VCO-Based Quantizers – Has Their Time Arrived?

IEEE Distinguished Lecture Austin, TX

Michael H. Perrott
October 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

Why Should We Consider VCO-Based Quantizers?

- Advanced CMOS processes improve digital circuits
 - Faster speed, higher density
- But, analog circuits suffer
 - Reduced intrinsic device gain (g_mr_o)
 - Reduced supply voltages
- VCO-based quantizers utilize time as the signal
 - Take advantage of digital improvements
 - Offer a simple design that is high speed, multi-bit

Using a Voltage Controlled Oscillator as an ADC

- Input: analog tuning of ring oscillator frequency
- Output: count of oscillator cycles per Ref clock period

Phase Sampling Can Be More Efficient than Counting

- Alters the number of transitions per ref clock period
- Digital circuits compute transition count at each sample

VCO-Based Quantizer Shapes Delay Mismatch

- Barrel shifting through delay elements
 - Mismatch between delay elements is first order shaped

Advantages of VCO-based Quantization

- Highly digital implementation
- Offset and mismatch is not of critical concern
- Metastability behavior is potentially improved
- SNR improves due to quantization noise shaping

Implementation is high speed, low power, low area

Modeling a VCO-Based Quantizer

- VCO provides quantization, register provides sampling
 - Model as separate blocks for convenience
- XOR operation yields first order difference operation
 - Extracts VCO frequency from sampled VCO phase

Corresponding Frequency Domain Model

 $2\pi K_v$

VCO

VCO K_v

Nonlinearity

- **VCO:** nonlinear integrator
- Phase sampler: scale by 1/T
- Quantizer: adds noise
- First order diff: shapes noise
 - Key non-idealities:
 - **¬** VCO K_v nonlinearity
 - **VCO** noise
 - **Quantization noise**

VCO

First Order

Out

Quantizer Difference

Example Design Point for Illustration

 $2\pi K_v$

VCO

VCO K_v

Nonlinearity

- Ref clk: 1/T = 1 GHz
- 31 stage ring oscillator
 - Nominal delay per stage: 65 ps
- $K_{VCO} = 500 \text{ MHz/V}$
 - **±5%** linearity
- VCO noise: -100 dBc/Hz at 10 MHz offset

Example SNDR with 20 MHz BW (1 GHz Sample Rate)

Key Issues: Nonlinearity and VCO Phase Noise

- VCO K_v nonlinearity
 - **Limits SNDR with distortion**
 - Linear K_v oscillator difficult
- VCO phase noise
 - **Degrades SNR and SNDR**
 - Improves with area/power

Conditions	SNDR
ldeal	68.2 dB
VCO Thermal Noise	65.4 dB
VCO Thermal + Nonlinearity	32.2 dB

Pseudo-Differential Implementation

- Even order nonlinearity reduced
- VCO phase noise reduced 3dB (double area/power)
- Benchmark: 44 dB SNDR with 20 kHz BW
 - Impressive 0.2V supply, 440 nW power in 90nm CMOS

Digital Correction of Nonlinearity

- Highly digital implementation (65nm CMOS)
 - ~70/78 dB SNDR at 18/4.5MHz BW (FOM: 297fJ/conv)
- Issues: calibration time, only first order noise shaping

Reducing the Impact of Nonlinearity using Feedback

Leveraging Barrel Shifting in the Quantizer

Intrinsic barrel shifting of the DAC elements is achieved!

A Geometric View of the VCO Quantizer/DEM and DAC

A Second Order Continuous-Time Delta-Sigma ADC

- Second order dynamics achieved with only one op-amp
 - Op-amp forms one integrator
 - I_{dac1} and passive network form another (lossy) integrator
 - Minor loop feedback compensates for quantizer delay
- Third order noise shaping due to VCO-based quantizer

Custom IC Implementing the Prototype

18

Design of the VCO Core Inverter Cell

Core Inverter Cell

Tuning Characteristic

- 31 stages
- Fast for good resolution (< 100 psec / stage)</p>
- Large K_{VCO} (600-700 MHz) with good dynamic range
- 2 bits of coarse tuning for process variations
- < 8 mW for 1 GSPS 5-bit quantizer / DEM</p>

Opamp Design is Straightforward

Simulated Performance:

- $A_{V} = 55 \text{ dB}$
- GBW = 2 GHz
- $P_{\text{DISS}} = 15 \text{ mW}$

High SNR of VCO-based quantizer allows reduced opamp gain (A_v)

Primary Feedback DAC Schematic

- Fully differential RZ pulses
- Triple-source current steering
- I_{OFF} is terminated off-chip

Measured Spectrum From Prototype

Measured SNR/SNDR Vs. Input Amplitude (20 MHz BW)

How Do We Overcome K_v Nonlinearity to Improve SNDR?

Voltage-to-Frequency VCO-based ADC (1st Order $\Delta - \Sigma$)

- Typically, VCO frequency is desired output variable
 - Input uses full voltage-to-frequency (K_v) characteristic
 - Strong distortion at extreme ends of the K_v curve

Voltage-to-Phase Approach (1st Order $\Delta - \Sigma$)

- VCO output phase is now the output variable
 - Small perturbation on V_{tune} allows large VCO phase shift
 - VCO acts as a CT integrator with infinite DC gain

High Speed Implementation of Phase-Based ADC

High SNDR requires higher order Δ – Σ ...

