IEEE DISTINGUISHED LECTURER PROGRAM

Connecting Space Assets to the Internet: Challenges and Solutions

IEEE Day and Distinguished Lecture to Austin ComSoc/SP/CtSoc and Computer/EMBS joint chapters

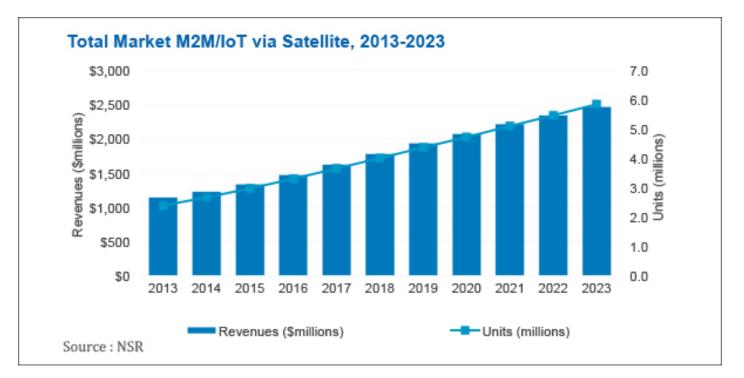
Dr. Mohammed Atiquzzaman

Presidential Professor School of Computer Science University of Oklahoma, Norman, OK 73019-6151, USA. atiq@ou.edu, www.cs.ou.edu/~atiq

Oct 4, 2020

- <u>Ubiquitous coverage and</u> is usually more <u>reliable</u>, especially in remote and underserved regions.
 - Communicating enitites/IoT/Smart objects are often
 - remote
 - dispersed over a wide geographical area
 - inaccessible

Satellite-based applications for global <u>coverage</u>.



Satellite permits the use of a <u>single platform</u>, as compared to a patchwork of terrestrial networks.

- Cisco expects more than <u>50 billion</u> connected devices by 2020
- Higher numbers of sensors being implemented and monitored, with each requiring their own IoT connection.

Terrestrial networks currently dominate, but IoT via satellite will experience strong growth over the next decade.

Juno Payload System Overview

Magnetometer (MAG)

Advanced Stellar Compass (ASC)

ASC accurately measures the orientation of the magnetometers.

Spacecraft payload

Jovian Auroral Distributions Experient (JADE)

Gravity Science (GS)

The Juno Gravity Science Investigation will probe the mass properties of Jupiter by using the communication subsystem to perform Doppler tracking.

JAD

of el

and

Jupi

Dete

JEDI and an

Ultravi

UVS is an

ultraviolet

It's possible to connect the on-board science equipment to the Internet

onment.

FGM)

de

ht

JunoCam will provide visible-color images of the Jovian cloud tops.

JIRAM will acquire infrared images and spectra of Jupiter. JIRAM is located on the aft/bottom deck.

GEO

Spacecrafts can have <u>IP-addressable</u> payload/devices/'things'

- Sensor
- Radars

Foloccopoc

We consider Low Earth Orbiting

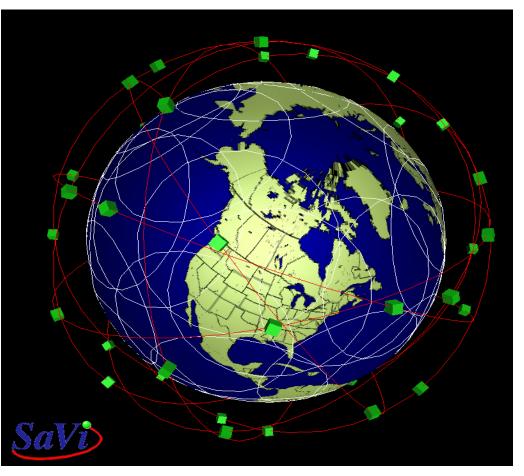
Mobility Management In Satellites

spacecrant

Connecting <u>mobile</u> space devices to the Internet requires mobility management.

