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Why Should We Consider VCO-Based Quantizers?

 Advanced CMOS processes improve digital circuits
- Faster speed, higher density

 But, analog circuits suffer
- Reduced intrinsic device gain (gmro)
- Reduced supply voltages

 VCO-based quantizers utilize time as the signal
- Take advantage of digital improvements
- Offer a simple design that is high speed, multi-bit

2



3

 Input:  analog tuning of ring oscillator frequency
 Output:  count of oscillator cycles per Ref clock period
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Using a Voltage Controlled Oscillator as an ADC

Alon, JSSC 2005
Kim, ISCAS 2006

Wismar, ESSCIRC 2006



N-Stage Ring OscillatorVtune

Ref N-bit Register

N-bit Register

N XOR Gates

Adder

Out

N-Stage Ring OscillatorVtune

Sample 1

Sample 2

Sample 4

Sample 3

Phase Sampling Can Be More Efficient than Counting

 Vtune controls delay of cells
- Alters the number of transitions per ref clock period

 Digital circuits compute transition count at each sample
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VCO-Based Quantizer Shapes Delay Mismatch

 Barrel shifting through delay elements
- Mismatch between delay elements is first order shaped

Measurement 1

Measurement 2

Measurement 3

Measurement 4
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Advantages of VCO-based Quantization

 Highly digital implementation
 Offset and mismatch is not of critical concern
 Metastability behavior is potentially improved
 SNR improves due to quantization noise shaping
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Implementation is high speed, low power, low area
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Modeling a VCO-Based Quantizer

 VCO provides quantization, register provides sampling
- Model as separate blocks for convenience

 XOR operation yields first order difference operation
- Extracts VCO frequency from sampled VCO phase

Wismar, Wisland,
Andreani, ESSCIRC 2006
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Corresponding Frequency Domain Model

 VCO:  nonlinear integrator
 Phase sampler:  scale by 1/T
 Quantizer: adds noise
 First order diff:  shapes noise

 Key non-idealities:
- VCO Kv nonlinearity
- VCO noise
- Quantization noise
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 Ref clk:  1/T = 1 GHz 
 31 stage ring oscillator

- Nominal delay per 
stage: 65 ps

 KVCO = 500 MHz/V
- 5% linearity

 VCO noise:  -100 dBc/Hz  
at 10 MHz offset

Example Design Point for Illustration
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Example SNDR with 20 MHz BW (1 GHz Sample Rate)
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Key Issues:  Nonlinearity and VCO Phase Noise

Conditions SNDR

Ideal 68.2 dB

VCO Thermal 
Noise 65.4 dB

VCO Thermal 
+ Nonlinearity 32.2 dB

 VCO Kv nonlinearity
- Limits SNDR with distortion
- Linear Kv oscillator difficult

 VCO phase noise
- Degrades SNR and SNDR
- Improves with area/power 



Pseudo-Differential Implementation

 Even order nonlinearity reduced 
 VCO phase noise reduced 3dB  (double area/power)
 Benchmark:  44 dB SNDR with 20 kHz BW

- Impressive 0.2V supply, 440 nW power in 90nm CMOS
12

VCO

1- z-1

Quantizer
First Order
Difference

Ref

Vin Out

VCO

1- z-1

Quantizer First Order
Difference

Vin Out

Wismar, Wisland,
Andreani, ESSCIRC 2006



Digital Correction of Nonlinearity

 Highly digital implementation (65nm CMOS)
- ~70/78 dB SNDR at 18/4.5MHz BW  (FOM: 297fJ/conv)

 Issues:  calibration time, only first order noise shaping
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Reducing the Impact of Nonlinearity using Feedback

 Continuous-time  ADC
- VCO-based quantizer provides 

multi-bit implementation with 
first order noise shaping

 Gain before VCO quantizer
- Suppresses VCO nonlinearity
- Suppresses VCO phase noise

Iwata, Sakimura, 
TCAS II, 1999

Naiknaware, Tang, 
Fiez, TCAS II, 2000
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Leveraging Barrel Shifting in the Quantizer

 Consider direct 
connection of the 
quantizer output to a 
series of 1-bit DACs
- Add the DAC 

outputs together

Intrinsic barrel shifting of the DAC elements is achieved!

