IC Technology at New Nodes Made Easy

Alvin Loke 05-Dec-2013

AUTHORIZATION All copyrights to the material contained in this document are retained by me and my employer.

IEEE Solid-State Circuits Society - Central Texas Chapter

My Teachers

John Bravman

Tom Bryan

Tim Hollis

Jeff Rearick

Dick Dowell

John Faricelli

Phil Fisher **Dennis Fischette**

Mike Gilsdorf

Bob Barnes

Jung-Suk Goo Bob Havemann Rick Hernandez

Mark Horowitz Reza Jalilizeinali

Ron Kennedy Takamaro Kikkawa

Steve Kuehne

Tom Lee Justin Leung

Tom Lii Ying-Keung Leung

Shawming Ma

Joe McPherson

Charles Moore

Don Morris Bich-Yen Nguyen

Changsup Ryu Krishna Saraswat Shawn Searles

Michael Nix

Michael Oshima Chintamani Palsule Jim Pfiester

Paul Townsend Ram Venkatraman

Dave Pulfrey

© Loke, IC Technology at New Nodes Made Easy

Joanne Wu

Patrick Yue

Carl-Mikael Zetterling

Slide 1

Wei-Yung Hsu

Andy Wei

The 10000-Foot View... A Switch

CMOS Scaling Still Alive

- Leading foundries frantically after manufacturable tri-gate
- Intel already demonstrated 14nm Broadwell

Our Objective

- Understand how MOSFET structure has evolved
- Understand why it has evolved this way

Words of Wisdom

People get lost because they cannot be found.

Theodorus Loke

Outline

Part 1

- Motivation
- MOSFET & Short-Channel Fundamentals
- 130nm Fabrication
- More MOSFET Fundamentals
- Lithography
- Partially-Depleted SOI

Part 2

- Strain Engineering (90nm & Beyond)
- High-K / Metal-Gate (45nm & Beyond)
- Migrating to Fully-Depleted (22nm & Beyond)
- Tri-Gate FinFETs
- Conclusions

The Basis of All CMOS Digital ICs

- Charging and discharging a capacitor... very quickly!
- Shorter delay and lower power

Effective Inverter Drive Current

Na et al., IBM [2]

© Loke, IC Technology at New Nodes Made Easy

Slide 8

Flatband Condition ($V_{GS} = V_{FB}$)

Onset of Surface Inversion (ϕ_s **=0)**

Onset of Strong Surface Inversion $(V_{GS}=V_T)$

Lower the Surface Barrier

 $V_{GS} = 0$ $V_{DS} = 0$ (no current) Large source barrier (back-to-back diodes)

 $V_{GS} \approx V_T$ $V_{DS} = 0$ (no net current) Source barrier lowered Surface is inverted

 $V_{GS} > V_T$ $V_{DS} > 0$ (net source-to-drain current flow) Carriers easily overcome source barrier Surface is strongly inverted

Sze [3]

Quantifying Charge to Move ϕ_s by $2\phi_b$

- Assume *uniformly doped* p-type body
- How much body must be depleted to reach strong inversion?

$$\kappa_d = \sqrt{\frac{2\varepsilon_{Si} \cdot 2\phi_b}{qN}} \propto \frac{1}{\sqrt{N}}$$

 $Q_{dep} = qNx_d$

- Velocity saturation
- Mobility degradation

Overcoming Short-Channel Effects

Improve gate electrostatic control of channel charge

- Higher body doping but higher V_T
- Shallower source/drain but higher R_s
- Thinner t_{ox} but higher gate leakage
- High-K dielectric to reduce tunneling
- Metal gate to overcome poly depletion
- Fully-depleted structures (e.g., fins)

Stressors for mobility enhancement

Outline

Part 1

- Motivation
- MOSFET & Short-Channel Fundamentals
- 130nm Fabrication
- More MOSFET Fundamentals
- Lithography
- Partially-Depleted SOI

Part 2

- Strain Engineering (90nm & Beyond)
- High-K / Metal-Gate (45nm & Beyond)
- Migrating to Fully-Depleted (22nm & Beyond)
- Tri-Gate FinFETs
- Conclusions