Mohammed Atiquzzaman, University of Oklahoma

35,838 km

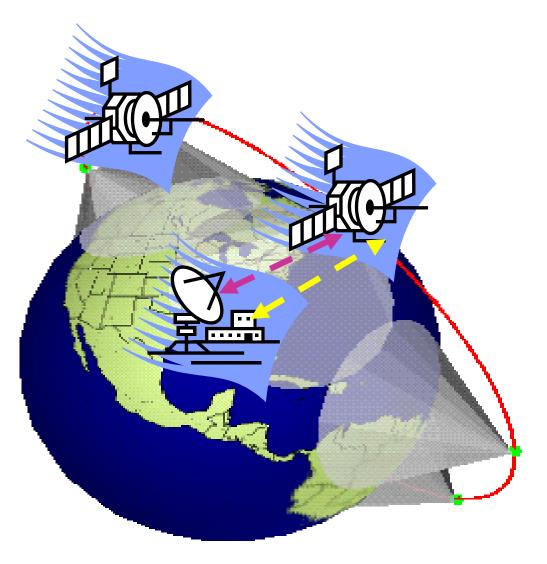


Link Layer Handoff

- Inter-satellite handoff
- Link handoff
- Spotbeam handoff

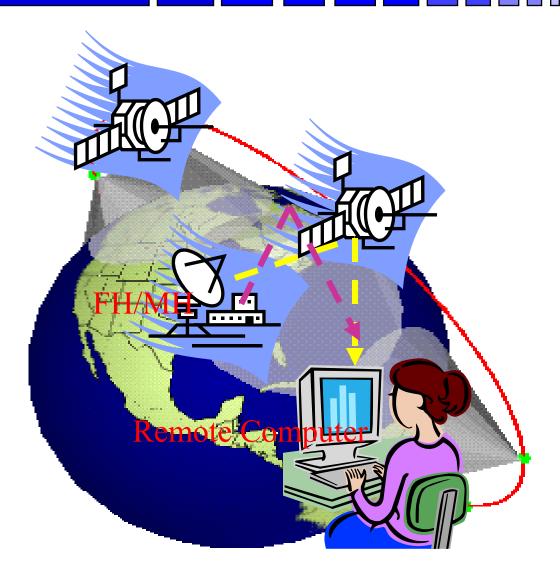
Network Layer Handoff


- Satellite as a router
- Satellite as a mobile host


A Globalstar design, with 48 active satellites in 8 planes of 6.

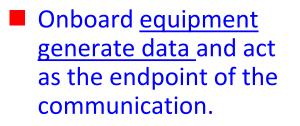
Inter-satellite Handoff

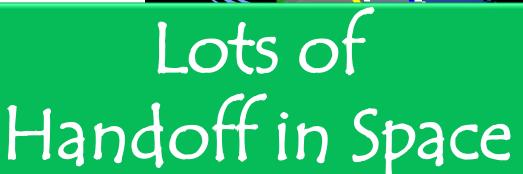
Similar to interswitch handoff in the case of terrestrial mobile network.



Network Layer Handoff Case 1: Satellite as a router

Satellites act as IP routing devices.


- No on-board device is generating or consuming data
- Satellites are allocated different IP prefix.
- Host need to maintain continuous connection with Remote Computer.



Network Layer Handoff Case 2: Satellite as a mobile host

allocated <u>different IP</u> prefix.

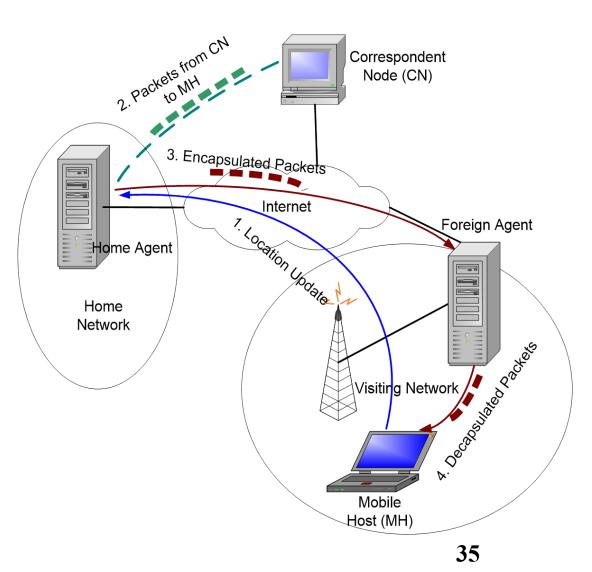
Satellite need to maintain continuous connection with remote computer.

