VCO-Based Quantizers – Has Their Time Arrived?

IEEE Distinguished Lecture Austin, TX

Michael H. Perrott October 2012

Copyright © 2012 by Michael H. Perrott All rights reserved.

Why Should We Consider VCO-Based Quantizers?

- Advanced CMOS processes improve digital circuits
 - Faster speed, higher density
- But, analog circuits suffer
 - Reduced intrinsic device gain (g_mr_o)
 - Reduced supply voltages
- VCO-based quantizers utilize time as the signal
 - Take advantage of digital improvements
 - Offer a simple design that is high speed, multi-bit

Using a Voltage Controlled Oscillator as an ADC

- Input: analog tuning of ring oscillator frequency
- Output: count of oscillator cycles per Ref clock period

Phase Sampling Can Be More Efficient than Counting

- Alters the number of transitions per ref clock period
- Digital circuits compute transition count at each sample

VCO-Based Quantizer Shapes Delay Mismatch

Barrel shifting through delay elements

Mismatch between delay elements is first order shaped

Advantages of VCO-based Quantization

- Highly digital implementation
- Offset and mismatch is not of critical concern
- Metastability behavior is potentially improved
- SNR improves due to quantization noise shaping

Implementation is high speed, low power, low area

Modeling a VCO-Based Quantizer

- VCO provides quantization, register provides sampling
 - Model as separate blocks for convenience
- XOR operation yields first order difference operation
 - Extracts VCO frequency from sampled VCO phase

Corresponding Frequency Domain Model

Example Design Point for Illustration

- Ref clk: 1/T = 1 GHz
- 31 stage ring oscillator
 - Nominal delay per stage: 65 ps
- K_{VCO} = 500 MHz/V
 - ±5% linearity
- VCO noise: -100 dBc/Hz at 10 MHz offset

V_{tune}

Example SNDR with 20 MHz BW (1 GHz Sample Rate)

Key Issues: Nonlinearity and VCO Phase Noise

- VCO K_v nonlinearity
 - Limits SNDR with distortion
 - Linear K_v oscillator difficult
- VCO phase noise
 - Degrades SNR and SNDR
 - Improves with area/power

Conditions	SNDR
Ideal	68.2 dB
VCO Thermal Noise	65.4 dB
VCO Thermal + Nonlinearity	32.2 dB

Pseudo-Differential Implementation

- Even order nonlinearity reduced
- VCO phase noise reduced 3dB (double area/power)
- Benchmark: 44 dB SNDR with 20 kHz BW
 - Impressive 0.2V supply, 440 nW power in 90nm CMOS

Digital Correction of Nonlinearity

- Highly digital implementation (65nm CMOS)
 - ~70/78 dB SNDR at 18/4.5MHz BW (FOM: 297fJ/conv)
- Issues: calibration time, only first order noise shaping

Reducing the Impact of Nonlinearity using Feedback

- VCO-based quantizer provides multi-bit implementation with first order noise shaping
- Gain before VCO quantizer
 - Suppresses VCO nonlinearity
 - Suppresses VCO phase noise

Leveraging Barrel Shifting in the Quantizer

Intrinsic barrel shifting of the DAC elements is achieved!

A Geometric View of the VCO Quantizer/DEM and DAC

A Second Order Continuous-Time Delta-Sigma ADC

Second order dynamics achieved with only one op-amp

- Op-amp forms one integrator
- I_{dac1} and passive network form another (lossy) integrator
- Minor loop feedback compensates for quantizer delay
- Third order noise shaping due to VCO-based quantizer

Custom IC Implementing the Prototype

Design of the VCO Core Inverter Cell

- 31 stages
- Fast for good resolution (< 100 psec / stage)</p>
- Large K_{VCO} (600-700 MHz) with good dynamic range
- 2 bits of coarse tuning for process variations
- < 8 mW for 1 GSPS 5-bit quantizer / DEM</p>

Opamp Design is Straightforward

Primary Feedback DAC Schematic

- Fully differential RZ pulses
- Triple-source current steering
- I_{OFF} is terminated off-chip

Measured Spectrum From Prototype

Measured SNR/SNDR Vs. Input Amplitude (20 MHz BW)

How Do We Overcome K_v Nonlinearity to Improve SNDR?

Voltage-to-Frequency VCO-based ADC (1st Order $\Delta - \Sigma$)

- Typically, VCO frequency is desired output variable
 - Input uses full voltage-to-frequency (K_v) characteristic
 - Strong distortion at extreme ends of the K_v curve

Voltage-to-Phase Approach (1st Order $\Delta - \Sigma$)

- VCO output phase is now the output variable
 - Small perturbation on V_{tune} allows large VCO phase shift
 - VCO acts as a CT integrator with *infinite* DC gain

High Speed Implementation of Phase-Based ADC

Proposed 4th Order Architecture for Improved SNDR

- Goal: ~80 dB SNDR with 20 MHz bandwidth
 - Use 4th order loop filter, 4-bit VCO-based quantizer
 - 4-bit quantizer: tradeoff resolution versus DEM overhead
- Combined frequency/phase feedback for stability/SNDR

Schematic of Proposed Architecture

- Opamp-RC integrators
 - Better linearity than Gm-C, though higher power

Schematic of Proposed Architecture

- Low power
- Design carefully to minimize impact of parasitic pole

Schematic of Proposed Architecture

- DEM implicitly performed on frequency feedback (Miller)
 - **RZ DAC unit elements**

Behavioral Simulation (available at www.cppsim.com)

Key Nonidealities

- VCO Kv nonlinearity
- Device noise
- Amplifier finite gain, finite BW
- DAC and VCO unit element mismatch

VCO nonlinearity is *not* the bottleneck for achievable SNDR!

