} \frac{g_{m}}{\left(\frac{g_{m}}{I_{D}}\right)}
\end{gathered}
$$

Thermal noise sets C

Settling time sets g_{m}

g_{m} sets power

Pulling It All Together

> Settling
> "Number of τ "
> $\mathrm{E}_{\text {pipe }}=640 \cdot \mathrm{kT} \cdot \mathrm{SNDR} \cdot \ln \left(\sqrt{\text { Excess noise }} \begin{array}{c}\text { Non-unity feedback }\end{array}\right) \cdot \underbrace{}_{\text {Supply }_{\left(\frac{V_{D D}}{V_{\text {inpp }}}\right)^{2}}^{\left(\frac{1}{V_{D D}} \cdot \frac{1}{g_{m}}\right.} \frac{1}{I_{D}}}$ factor efficiency

- For SNDR $=\{60 . .80\} \mathrm{dB}, \mathrm{V}_{\mathrm{DD}}=1 \mathrm{~V}, \mathrm{~g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}=1 /(1.5 \mathrm{kT} / \mathrm{q})$, $\mathrm{V}_{\text {inpp }}=2 / 3 \mathrm{~V}$, the entire expression becomes

$$
\mathrm{E}_{\text {pipe }} \cong\{388 \ldots 517\} \cdot \mathrm{kT} \cdot \text { SNDR }
$$

- For realistic numbers at low resolution, we must introduce a bound for minimum component sizes

Energy Bound

- Assume that in each stage $\mathrm{C}_{\text {eff }}>\mathrm{C}_{\text {effmin }}=50 \mathrm{fF}$
- For n stages, detailed analysis shows that this leads to a minimum energy of

$$
E_{\text {pipe, min }}=2 n \cdot C_{\text {eff min }} V_{D D} \frac{\ln (\sqrt{S N D R})}{\beta\left(\frac{g_{m}}{I_{D}}\right)}
$$

- Adding this overhead to $\mathrm{E}_{\text {pipe }}$ gives the energy curve shown on the next slide

Comparison to State-of-the-Art

[1] Verbruggen, ISSCC 2012
[2] Chu, VLSI 2010
[3] Lee, VLSI 2010
[4] Anthony, VLSI 2008
[5] Lee, ISSCC 2012
[6] Hershberg, ISSCC 2012

Ways to Approach $\mathrm{E}_{\text {min }}$ (1)

[Chu, VLSI 2010]

- Comparator-based SC circuits replace op-amps with comparators
- Current ramp outputs
- Essentially "class-B" (all charge goes to load)

Ways to Approach $\mathrm{E}_{\text {min }}$ (2)

- Use only one residue amplifier
- Build sub-ADCs using energy efficient SAR ADCs
- Essential idea: minimize overhead as much as possible

Ways to Approach $\mathrm{E}_{\text {min }}$ (3)

- Completely new idea: ring amplifier
- As in "ring oscillator"

Ways to Approach $\mathrm{E}_{\text {min }}$ (4)

- Class-C-like oscillations until charge transfer is complete
- Very energy efficient

Expected Impact of Technology Scaling

- Low resolution (SNDR ~ 40-60dB)
- Continue to benefit from scaling
- Expect energy reductions due to reduced $\mathrm{C}_{\text {min }}$ and reduction of CV^{2}-type contributors
- High resolution (SNDR ~ 70dB+)
- It appears that future improvements will have to come from architectural innovation
- Technology scaling will not help much and is in fact often perceived as a negative factor in noise limited designs (due to reduced V_{DD})
- Let's have a closer look at this...

A Closer Look at the Impact of Technology Scaling

- As we have shown

$$
E \propto \frac{1}{V_{D D}} \cdot\left(\frac{V_{D D}}{V_{\text {inpp }}}\right)^{2} \cdot \frac{1}{\left(\frac{g_{m}}{I_{D}}\right)}
$$

- Low V_{DD} hurts, indeed, but one should realize that this is not the only factor
- Designers have worked hard to maintain (if not improve) $\mathrm{V}_{\text {inpp }} / \mathrm{V}_{\mathrm{DD}}$ in low-voltage designs
- How about $\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}$?

g_{m} / I_{D} Considerations (1)

- Largest value occurs in subthreshold $\sim(1.5 \cdot \mathrm{kT} / \mathrm{q})^{-1}$
- Range of g_{m} / I_{D} does not scale (much) with technology

$\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}$ Considerations (2)

- f_{T} is small in subthreshold region
- Must look at g_{m} / I_{D} for given f_{T} requirement to compare technologies

$\mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}$ Considerations (3)

- Example
$-f_{T}=30 G H z$
$-90 n m: g_{m} / l_{D}=18 S / A$
$-180 \mathrm{~nm}: \mathrm{g}_{\mathrm{m}} / \mathrm{I}_{\mathrm{D}}=9 \mathrm{~S} / \mathrm{A}$
- For a given $f_{T}, 90 n m$ device takes less current to produce same g_{m}
- Helps mitigate, if not eliminate penalty due to lower $\mathrm{V}_{\mathrm{DD}}(!)$