130nm MOSFET Fabrication

Shallow Trench Isolation

- Reduced active-to-active spacing (no bird's beak)
- Planar surface for gate lithography

Grow liner SiO₂, then deposit

conformal SiO₂ - void-free

deposition is critical

Well Implant Engineering

Retrograded well dopant profile (implants before poly deposition)

Shallow/steep surface channel implant

- V_T control
- Slow diffusers critical (In, Sb)

Sequence implant to reduce ion channeling, especially for shallow implant

Poly Gate Definition

• Gate CD way smaller than lithography capability

- Process control is everything resist & poly etch chamber conditioning is critical (don't clean residues in tea cups or woks)
- Trim more for smaller CD (requires tighter control)
- Less trimming if narrower lines can be printed

Channel & Source/Drain Engineering

Benefits of Halo and Extension

Resulting structure

- Less short-channel effect
- Shallow junction where needed most

Not to be confused with LDD in I/O FET

- Same process with spacers but lightly doped drain (LDD) is used for minimizing peak electric fields that cause hot carriers & breakdown
- Extensions must be heavily doped for low series resistance

Self-Aligned Silicidation (Salicidation)

Need to reduce poly & diffusion R_s, or get severe I_{FET} degradation

- $TiSi_x \rightarrow CoSi_x \rightarrow Ni/PtSi_x$
 - Scaling requires smaller grain size to minimize R_s variation

Outline

Part 1

- Motivation
- MOSFET & Short-Channel Fundamentals
- 130nm Fabrication
- More MOSFET Fundamentals
- Lithography
- Partially-Depleted SOI

Part 2

- Strain Engineering (90nm & Beyond)
- High-K / Metal-Gate (45nm & Beyond)
- Migrating to Fully-Depleted (22nm & Beyond)
- Tri-Gate FinFETs
- Conclusions

Not So Fundamental After All

$$V_{_{T}} = V_{_{FB}} + 2\phi_{_b} + rac{Q_{_{dep}}}{C_{_{ox}}}$$

- Body doping has increased by 2–3 orders of magnitude over the decades
- Surface way more conductive at strong inversion condition using "fundamental"
 V_T definition
- What matters is how much OFF leakage you get for a given ON current
- *IDoff* vs. *IDsat* (or *IDeff*) universal plots have become more useful to summarize device performance

I_{OFF}-I_{ON} Universal Plots

ON Drive Current (μ A/ μ m)

- High $I_{ON} \rightarrow$ high I_{OFF} & low $I_{ON} \rightarrow$ low I_{OFF}
- OFF leakage prevents V_{T} from scaling with gate length
- Several V_T 's enable trade-off between high speed vs. low leakage

Subthreshold Leakage

- MOSFET is not perfectly OFF below V_{T}
- $V_G \uparrow \rightarrow \phi_s \uparrow \rightarrow$ lower source-to-channel barrier
- Gradually more carriers diffuse from source to drain
- Capacitive divider between gate and undepleted body

Subthreshold Slope

- V_G needed for 10× change in current $S = \frac{k_B T}{q} \ln(10) \cdot \frac{C_{ox} + C_{Si}}{C_{ox}}$ $S = (60 mV / dec) \cdot \frac{C_{ox} + C_{Si}}{C_{ox}}$ at 25°C V_G ϕ_S C_{ox} ϕ_S C_{ox} V_G ϕ_S C_{ox} C_{ox} V_G ϕ_S C_{ox} V_G V_G ϕ_S V_G V_G ϕ_S V_G V_G V
- Planar 28nm: S = 100–110mV/dec at 25°C
- Want tight coupling of V_G to ϕ_s but have to overcome C_{Si}
 - Large $C_{ox} \rightarrow$ thinner gate oxide, HKMG
 - Small $C_{Si} \rightarrow$ lower body doping, FD-SOI, finFET
 - Get diode limit when $C_{ox} \rightarrow \infty \& C_{Si} \rightarrow 0 \ (\eta = 1)$
- Reducing S enables lower V_T , V_{DD} & power for same I_{OFF}

Drain-Induced Barrier Lowering (DIBL)

