

www.silabs.com

ISSCC 2013 RF Highlights

Ramin K. Poorfard 03/01/2013

- ➢ 60th anniversary of ISSCC
- Paper Statistics
- F Techniques
- Frequency Generation Techniques

60th anniversary of ISSCC (1954-2013)

Lots of nostalgic anecdotes and statistics

Silicon Laboratories Confidential

Special Celebrations (cont.)

Overall papers statistics

> 209 papers were presented

- About the same as last year (206)
- Organized in 27 sessions
- Out of the 94 papers from industry, 16 were from the institutes
- The papers were uniformly distributed
 - Geographically
 - Academy vs. industry

Number of papers from Asia is increasing appreciably

RF paper statistics

RF session titles:

- RF Techniques
- mm-wave Techniques
- High Performance Wireless
- Wireless Transceivers for Smart Devices
- Frequency Generation
- Energy Efficient Wireless

US and Academia had a larger share

RF Forums

- Advanced RF Transceiver Design Techniques
- Mixed Signal/RF Design and Modeling in Next Generation CMOS RF Short courses

5.1: SAW-less Front-End for TDD/FDD

Out-of-band interferes

- Dynamic Range (De-sentization)
- LO Harmonics
- **Reciprocal Mixing**

External SAW filter

- Resolves the above issues
- Single-ended to differential

LNA acts as a V/I converter

I/V conversion after BB filtering

Blockers removed in current domain

Cost

5.1: SAW-less Front-End for TDD/FDD (cont.)

The bottle neck is the LNA V/I

Linearity is set by this Gm

CG for Wide-band Zin

- No current gain
- NF = 1 + Gamma = 3 (too high)

On-chip transformers

- Allows SE/Diff conversion
- Provides maximum headroom
- Provide current gain and negative Vin

Use gate boosting

- Apply the signal to the gate
- Improve NF

5.1: SAW-less Front-End for TDD/FDD (cont.)

- LO Harmonics are still an issue
- One approach is harmonic-Rejection Mixer
 - Needs higher VCO frequencies

> 25% duty-cycle mixer is used

- The down converted mixer current is passed through an LC network
- Resonance at 4*f_{LO}
- Mixing at f_{LO} converts the notches to
 - $3^{*}f_{LO}$ and $5^{*}f_{LO}$

Some debate though

- LO harmonic rejection seems to be limited
- Mixing also with 3^{*}f_{LO} and 5^{*}f_{LO}

40nm CMOS process

Equivalent mixer model

5.2: Spatial and Frequency Filtering

N-path filtering

- High-Q tunable RF filters
- High RF Imp. for f_{RF} = f_{LO}
- Low RF Imp. for $f_{RF} \neq f_{LO}$

Better Linearity

No active component at RF

Extend to phase-array

- RC > T_{on}
- Antenna is a current source
- Signals add up in C_{BB}
 - Constructively for in-beam
 - Destructively for out-of-beam
- SNR improvement
 - Signals are correlated, noise is not

5.2: Spatial and Frequency Filtering (cont.)

Combine the two ideas

- Four antennas
- 8-path filtering for each
- 8-phase mixer
- Steer the beam at N*90/8

Harmonic rejection is still an issue

N*f_{LO} goes through

In this case, 3*f_{LO} is targeted not f_{LO}

Use base-band weights

- 3*f_{LO} phase is three times that of f_{LO}
- Apply BB weights
 - Constructively add for $3*f_{LO}$
 - Destructively add for f_{LO}

65nm CMOS

5.3: Phase noise cancellation

If Phase noise can be cancelled, then

- Use R.O. instead of LC Osc.
- But how?

Use a replica path

But replica of what?

Phase noise is symmetric

- A copy of the phase noise exists
- Extract it and subtract it
- Let's see how it is done

5.3: Phase noise cancellation (cont.)

Overall Concept

- Main path: Direct down conversion
- Aux path: Down convert the image
- Not vey practical
 - Needs a second synthesizer
 - Phase noise of 2nd synthesizer

Use a limiter based approach

- Symmetric spurs → AM
- Anti-symmetric spurs → PM
- Limiter only allows PM through
- Adjust gain and delay for proper cancellation

5.3: Phase noise cancellation (cont.)

Limiter acts as a PN mixer

- Sampling at zero-crossings (2Δf_b)
- Folding and images will emerge
- This will impact the PM subtraction

Use an N-phase approach

- With proper weighting the first N-2 images will be cancelled.
- The first image is then at N-1 (smaller impact)

5.3: Phase noise cancellation (cont.)