Miller Patent, 2004
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A Geometric View of the VCO Quantizer/DEM and DAC
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A Second Order Continuous-Time Delta-Sigma ADC

 Second order dynamics achieved with only one op-amp
- Op-amp forms one integrator
- Idac1 and passive network form another (lossy) integrator
- Minor loop feedback compensates for quantizer delay

 Third order noise shaping due to VCO-based quantizer
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Custom IC Implementing the Prototype
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Straayer, Perrott
VLSI 2007

 0.13u CMOS
 Power:  40 mW
 Active area:  700u X 700u
 Peak SNDR:  67 dB (20 MHz BW)
 Efficiency:  0.5 pJ/conv. step
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Design of the VCO Core Inverter Cell
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Tuning Characteristic

 31 stages
 Fast for good resolution (< 100 psec / stage)
 Large KVCO (600-700 MHz) with good dynamic range
 2 bits of coarse tuning for process variations
 < 8 mW for 1 GSPS 5-bit quantizer / DEM 19



Opamp Design is Straightforward

Simulated Performance:
 AV = 55 dB
 GBW = 2 GHz 
 PDISS = 15 mW

High SNR of
VCO-based

quantizer allows 
reduced

opamp gain (Av)
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Primary Feedback DAC Schematic

 Fully differential RZ pulses
 Triple-source current steering
 IOFF is terminated off-chip

21



Measured Spectrum From Prototype
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Measured SNR/SNDR Vs. Input Amplitude (20 MHz BW)
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How Do We Overcome Kv Nonlinearity to Improve 
SNDR?
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Voltage-to-Frequency VCO-based ADC (1st Order )

 Typically, VCO frequency is desired output variable
- Input uses full voltage-to-frequency (Kv) characteristic
- Strong distortion at extreme ends of the Kv curve
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Voltage-to-Phase Approach (1st Order )

 VCO output phase is now the output variable
- Small perturbation on Vtune allows large VCO phase shift
- VCO acts as a CT integrator with infinite DC gain
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High Speed Implementation of Phase-Based ADC
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High SNDR requires higher order  …
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Proposed 4th Order Architecture for Improved SNDR

 Goal:  ~80 dB SNDR with 20 MHz bandwidth
- Use 4th order loop filter, 4-bit VCO-based quantizer
- 4-bit quantizer:   tradeoff resolution versus DEM overhead

 Combined frequency/phase feedback for stability/SNDR
28



Schematic of Proposed Architecture

 Opamp-RC integrators
- Better linearity than Gm-C, though higher power

Explicit
 DWA
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Schematic of Proposed Architecture

 Passive summation performed with resistors
- Low power
- Design carefully to minimize impact of parasitic pole

Explicit
 DWA
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Schematic of Proposed Architecture

 DEM explicitly performed on phase feedback
- NRZ DAC unit elements

 DEM implicitly performed on frequency feedback (Miller)
- RZ DAC unit elements 31



Behavioral Simulation (available at www.cppsim.com) 

 VCO Kv non-
linearity

 Device noise
 Amplifier finite 

gain, finite BW
 DAC and VCO 

unit element 
mismatch

Key Nonidealities

VCO nonlinearity is not the bottleneck for achievable SNDR!
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Circuit Details
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VCO Integrator Schematic

 15 stage current 
starved ring-VCO 
- 7 stage ring-VCO 

shown for 
simplicity

- Pseudo 
differential control

- PVT variation 
accommodated by 
enable switches 
on PMOS/NMOS

 Rail-to-rail VCO 
output phase signals 
(VDD to GND)

Straayer, VLSI 2007
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VCO Quantizer Schematic

 Phase 
quantization 
with sense-
amp flip-flop 
- Single 

phase 
clocking

 Rail-to-rail 
quantizer
output 
signals (VDD 
to GND)

Nikolic et al, JSSC 2000
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Phase Quantizer, Phase and Frequency Detector
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Frequency Output
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 Highly digital 
implementation
- Phase sampled & 

quantized by SAFF
- XOR phase and 

frequency 
detection with FF 
and XOR

 Automatic DWA for 
frequency detector 
output code
- Must explicitly 

perform DWA on 
phase detector 
output code
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Main Feedback DAC Schematic

 Low-swing 
buffers
- Keeps switch 

devices in 
saturation

- Fast “on”/Slow 
“off” reduces 
glitches at DAC 
output

- Uses external 
Vdd/Vss

 Resistor 
degeneration 
minimizes 1/f 
noise

Yan et al
JSSC 2004
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Bit-Slice of Minor Loop RZ DAC

 RZ DAC unit elements transition every sample period
- Breaks code-dependency of transient mismatch (ISI)
- Uses full-swing logic signals for switching
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Opamp Schematic

 Modified nested Miller opamp
- 4 cascaded gain stages, 2 

feedforward stages
- Behaves as 2-stage Miller near 

cross-over frequencies
- Opamp 1 power is 2X of 

opamps 2 and 3 (for low noise)