- OFF leakage gets worse at higher V_D
- E field from drain charge terminating in body, reducing gate charge required to reach V_T
- Characterized as V_T reduction for some ΔV_D
- Planar 28nm: 150–160mV for $\Delta V_D = 1V$
- Reducing DIBL also enables lower V_{DD} & power for same I_{OFF}

3-Way Competition for Body Charge

The Roads to Higher Performance

Outline

Part 1

- Motivation
- MOSFET & Short-Channel Fundamentals
- 130nm Fabrication
- More MOSFET Fundamentals
- Lithography
- Partially-Depleted SOI

Part 2

- Strain Engineering (90nm & Beyond)
- High-K / Metal-Gate (45nm & Beyond)
- Migrating to Fully-Depleted (22nm & Beyond)
- Tri-Gate FinFETs
- Conclusions

The Roads to Higher Performance

Let There Be Light

- Tooling has traditionally driven resolution scaling
- Shorter λ : 436nm \rightarrow 365nm \rightarrow 248nm \rightarrow 193nm
- Higher NA lenses \rightarrow capping at 1.35

- Both *λ* and NA have hit a wall
- No new litho tool for 22/20nm nodes
 - (EUV not primetime yet)
- Single patterning limited to ~80nm pitch

Wei, GlobalFoundries [4]

Step-and-Scan Projection Lithography

- Slide both reticle & wafer across narrow slit of light
- Only need high-NA optics orthogonal to scan but now high-precision constantspeed stages to move mask & wafer
- Cheaper than high-NA 2-D optics
- 6" x 6" physical reticle size (4× reduction)
- 25 x 33mm or 26 x 32mm field size
- Weak intensity of deep-UV source requires sensitive *chemically-amplified* resists for better throughput
- Enables dose mapping (adjust light dose during scan to compensate for loading)

Immersion Lithography

- Remember oil immersion microscopy in biology class?
- Extend resolution of refractive optics by squirting water puddle on wafer surface prior to exposure
 - *n_{water}* ~1.45 vs. *n_{air}* ~ 1
 - Tedious but EUV is not primetime yet

12-inch wafer

Lithography Misalignment / Overlay

- Mask misalignment tolerance is not keeping pace with gate CD scaling
- ASML has near monopoly on lithography tools largely because of good overlay control (global zero layer patterns)
- Many layout enclosure & spacing rules not scaling with CD
- Examples:
 - Poly overhang beyond active
 - Contact spacing to poly
 - Active enclosure around contact
 - Metal enclosure around vias
- Layout for matching must be robust against overlay errors

Resolution Enhancement Technology

- Reducing k_1 is the remaining ticket to better resolution
- Attack problem from all fronts: mask, source & wafer
- Imposes significant restrictions on layout design rules

Outline

Part 1

- Motivation
- MOSFET & Short-Channel Fundamentals
- 130nm Fabrication
- More MOSFET Fundamentals
- Lithography
- Partially-Depleted SOI

Part 2

- Strain Engineering (90nm & Beyond)
- High-K / Metal-Gate (45nm & Beyond)
- Migrating to Fully-Depleted (22nm & Beyond)
- Tri-Gate FinFETs
- Conclusions

Partially-Depleted Silicon-On-Insulator

- Pros
 - Dynamic threshold effect (ϕ_s coupling to V_G edge)
 - Low junction area capacitance
 - No V_{T} increase for stacked FETs
 - 4× lower SRAM soft-error rate
 - Body isolation from substrate noise
 - Simpler isolation process, reduced well proximity effect
- Cons
 - Body hysteresis effect floating body gets kicked around
 - Requires conservative margining for digital timing
 - Major pain for analog/mixed-signal design
 - Substrate heating buried oxide is good insulator
 - More expensive substrate, and from a single supplier [5]

The Dreaded Hysteresis Effect

- Floating body is coupled to source, gate, drain & body
- Body voltage has memory or history of other terminals, analogous to intersymbol interference in wireline I/O
- Floating body voltage noise $\rightarrow V_T$ noise $\rightarrow I_D$ noise
- Can get hysteresis in bulk if Z_{SUB} is too high