Circuit Details

VCO Integrator Schematic

- 15 stage current starved ring-VCO
 - 7 stage ring-VCO shown for simplicity
 - Pseudo differential control
 - PVT variation accommodated by enable switches on PMOS/NMOS
- Rail-to-rail VCO output phase signals (VDD to GND)

VCO Quantizer Schematic

Phase quantization with senseamp flip-flop

- Single phase clocking
- **Rail-to-rail** quantizer output signals (VDD to GND)

Nikolic et al, JSSC 2000

Phase Quantizer, Phase and Frequency Detector

Highly digital implementation

- Phase sampled & quantized by SAFF
- XOR phase and frequency detection with FF and XOR
- Automatic DWA for frequency detector output code
 - Must explicitly perform DWA on phase detector output code

Main Feedback DAC Schematic

- Low-swing buffers
 - Keeps switch devices in saturation
 - Fast "on"/Slow
 "off" reduces
 glitches at DAC
 output
 - Uses external Vdd/Vss

Resistor degeneration minimizes 1/f noise

Bit-Slice of Minor Loop RZ DAC

- RZ DAC unit elements transition every sample period
 - Breaks code-dependency of transient mismatch (ISI)
 - Uses full-swing logic signals for switching

Opamp Schematic

Parameter	Value
DC Gain	63 dB
Unity-Gain Frequency	4.0 GHz
Phase Margin	55°
Input Referred Noise Power (20 MHz BW)	11 uV (rms)
Power (V _{DD} = 1.5 V)	22.5 mW

- **Modified nested Miller opamp**
 - 4 cascaded gain stages, 2 feedforward stages
 - Behaves as 2-stage Miller near cross-over frequencies
 - Opamp 1 power is 2X of opamps 2 and 3 (for low noise)

DEM Architecture (3-bit example)

Achieves low-delay to allow 4-bit DEM at 900 MHz

Delay is half a sample period

Die Photo (0.13u CMOS)

- Active area
 - 0.45 mm²
- Sampling Freq
 - 900 MHz
- Input BW
 - 20 MHz
- Supply Voltage
 - **1.5** V
- Analog Power
 - 69 mW
- Digital Power
 - **18 mW**

Measured Results

- 78 dB Peak SNDR performance in 20 MHz
 - Bottleneck: transient mismatch from main feedback DAC
- Architecture robust to VCO K_v non-linearity

Figure of Merit: 330 fJ/Conv with 78 dB SNDR

Behavioral Model Reveals Key Performance Issue

- Amplifier nonlinearity degrades SNDR to 81 dB
- DAC transient mismatch degrades SNDR to 78 dB
 - DEM does not help this
 - Could be improved with dual RZ structure

Transient DAC mismatch is likely the key bottleneck

Summary of Fourth Order CT Delta-Sigma ADC

Consider Time-to-Digital Conversion

- Quantization in time achieved with purely digital gates
 - Easy implementation, resolution improving with Moore's law

How can we leverage this for quantizing an analog voltage?

Adding Voltage-to-Time Conversion

Analog voltage is converted into edge times

- Time-to-digital converter then turns the edge times into digitized values
- Key issues
 - Non-uniform sampling
 - Noise, nonlinearity

Is there a simple implementation for the Voltage-to-Time Converter?

A Highly Digital Implementation

- A voltage-controlled ring oscillator offers a simple voltage-to-time structure
 - Non-uniform sampling is still an issue

We can further simplify this implementation and lower the impact of non-uniform sampling

Making Use of the Ring Oscillator Delay Cells

- Utilize all ring oscillator outputs and remove TDC delays
 - Simpler implementation
- TDC output now samples/quantizes phase state of oscillator

Improved Non-Uniform Sampling Behavior

Oscillator edges correspond to a sample window of the input

Sampling the oscillator phase state yields sample windows that are much more closely aligned to the TDC clk

Key Observation

- The VCO-Based ADC provides an excellent vehicle for using a conventional TDC for analog-to-digital conversion
 - Efficiently combines voltage-to-time and time-to-digital conversion
 - Minimizes issue of non-uniform sampling

VCO-based ADCs are very efficient "time-based" circuits

Some Other VCO-based ADC Approaches

Recent Performance of VCO-Based ADCs

A Simple Interface Between Analog and Digital

Conclusion on VCO-Based Quantizers

- Leverage Moore's law
 - Consist of ring oscillator(s) and digital logic
 - Improved speed, power, area with advanced CMOS
- Are relatively easy to design
 - First order shaping of quantization noise and mismatch
 - Infinite DC gain when used as an integrator
- Have shortcomings that can be overcome
 - Nonlinearity: utilize calibration or feedback
 - VCO phase noise: utilize feedback

Performance is now at state of the art at 78dB SNDR and improving steadily