ADC Energy for 90nm and Below

Successive Approximation Register ADC

- Input is approximated via a binary search
- Relatively low complexity
- Moderate speed, since at least B+1 clock cycles are needed for one conversion
- Precision is determined by DAC and comparator

Classical Implementation

DAC Energy

- Is a strong function of the switching scheme
- Excluding adiabatic approaches, the "merged capacitor switching" scheme achieves minimum possible energy
[Hariprasath, Electronics Lett., 4/2010]

$$
E_{d a c} \cong \sum_{i=1}^{n-1} 2^{n-3-2 i}\left(2^{i}-1\right) C V_{\text {ref }}^{2}
$$

For 10 bits:

$$
\mathrm{E}_{\mathrm{dac}} \cong 85 \mathrm{CV}_{\text {ref }}^{2}
$$

DAC Unit Capacitor Size (C)

- Is either set by noise, matching, or minimum realizable capacitance (assume $\mathrm{C}_{\text {min }}=0.5 \mathrm{fF}$)
- We will exclude matching limitations here, since these can be addressed through calibration
- Assuming that one third of the total noise power is allocated for the DAC, we have

$$
\mathrm{SNR} \cong \frac{\frac{1}{2}\left(\frac{\mathrm{~V}_{\text {inpp }}}{2}\right)^{2}}{\frac{\mathrm{kT}}{2^{\mathrm{B}} \mathrm{C}}+\mathrm{N}_{\text {comp }}+\mathrm{N}_{\text {quant }}}
$$

$$
\mathrm{C}=24 \mathrm{kT} \cdot \mathrm{SNR} \cdot \frac{1}{2^{\mathrm{B}} \cdot \mathrm{~V}_{\text {inpp }}^{2}}+\mathrm{C}_{\text {min }}
$$

Comparator

Simple Dynamic Latch (Assuming $\mathrm{C}_{\mathrm{cmin}}=5 \mathrm{fF}$)

$$
\begin{gathered}
\mathrm{N}_{\text {in }} \cong \frac{\mathrm{kT}}{\mathrm{C}_{\mathrm{c}}} \quad \text { Thermal Noise } \\
\mathrm{C}_{\mathrm{c}}=24 \mathrm{kT} \cdot \mathrm{SNR} \cdot \frac{1}{\mathrm{~V}_{\text {inpp }}^{2}}+\mathrm{C}_{\mathrm{c} \text { min }} \\
\mathrm{B} \cong \frac{\mathrm{SNR}[\mathrm{~dB}]-3}{6}
\end{gathered}
$$

$$
\mathrm{E}_{\mathrm{comp}} \cong\left(24 \mathrm{kT} \cdot \mathrm{SNR} \cdot \frac{\mathrm{~V}_{\mathrm{DD}}^{2}}{\mathrm{~V}_{\mathrm{inpp}}^{2}}+\mathrm{C}_{\mathrm{c} \min } \mathrm{~V}_{\mathrm{DD}}^{2}\right) \cdot \frac{1}{2} \cdot \mathrm{~B}
$$

Comparison to State-of-the-Art

[1] Shikata, VLSI 2011
[2] Van Elzakker, ISSCC 2008
[3] Harpe, ISSCC 2012
[4] Liu, VLSI 2010
[5] Liu, ISSCC 2010
[6] Hurrell, ISSCC 2010
[7] Hesener, ISSCC 2007

Ways to Approach $E_{\text {min }}(1)$

Ways to Approach $\mathrm{E}_{\text {min }}$ (2)

- Minimize unit caps as much as possible for moderate resolution designs
- Scaling helps!
$0.5 f F$ unit capacitors

[Shikata, VLSI 2011]

Delta-Sigma ADCs

- Discrete time
- Energy is dominated by the first-stage switched-capacitor integrator
- Energy analysis is similar to that of a pipeline stage
- Continuous time
- Energy is dominated by the noise and distortion requirements of the first-stage continuous time integrator
- Noise sets resistance level, distortion sets amplifier current level
- Interestingly, this leads to about the same energy limits as in a discrete-time design

Overall Picture

Summary

- No matter how you look at it, today's ADCs are extremely well optimized
- The main trend is that the "thermal knee" shifts very rapidly toward lower resolutions
- Thanks to process scaling and creative design
- At high resolution, we seem to be stuck at $E / E_{\text {min }} \sim 100$
- The factor 100 is due to architectural complexity and inefficiency: excess noise, signal < supply, non-noise limited circuitry, class-A biasing, ...
- This will be very hard to change
- Scaling won't help (much)
- Some of the recent data points already use class-B-like amplification
- Can we somehow recycle the signal charge?
- Are there completely new ways to approach A/D conversion?

Darpa Has Seen the Future of Computing ... And It's Analog

How would non-digital chips work? Darpa paints a picture. Image: Darpa