© Loke, IC Technology at New Nodes Made Easy

Body-Tied PD-SOI MOSFET (T-Gate)

- Enables body connection to undepleted FET well
- High R_{body} and extra C_{gate} limits bandwidth of body connection
- NMOS example

Outline

Part 1

- Motivation
- MOSFET & Short-Channel Fundamentals
- 130nm Fabrication
- More MOSFET Fundamentals
- Lithography
- Partially-Depleted SOI

Part 2

• Strain Engineering (90nm & Beyond)

- High-K / Metal-Gate (45nm & Beyond)
- Migrating to Fully-Depleted (22nm & Beyond)
- Tri-Gate FinFETs
- Conclusions

The Roads to Higher Performance

© Loke, IC Technology at New Nodes Made Easy

atomic spacing > equilibrium spacing

atomic spacing < equilibrium spacing

- Stretching / compressing FET channel atoms by as little as 1% can improve electron / hole mobilities by several times
- Strain perturbs crystal structure (energy bands, density of states, etc.) → changes effective mass of electrons & holes
- Increase I_{ON} for the same I_{OFF} without increasing C_{OX}

Longitudinal Uni-Axial Strain

tension (stretch atoms apart) \rightarrow faster NMOS

compression (squeeze atoms together) \rightarrow faster PMOS

- Most practical means of incorporating strain for mobility boost
- Want 1-3GPa (high-strength steel breaks at 0.8GPa)
- How? Deposit strained materials around channel
 - Material in tension wants to relax by pulling in
 - Material in compression wants to relax by pushing out

Transferring Strain from Material A to B

Ways to Incorporate Uni-Axial Strain

- NMOS wants tension, PMOS wants compression
- Un-Intentional (comes for *free*)
- Intentional (requires extra processing)
 - Stress Memorization Technique NMOS ©
 - Embedded-SiGe Source/Drain PMOS ③
 - Embedded-SiC Source/Drain NMOS ③
 - Dual-Stress Liners NMOS © & PMOS ©
 - Compressive Gate Fill NMOS © / PMOS 8
- Strain methods are additive

Shallow Trench Isolation (STI) NMOS 🛞 & PMOS 🙄

- STI oxide under compression
 - High-Density Plasma CVD SiO₂ process (alternating deposition/etch) deposits intrinsically compressive oxide for good trench fill
 - $10 \times \text{CTE}$ mismatch between Si & SiO₂ increases compression when cooled from deposition temperature
- Migrated to High Aspect Ratio Process (HARP) fill in recent nodes
 → less compressive oxide

© Loke, IC Technology at New Nodes Made Easy

Stress Memorization Technique (SMT) NMOS ©

Amorphize poly & diffusion with silicon implant

Deposit tensile nitride

Anneal to *make nitride more tensile* and transfer nitride tension to crystallizing amorphous channel

4

Remove nitride stressor (tension now frozen in diffusion)

Chan et al., IBM [7]

Periodic Table Trends

- Compound semiconductor like Si_xGe_{1-x} has lattice spacing & bandgap between Si & Ge
- Same idea with Si_xC_{1-x}

Embedded-SiGe Source/Drain (e-SiGe) PMOS ©

- SiGe constrained to Si lattice will be in compression
- Compressive SiGe source/drain transfers compression to Si channel

Etch source/drain recess

Grow SiGe epitaxially in recessed regions

- e-SiC is similar but introduces tension instead
- Epitaxial SiC much tougher to do than SiGe

Dual-Stress Liners NMOS © & PMOS ©

- Deposit tensile/compressive PECVD SiN (PEN) liners on N/PMOS
- Liner stress is dialed in by liner deposition conditions (gas flow, pressure, temperature, etc.)

Strain Relaxation

When materials of different strain come together...

