

Li-ion Batteries and Electric Vehicles

October 27, 2010

Joel Sandahl

ZX Technologies, Inc.

760 Spanish Oak Trail Dripping Springs, TX 78620 USA

Phone: +1-512-964-9786 E-Mail: jsandahl@zxtech.net

Introduction

- Why Electric Vehicles (EVs)?
- EV Types and Applications
- EV Considerations
- EV Design Architectures
- EV Battery Cell Packages
- EV Battery Cell Chemistries
- EV Economics
- Conclusions

Why Electric Vehicles (EVs)?

- Reduce consumption of crude oil (finite resource)
- Reduce dependence on crude oil (national security)
- Reduce environmental impact (green)
- Reduce transportation costs
 - First cost
 - Operating cost
 - Maintenance cost

EV Types and Applications

Passenger Cars

- Limited-Route/Return-To-Base
- Unlimited-Route

Delivery Trucks

- Limited-Route/Return-To-Base
- Unlimited-Route

Buses

- Limited-Route/Return-To-Base
- Unlimited-Route

EV Considerations

- Driving Range
- Charging Stations
- Recharging Time
- Economics
- Safety

EV Design Architectures

Parallel Hybrid Electric Vehicle

Why Hybrid?

- Extend Driving Range
- Reduce Weight, Size and Cost of Battery
 - □ For example, car with 400 mile range:
 - Gas @ 33 mpg = 12 gal [equivalent: 432 kWh (gross), 200 kWh (net)]
 72.9 lbs, 1.62 cu ft
 - Electric @ 0.5 kWh/mile = 200 kWh:
 - □ 5,000 lbs, 80 cu ft, \$150,000 *Much more than weight/cost of car!*
 - Hybrid @ 40 mpg = 10 gal + 3.0 kWh [increase fuel efficiency by 20-50%]
 - □ 60.8 lbs, 1.35 cu ft
 - □ 75 lbs, 1.2 cu ft, \$2,250
 - □ Total: 136 lbs, 2.55 cu ft, \$2,250

Gas – the ultimate in energy density !!!

NOTE: Calculations based on LFP batteries.

Essence of Hybrid Operation

- Use motor to augment power outside of optimal operating region.
- Use generator and regenerative braking to recover energy.

EV Battery Cell Packages

18650 Cylindrical

Pouch Prismatic

Can Prismatic

InvenTek Rolled-Ribbon™

Yintong Energy Annular

EV Battery Cell Construction

2010-10-27

EV Battery Cell Chemistries

Battery Cycle Life

EV Economics – Battery Electric (operating cost only)

EV Economics – Battery Electric (operating cost only)

- 40 Mile Limited Range Car, 0.5 kWh/mile, 33 mpg
 - □ Battery = 20 kWh = \$15,000
 - □ @ \$0.12/kWh and \$2.65/gal, Breakeven = 740,740 miles
 - □ @ \$0.12/kWh and \$3.50/gal, Breakeven = 325,657 miles
- 40 Mile Limited Range City Bus, 3.0 kWh/mile, 5.0 mpg
 - □ Battery = 120 kWh = \$90,000
 - □ @ \$0.12/kWh and \$3.00/gal, Breakeven = 375,000 miles
 - □ @ \$0.12/kWh and \$4.00/gal, Breakeven = 204,545 miles

But battery cycle life is limited to 100,000 miles !!!

EV Economics – Hybrid Electric (operating cost only)

EV Economics – Hybrid Electric (operating cost only)

Hybrid Car, 33 mpg \rightarrow 42 mpg (+30%)

- □ Battery = 3 kWh = \$2,250
- □ @ \$0.12/kWh and \$2.65/gal, Breakeven = 130,755 miles
- □ @ \$0.12/kWh and \$3.50/gal, Breakeven = 99,000 miles
- Hybrid City Bus, 5.0 mpg \rightarrow 6.5 mpg (+30%)
 - □ Battery = 20 kWh = \$15,000
 - □ @ \$0.12/kWh and \$3.00/gal, Breakeven = 108,333 miles
 - □ @ \$0.12/kWh and \$4.00/gal, Breakeven = 81,250 miles

In hybrid mode, battery cycle life is >> 200,000 miles !!!

EV Battery Cost Breakdown

LFP Battery Cost (\$750/kWh)

Estimate another 20-30% cost reduction available as volumes increase.

Conclusions

- Li-ion is the right choice for EVs today -- in particular LFP
- BEVs: On "operating cost" basis alone, economics challenged
 - It is believed that there will be substantial "maintenance cost" savings, particularly for fleet vehicles. Just too early to prove at this time.
 - Can be many other significant benefits that go beyond direct economics, such as environment issues and their associated indirect costs
- HEVs: Economics are "marginally" supportable now
 - Likely to become solid with cost reductions and improved hybrid efficiencies that can be reasonably and realistically expected
- Key to broad adoption of EVs in the future will be safe higher energy density cells
 - Given the state of electrochemical technology and the speed of introduction for new electrochemical technologies, don't expect new game-changing technologies to be in the market for 5-10 years

Thank You !