Parameter Value
DC Gain 63 dB
Unity-Gain Frequency 4.0 GHz
Phase Margin 55°
Input Referred Noise 
Power (20 MHz BW)

11 uV 
(rms)

Power (VDD = 1.5 V) 22.5 mW

Mitteregger et al, JSSC 2006
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DEM Architecture (3-bit example)

 Achieves low-delay to allow 4-bit DEM at 900 MHz
- Delay is half a sample period

Therm. to
  Binary

Barrel Shift
8 8

5 2 3 65 2 3 6

3 3

Accumulator

clk

NRZ
DAC
Inputs

Phase
Quantizer
Output

See also:
Yang

ISSCC 2008
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Die Photo (0.13u CMOS)

Die photo courtesy of Annie Wang (MTL)
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 Active area
 0.45 mm2

 Sampling Freq
 900 MHz

 Input BW
 20 MHz

 Supply Voltage
 1.5 V

 Analog Power
 69 mW

 Digital Power
 18 mW
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Measured Results

 78 dB Peak SNDR performance in 20 MHz
- Bottleneck:  transient mismatch from main feedback DAC

 Architecture robust to VCO Kv non-linearity

100,000 pt. FFT

Peak SNDR = 78.1 dB
Peak SNR = 81.2 dB
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Figure of Merit:  330 fJ/Conv with 78 dB SNDR



Transient DAC mismatch is likely the key bottleneck

Behavioral Model Reveals Key Performance Issue

 Amplifier 
nonlinearity 
degrades 
SNDR to 81 dB 

 DAC transient 
mismatch 
degrades 
SNDR to 78 dB
- DEM does 

not help this
- Could be 

improved 
with dual RZ 
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Explicit
 DWA

44

Summary of Fourth Order CT Delta-Sigma ADC

 Peak SNDR of 78 dB with     
20 MHz bandwidth
 Figure of merit:  330 fJ/conv

Park, Perrott
JSSC, Dec. 2009

130nm CMOS



Consider  Time-to-Digital Conversion

Time
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 Quantization in time achieved with purely digital gates
- Easy implementation, resolution improving with Moore’s law

How can we leverage this for quantizing an analog voltage?
45



Adding Voltage-to-Time Conversion

 Analog voltage is converted into edge times
- Time-to-digital converter then turns the edge times 

into digitized values
 Key issues

- Non-uniform sampling
- Noise, nonlinearity

Naraghi, Courcy, Flynn, ISSCC 2009 
clk(t)

Time

-to-

Digital

out[k]Voltage

-to-

Time

tin(t)in(t)

Is there a simple implementation for
the Voltage-to-Time Converter?
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A Highly Digital Implementation

 A voltage-controlled ring oscillator offers a 
simple voltage-to-time structure
- Non-uniform sampling is still an issue
We can further simplify this implementation and 

lower the impact of non-uniform sampling
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Making Use of the Ring Oscillator Delay Cells

 Utilize all ring oscillator outputs and remove TDC delays
- Simpler implementation

 TDC output now samples/quantizes phase state of oscillator
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Improved Non-Uniform Sampling Behavior

 Oscillator edges correspond to a sample window of the input
 Sampling the oscillator phase state yields sample windows 

that are much more closely aligned to the TDC clk
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Key Observation

 The VCO-Based ADC provides an excellent vehicle for 
using a conventional TDC for analog-to-digital conversion
- Efficiently combines voltage-to-time and time-to-digital 

conversion
- Minimizes issue of non-uniform sampling
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VCO-based ADCs are very efficient “time-based”  circuits
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Some Other VCO-based ADC Approaches
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Recent Performance of VCO-Based ADCs



Plays well to the strengths and weaknesses of
VCO-based quantizers

A Simple Interface Between Analog and Digital

 Accumulator reduces impact of nonlinearity
 Gain reduces impact of VCO phase noise
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Hamilton, Yan, Viswanathan

TCAS II, Nov 2010



Conclusion on VCO-Based Quantizers

 Leverage Moore’s law
- Consist of ring oscillator(s) and digital logic
- Improved speed, power, area with advanced CMOS 

 Are relatively easy to design
- First order shaping of quantization noise and mismatch
- Infinite DC gain when used as an integrator

 Have shortcomings that can be overcome
- Nonlinearity:  utilize calibration or feedback
- VCO phase noise:  utilize feedback
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Performance is now at state of the art at 78dB SNDR
and improving steadily