- Both materials will relax at the interface
- Extent of relaxation is gradual, depends on distance from interface
- No relaxation far away from interface

Strain Depends on Channel Location

 SA, L & SB specify where channel is located along active area

- Critical for modeling device mobility change due to STI, SMT, e-SiGe, etc.
- Strain at source & drain ends of channel may be different
- Important consideration for matching, e.g., current mirrors
- Concavity & stress polarity will vary with stressors in given technology but concept still applies

Longitudinal DSL Proximity

- Opposite device type nearby in longitudinal direction reduces impact of stress liner → mutually slow each other down
- Opposite PEN liner absorbs/relieves stress introduced by PEN

PMOS Longitudinal Proximity

Faricelli, AMD [9]

Transverse DSL Proximity

- Both NMOS & PMOS like tension in transverse direction, unlike longitudinal direction
- NMOS near PMOS in width direction \rightarrow helps PMOS, hurts NMOS

Outline

Part 1

- Motivation
- MOSFET & Short-Channel Fundamentals
- 130nm Fabrication
- More MOSFET Fundamentals
- Lithography
- Partially-Depleted SOI

Part 2

- Strain Engineering (90nm & Beyond)
- High-K / Metal-Gate (45nm & Beyond)
- Migrating to Fully-Depleted (22nm & Beyond)
- Tri-Gate FinFETs
- Conclusions

The Roads to Higher Performance

© Loke, IC Technology at New Nodes Made Easy

Direct Tunneling Gate Leakage

- t_{ox} had to scale with channel length to maintain gate control
 - Less SCE
 - Better FET performance
- Significant direct tunneling for t_{ox} < 2nm

High-*K* gate dielectric achieves same C_{ox} with much thicker t_{ox}

EOT = Equivalent Oxide Thickness

$$C_{ox} = rac{\mathcal{E}_{gate}}{t_{gate}} = rac{\mathcal{E}_{ox}}{EOT}$$

- Even heavily-doped poly is a limited conductor
- Discrepancy between electrical & physical thicknesses since charge is not intimately in contact with oxide interface

Enter High-K Dielectric + Metal-Gate

- High-K Dielectric (HK)
 - Hf-based material with K~20–30 (Zr-based also considered)
 - Need to overcome hysteretic polarization
 - High deposition temperature for good film quality
- Metal-Gate (MG)
 - Thin conductive film intimately in contact with high-K dielectric to set gate work function $\Phi_M \rightarrow V_{FB} \rightarrow V_T$
 - Want band-edge Φ_M, i.e., NMOS @ E_C & PMOS @ E_V (just like n⁺ poly & p⁺ poly) → different MG for NMOS & PMOS
 - Typically complex stack of different metal layers \rightarrow secret sauce
- Key challenges
 - INTEGRATION, INTEGRATION, INTEGRATION

 - Getting the right V_T for both NMOS & PMOS

Atomic Layer Deposition

- Deposit monolayer at a time using sequential pulses of gases
- Introduce one reactant at a time & purge before introducing next reactant
- Key to precise film thickness control of HKMG stack
- e.g., SiO₂ (SiCl₄+H₂O) \rightarrow HfO₂ (HfCl₄+H₂O) \rightarrow TiN (TiCl₄+NH₃)

ICKnowledge.com [12]

HK-First / MG-First Integration

- Obvious extension of poly-Si gate integration
- Seems obvious & "easy" at first but plagued with unstable work function when HKMG is exposed to activation anneals
- Especially problematic with PMOS V_{T} coming out too high

GlobalFoundries 32nm-SOI

Horstmann et al., GlobalFoundries [13]

HK-First / MG-Last Integration

- High thermal budget available for middle-of-line
- Low thermal budget for metal gate \rightarrow more gate metal choices
- Enhanced strain when sacrificial poly is removed & resulting trench is filled with gate fill metal

Intel 45nm

© Loke, IC Technology at New Nodes Made Easy

HK-Last / MG-Last Integration

- Same advantages as HK-first / MG-last integration
- Overcomes EOT scaling limitations in HK-first / MG-last
- Need to postpone silicidation to after opening source/drain etch
- DSL relax & no longer useful since contacts cut through FET width

Intel 32nm

© Loke, IC Technology at New Nodes Made Easy

Outline

Part 1

- Motivation
- MOSFET & Short-Channel Fundamentals
- 130nm Fabrication
- More MOSFET Fundamentals
- Lithography
- Partially-Depleted SOI

Part 2

- Strain Engineering (90nm & Beyond)
- High-K / Metal-Gate (45nm & Beyond)
- Migrating to Fully-Depleted (22nm & Beyond)
- Tri-Gate FinFETs
- Conclusions

What Does Fully-Depleted Really Mean?