Final Design

- All circuits are differential
- Inverters are used for all TIA's
- Inv. Also act as limiters
- What about gain calibration?

Digitize both paths

- Off chip LMS algorithm
- X_{RM} exists in both paths
 - Causes correlation
 - Provides proper G
- Rest is uncorrelated
 - Long enough averaging will remove this extra signal

Blocker detector

If no blocker, turn off Aux path

40nm CMOS

Silicon Laborato

5.4: Stacked Array PA

Array PA's

- Serial
 - Too high an output impedance
- Parallel
 - Too low an output impedance
- Both inefficient due to large impedance ratios
 - High Q \rightarrow High IL (for a given Q_{comp})

Use arrays of S/P instead

- Can provide better matching
 - Lower impedance ratio
 - Better efficiency

5.4: Stacked Array PA (cont.)

Large swing is an issue

- Hot Carrier Injection
- Oxide dielectric breakdown

Use stacking

- Distribute the swing and supply across several series devices
- Too many transformers
- Hard to route

Merge transformers into one

- Simplify the design
- Enhance the power routings
- Use HV for the top most device
 - Needs to handle large Vdb
- Parasitic S/D caps affect efficiency

5.4: Stacked Array PA (cont.)

- C_p along with R_{on} (when in triode) causes loss
 - During charge and discharge

Often inductors are used to tune

- Cost
- Narrow band

Use negative capacitors

- Wide-band
- But how?
- Use Miller effect

Transformers design

 Low lateral and secondary caps

65nm CMOS

Pout = 28dBm, PAE = 20.6%

V_{DD}

 M_3

5.5: Supply switching PA

- Efficiency degrades when PA B.O.
- What is supply drops when signal drops?
 - Needs DC/DC converters
 - Use stacked PA for Vdd/2 case
 - Mid point needs to be around Vdd/2
 - Use a keeper

<2ns threshold detector (EVM Impact)</p>

Some switching noise issues

Dynamic Operation (Envelope Tracking)

 $Full-V_{DD}$

5.6: TX leakage suppression

RFID system

- Back scatter and AM modulate an incoming CW
- RX signal contaminated by the TX CW

Current techniques

- Active blocker injection
- VCO cancellation

Proposed solution

M₅

M₃

 $V_{GS,CTRL}$

M۵

M-

M₁

 R_{G}

Vout- 🕳

Non-linear amplification with a dead zone

M₁₀

L M₈

M

l_{out+}

M₀r◄

M

V_{out+}

VLKG

 V_{DZ} $(V_{DZ} = V_t - V_{G,CTRL})$

IDS

20.1: Class-D VCO

Class-B VCO

- Large swing (+-Vdd)
- Need Tail current source (or resistor)
 - Due to R_{on} losses

➤ What if we have very low R_{on}?

- Go for even higher swings
- Loss in R_{on} is negligible (good switch)
- Lower Vdd, hence lower power

Silicon Laboratories Confidential

ABS

20.1: Class-D VCO (cont.)

Operation

- T1: The I_{La} charges up
- T2: La resonates with C

Circuit equations

- Continuous I_{La} and its derivative
- T1 = T2 (due to symmetry)

•
$$V_{peak} = V_{dd} \left(1 + \sqrt{\frac{\pi^2 \alpha^2}{4} + 1} \right) \approx 3.27 V_{dd}$$

•
$$\omega_D = \frac{1}{\sqrt{LC}} \frac{\sqrt{2}}{\alpha} \quad \alpha = \frac{1}{2} + \sqrt{\frac{1}{4} + \frac{4}{\pi^2}} \approx 1.3$$

Note that the tank is time variant

 Makes phase noise calculation even more difficult

Very large (1.35mm) switches were used

Poor 1/f³ and supply pushing

20.2: Class F VCO

Motivation: Reduce power

- Larger tail current help PN
- Until the devices go in triode

Basic idea: Improve ISF

- Noise injection when V is flat
 - Not during zero crossing
- But how?
- Make the tank to have high impedance at f_o and 3f_o

$$\blacktriangleright \text{ Make } Z(3f_0) = \frac{Z(f_0)}{X}$$

A more advanced tank is required

20.2: Class F VCO (cont.)

- A transformer-based tank will provide two pair of complex poles
- By setting the proper coupling factor, the intended impedance can be achieved
- Oscillation at higher frequency
 - Lower loop gain
 - Injection locking to 3f₁

Very large gate voltages

Use thick-oxide devices

M1 & M2 thick oxide devices → More than 10 years operation

www.silabs.com

www.silabs.com/redirect