Proposed 4th Order Architecture for Improved SNDR

- Goal: ~80 dB SNDR with 20 MHz bandwidth
 - Use 4th order loop filter, 4-bit VCO-based quantizer
 - 4-bit quantizer: tradeoff resolution versus DEM overhead
- Combined frequency/phase feedback for stability/SNDR

Schematic of Proposed Architecture

- Opamp-RC integrators
 - Better linearity than Gm-C, though higher power

Schematic of Proposed Architecture

- Passive summation performed with resistors
 - Low power
 - Design carefully to minimize impact of parasitic pole

Schematic of Proposed Architecture

- DEM implicitly performed on frequency feedback (Miller)
 - RZ DAC unit elements

Behavioral Simulation (available at www.cppsim.com)

VCO nonlinearity is *not* the bottleneck for achievable SNDR!

Circuit Details

VCO Integrator Schematic

- 15 stage current starved ring-VCO
 - 7 stage ring-VCO shown for simplicity
 - Pseudo differential control
 - PVT variation accommodated by enable switches on PMOS/NMOS
- Rail-to-rail VCO output phase signals (VDD to GND)

VCO Quantizer Schematic

- Phase quantization with sense-amp flip-flop
 - Single phase clocking
- Rail-to-rail quantizer output signals (VDD to GND)

Nikolic et al, JSSC 2000

Phase Quantizer, Phase and Frequency Detector

- Highly digital implementation
 - Phase sampled & quantized by SAFF
 - XOR phase and frequency detection with FF and XOR
- Automatic DWA for frequency detector output code
 - Must explicitly perform DWA on phase detector output code

Main Feedback DAC Schematic

Low-swing buffers

- Keeps switch devices in saturation
- Fast "on"/Slow "off" reduces glitches at DAC output
- Uses external Vdd/Vss

Resistor degeneration minimizes 1/f noise

Bit-Slice of Minor Loop RZ DAC

- RZ DAC unit elements transition every sample period
 - Breaks code-dependency of transient mismatch (ISI)
 - Uses full-swing logic signals for switching

Opamp Schematic

Parameter	Value
DC Gain	63 dB
Unity-Gain Frequency	4.0 GHz
Phase Margin	55°
Input Referred Noise Power (20 MHz BW)	11 uV (rms)
Power (V _{DD} = 1.5 V)	22.5 mW

Modified nested Miller opamp

- 4 cascaded gain stages, 2 feedforward stages
- Behaves as 2-stage Miller near cross-over frequencies
- Opamp 1 power is 2X of opamps 2 and 3 (for low noise)

DEM Architecture (3-bit example)

- Achieves low-delay to allow 4-bit DEM at 900 MHz
 - Delay is half a sample period

Die Photo (0.13u CMOS)

- Active area
 - 0.45 mm²
- Sampling Freq
 - 900 MHz
- Input BW
 - 20 MHz
- Supply Voltage
 - 1.5 V
- Analog Power
 - 69 mW
- Digital Power
 - 18 mW

Measured Results

- 78 dB Peak SNDR performance in 20 MHz
 - Bottleneck: transient mismatch from main feedback DAC
- Architecture robust to VCO K_v non-linearity

Figure of Merit: 330 fJ/Conv with 78 dB SNDR

Behavioral Model Reveals Key Performance Issue

Transient DAC mismatch is likely the key bottleneck

Summary of Fourth Order CT Delta-Sigma ADC

Consider Time-to-Digital Conversion

- Quantization in time achieved with purely digital gates
 - Easy implementation, resolution improving with Moore's law

How can we leverage this for quantizing an analog voltage?

Adding Voltage-to-Time Conversion

- Analog voltage is converted into edge times
 - Time-to-digital converter then turns the edge times into digitized values
- Key issues
 - Non-uniform sampling
 - Noise, nonlinearity

Is there a simple implementation for the Voltage-to-Time Converter?

A Highly Digital Implementation

- A voltage-controlled ring oscillator offers a simple voltage-to-time structure
 - Non-uniform sampling is still an issue

We can further simplify this implementation and lower the impact of non-uniform sampling

Making Use of the Ring Oscillator Delay Cells

- Utilize all ring oscillator outputs and remove TDC delays
 - Simpler implementation
- TDC output now samples/quantizes phase state of oscillator

Improved Non-Uniform Sampling Behavior

- Oscillator edges correspond to a sample window of the input
- Sampling the oscillator phase state yields sample windows that are much more closely aligned to the TDC clk

Key Observation

- The VCO-Based ADC provides an excellent vehicle for using a conventional TDC for analog-to-digital conversion
 - Efficiently combines voltage-to-time and time-to-digital conversion
 - Minimizes issue of non-uniform sampling

VCO-based ADCs are very efficient "time-based" circuits

Some Other VCO-based ADC Approaches

Recent Performance of VCO-Based ADCs

A Simple Interface Between Analog and Digital

- Accumulator reduces impact of nonlinearity
- Gain reduces impact of VCO phase noise

Plays well to the strengths and weaknesses of VCO-based quantizers

Conclusion on VCO-Based Quantizers

- Leverage Moore's law
 - Consist of ring oscillator(s) and digital logic
 - Improved speed, power, area with advanced CMOS
- Are relatively easy to design
 - First order shaping of quantization noise and mismatch
 - Infinite DC gain when used as an integrator
- Have shortcomings that can be overcome
 - Nonlinearity: utilize calibration or feedback
 - VCO phase noise: utilize feedback

Performance is now at state of the art at 78dB SNDR and improving steadily