Consider what happens when SOI layer thins down

- Conservation of charge cannot be violated
- So once body is fully depleted, extra gate charge must be balanced by charge elsewhere, e.g., beneath buried oxide
- If substrate is insulator, then charge must come from source/drain
- No floating body in fully-depleted \rightarrow no hysteresis
Requirement for Field-Effect Action

- V_{GS} modulates surface charge density under gate dielectric
 - → Modulate I_{DS} when $V_{DS} \neq 0$
 - → Need band bending at surface
 - → Need electric field for band bending
 - → Need + & charge separation between gate & body beneath surface
- Do we really need dopants in the body to create field effect?

Ground-Plane MOSFET

- Extremely retrograded well profile with no surface dopants
- Depletion region cannot extend beyond buried pulse of dopants
- All you fundamentally need for field-effect action is a parallel-plate capacitor with gate dielectric & *undoped* semiconductor in between plates → dopants are not required in the body

Why Fully-Depleted Suppresses SCE

- Basic idea: effectively no charge in body
 - \rightarrow Body cannot terminate field lines from source & drain
 - \rightarrow Field lines from source & drain forced to move down to substrate
 - \rightarrow Source to body surface barrier not impacted by shorter gate length
- Substrate must be close to source & drain to prevent field lines from drain to terminate to source
- Side benefit: no dopants \rightarrow less scattering \rightarrow higher μ

Benefits of Lower DIBL & S

- Fully-depleted options
 - Planar: FD-SOI, Bulk with retrograded well
 - 3-D: FinFET or Tri-Gate SOI or Bulk

The Big Deal with Lower DIBL

Higher performance for the same IDsat & IDoff

L. Wei et al., Stanford [17]

Body Thickness for Fully-Depleted

Fully-Depleted Planar on SOI

- a.k.a. ET (Extremely Thin) or UTBB (Ultra-Thin Body & BOX) SOI to refer to very thin SOI and Buried Oxide (BOX) layers
- SOI Si layer is so thin that charge mirroring gate charge comes from beneath BOX

Thin BOX to Suppress SCE

- If body is fully depleted, field lines from drain cannot terminate in the body since there's no charge to terminate to → no DIBL
- Charge elsewhere must be nearby or field lines from drain will terminate on source charge ☺
- However, lateral field always present when $V_{DS} \neq 0$

Performance Tuning with Backgate Bias

- Like a "body effect" in planar bulk with C_{Si} spanning SOI & BOX
- Backgate bias can modulate both NMOS and PMOS V_T at 80mV/V
- Not option in finFETs but finFET subthreshold slope is better

Fully-Depleted Planar on Bulk

- 1 Low-doped layer for RDF reduction (fully depleted)
- 2 V_{T} setting layer for multiple V_{T} devices
- 3 Highly-doped screening layer to terminate depletion
- 4 Sub-surface punchthrough prevention

Reduced RDF for tighter V_T control & lower SRAM V_{DDmin}

Random Dopant Fluctuation (RDF)

- RDF more prevalent with scaling since number of dopants is decreasing with each MOS generation
- Why does RDF impact magically disappear in fully-depleted?

Auth, Intel [14]

RDF in Conventional MOS

- Back to basics
 - Conservation of charge
 - Electric field lines start at +ve charge & end at -ve charge
- Number of dopant atoms vary from FET to FET
- BUT dopant atoms also vary in location
 - Lengths of field lines exhibit variation
 - Integrated field (voltage or band bending) has V_T variation

 $V = -\int E \cdot dx$

Why Fully-Depleted Eliminates RDF

- In fully-depleted SOI, field lines from gate cannot terminate in the undoped body (no charge there)
 - Mirror charges are localized beneath BOX
 - Lengths of field lines have tight distribution \rightarrow small V_{τ} variation
 - However, V₇ now very sensitive to dimensional variation, e.g., SOI and BOX thickness
 - Other sources of variation also present, e.g., MG grains

Outline

Part 1

- Motivation
- MOSFET & Short-Channel Fundamentals
- 130nm Fabrication
- More MOSFET Fundamentals
- Lithography
- Partially-Depleted SOI

Part 2

- Strain Engineering (90nm & Beyond)
- High-K / Metal-Gate (45nm & Beyond)
- Migrating to Fully-Depleted (22nm & Beyond)
- Tri-Gate FinFETs
- Conclusions

What is Fully-Depleted Tri-Gate?

32nm planar

22nm tri-gate

- Channel on 3 sides
- Fin width is *quantized* (SRAM & logic implications)
- Fin so narrow that gate mirror charge must come from fin base

Hu, UC Berkeley [23] M. Bohr, Intel [24]

Tri-Gate FinFETs in Production

32nm planar

22nm tri-gate

gate

Truly impressive!!!

M. Bohr, Intel [24]

Conventional Wafer Surface Orientation & Channel Direction

- Wafer normal is (100), current flows in <110> direction
- Tri-Gate FinFET: top surface (100), sidewall surfaces (110)

Mobility Dependence on Surface Orientation & Direction of Current

 Strain-induced mobility boost also depends on surface orientation & channel direction – not as strong for current along sidewalls vs. top of fin

Process Flow Summary I

- Example shows tri-gate on SOI but bulk flow is similar
- Pattern fins using SIT
- Deposit/CMP STI oxide
- Recess STI oxide by fin height
- Deposit, CMP & pattern poly

gate oxide on top & both sidewalls of fin

- Deposit spacer dielectric & etch, leaving spacer on gate sidewalls
- Spacer must be removed on fin sidewall

Paul, AMD [26]

Process Flow Summary II

- Recess fins
- Grow Si epitaxially to merge fins together for reduced source/drain resistance
- Induce uni-axial channel strain by growing e-SiGe or e-SiC
- Dope source/drain dopants with *in* situ doping during epi

- Deposit ILD0 & CMP to top of poly
- Do replacement-gate HKMG module
- Deposit & pattern contact dielectric
- Form trench contacts (note overlap capacitance to gate)

Some Tri-Gate Considerations

- Field lines of from gate terminates at base of fins
- Fin base must be heavily doped for fin-to-fin isolation
- Dimensional variation of fins
 → device variation
- Current density is not uniform along *width* of device – V_T & S varies along sidewall
- Series resistance vs. overlap capacitance
- "Dead" space between fins

Pacifying The Multi-V₇ Addiction

- 8 V_T 's typical in 28nm (NMOS vs. PMOS, thick vs. thin oxide)
- Methods of achieving multiple V_T
 - 1. Bias channel length
 - Exploit SCE (V_T rolloff with shorter L)
 - Increase *L* for lower *I*_{ON} & *I*_{OFF}
 - 2. Implant fin body with different dose
 - Field lines from gate must "work through" available body dopants before terminating at base of fin
 - Prone to RDF
 - 3. Integrate more metal gate Φ_M
 - Already 2 Φ_M s in standard HKMG flow
 - More complex integration

Intel 22nm TEM Cross-Sections

Single fin (along W)

Epi merge (along W)

NMOS (along L)

PMOS (along L)

Auth, Intel [27]

Intel 22nm Performance at 0.8V

Conclusions

- Digital needs will continue to drive CMOS scaling but at slower pace
- Expect new learning in 20nm & 14nm as we cope with fin design & layout
- SPICE models will lag to include new effects
- Designers with good technology knowledge are best positioned for silicon success
- Exciting time to be designing

References

- [1] M. Keating, "Science fiction or technology roadmap: a look at the future of SoC design," in SNUG San Jose Conf., Mar. 2010.
- [2] M. Na et al., "The effective drive current in CMOS inverters," in IEEE Int. Electron Devices Meeting Tech. Dig., pp. 121–124, Dec. 2002.
- [3] S.M. Sze, *Physics of Semiconductor Devices (2nd ed.)*, John Wiley & Sons, 1981.
- [4] A. Wei, "Foundry trends: technology challenges and opportunities beyond 32nm," in *IEEE Vail Computer Elements Workshop*, Jun. 2010.
- [5] www.soitec.com
- [6] J. Plummer et al., Silicon VLSI Technology– Fundamentals, Practice and Modeling, Prentice-Hall, 2000.
- [7] V. Chan et al., "Strain for CMOS performance improvement," in Proc. IEEE Custom Integrated Circuits Conf., pp. 667–674, Sep.2005.
- [8] X. Xi et al., BSIM4.3.0 MOSFET Model User's Manual, The Regents of the University of California at Berkeley, 2003
- [9] J. Faricelli, "Layout-dependent proximity effects in deep nanoscale CMOS," in Proc. IEEE Custom Integrated Circuits Conf., pp. 1–8, Sep.2010.
- [10] J. McPherson, "Reliability trends with advanced CMOS scaling and the implications on design," in *Proc. IEEE Custom Integrated Circuits Conf.*, pp. 405–412, Sep. 2007.
- [11] P. Wong, "Beyond the conventional transistor," IBM J. Research & Development, pp. 133–168, vol. 2-3, no. 46, Mar. 2002.
- [12] www.ICKnowledge.com
- [13] M. Horstmann *et al.*, "Advanced SOI CMOS transistor technologies for high-performance microprocessor applications," in *Proc. IEEE Custom Integrated Circuits Conf.*, pp. 149–152, Sep. 2009.
- [14] C. Auth, "45nm high-k + metal-gate strain-enhanced CMOS transistors," in Proc. IEEE Custom Integrated Circuits Conf., pp. 379–386, Sep. 2008.
- [15] P. Packan *et al.*, "High performance 32nm logic technology featuring 2nd generation high-k + metal gate transistors," in *IEEE Int. Electron Devices Meeting Tech. Dig.*, pp. 1–4, Dec. 2009.
- [16] R.-H. Yan et al., "Scaling the Si MOSFET: From bulk to SOI to bulk," IEEE Trans. Electron Devices, vol. 39, no. 7, pp. 1704–1710, Jul. 1992.
- [17] L. Wei *et al.*, "Exploration of device design space to meet circuit speed targeting 22nm and beyond," in *Proc. Int. Conf. Solid State Devices and Materials*, pp. 808–809, Sep. 2009.
- [18] K. Cheng et al., "Fully depleted extremely thin SOI technology fabricate by a novel integration scheme featuring implant-free, zero-silicon-loss, and faceted raised source/drain," in IEEE Symp. VLSI Technology Tech. Dig., pp. 212–213, Jun.2009.
- [19] T. Skotnicki, "CMOS technologies trends, scaling and issues," in IEEE Int. Electron Devices Meeting Short Course, Dec. 2010.
- [20] M. Yamaoka *et al.*, "SRAM circuit with expanded operating margin and reduced stand-by leakage current using thin BOX FD-SOI transistors," *IEEE J. Solid-State Circuits*, vol. 41, no.11, Nov. 2006.
- [21] T. Skotnicki, "Competitive SOC with UTBB SOI," in Proc. IEEE SOI Conf., Oct. 2011.
- [22] K. Fujita et al., "Advanced channel engineering achieving aggressive reduction of V_T variation for ultra-low power applications," in IEEE Int. Electron Devices Meeting Tech. Dig., pp. 32.3.1–32.3.4, Dec. 2011.
- [23] C. Hu, "FinFET 3D transistor and the concept behind it," in IEEE Electron Device Soc. Webinar, Jul. 2011.
- [24] M. Bohr, "22 nm tri-gate transistors for industry-leading low power capabilities," in Intel Developer Forum, Sep. 2011.
- [25] M. Yang et al., "Hybrid-orientation technology (HOT): opportunities and challenges," IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 965–978, May 2006.
- [26] S. Paul, "FinFET vs. trigate: parasitic capacitance and resistance", AMD Internal Presentation, Aug. 2011.
- [27] C. Auth *et al.*, "A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors," in *IEEE Symp. VLSI Technology Tech. Dig.*, pp. 131–132, Jun. 2012.