Mobility Management

US Postal System Mail Forwarding

	riease	PRONT	iterres 1	-10 in b	iue or bi	ack ink	Yours	Ignature	is requi	DDRES red in Iter	n 9.	toun			CRIM STORES	IAL U		AL L
	1. Chang	ge of A stividu	danees k al (#5)	Finti	d Attache re Family	d Institute (#5)		ness (#6)		his Move sporary?		Yes	1 160	: 9	Date E	I I	Form 3	582
	3. Sitart (01	13	21.	24	M TEMP	ORARY I	tove, pri	ni date to 03/27/11					MM			Y.
	5a LAST Name & Jr /Sr Jetc 5b FIRST Name	D	0E 0H	N		-			an (3. (se						MM	D I I I I I I I I I I I I I I I I I I I	ľ	y ent
	e. If BUS Move, Pri Business	int Name		13														
10	(R.OLD	PRIN	TOLDM									EET NAM	_		AVE_C	T ETC)	OR PO	BCX
	Mailing Address	4	5	MC	RI	0	N			A Contract of the		FLC	and the second	ALC: NOT				
	7a. OLD APT or Suite							To. For	Puerto F	tito Only:	if addre	na is in PF	t, print urt	bieritzate	on nacoa	, if appro	priate:	
	TC. OLD	N	FW	y	OF	K							7d. State	N	V 70.	11	DI	4
		PHINI	NEW M	ALLING	ADDHED	IS BEL		DOR/DO		UMBERTA		NEEL PROV	RE (INCLU	IDE ST	AVE,	I EIC	OFP	D BOX
	Mailing	1.	23	E	NG	}	2N	D	PL	T	-	B	C)				
	6a, NEW APT/Ste or PMB			Ê				80. For	Puerto R	ico Only:	lf addre	naa is in Pf	R, print ur	banizas	ion name	, if appro	priale.	
	BC. NEW	AI	00										8d. State	A	EZIP	09	30	18
				iee cont				_							ICIAL U			

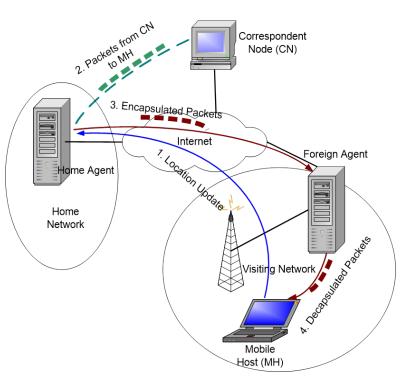
Mohammed Atiquzzaman, University of Oklahoma



1. When Mobile Host moves to a new domain, a <u>location</u> <u>update</u> is sent to Home Agent.

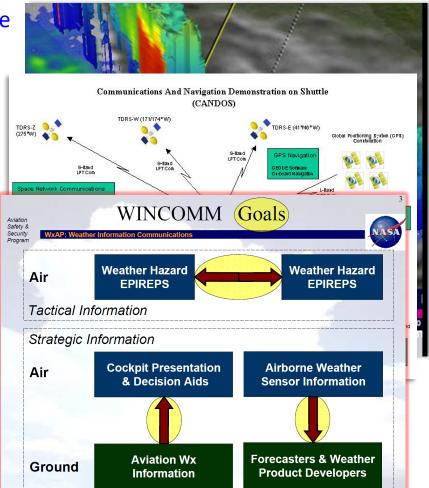
2 & 3. Packets from CN to Mobile Host are <u>encapsulated</u> and <u>forwarded</u> to MH's current care-of address.

4. Packets are <u>decapsulated</u> and delivered to upper layer protocol.



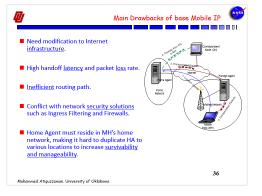
Need modification to Internet <u>infrastructure</u>.

- High handoff <u>latency</u> and packet <u>loss</u> rate.
- Inefficient routing path.
- Conflict with network <u>security solutions</u> such as Ingress Filtering and Firewalls.
- Home Agent must reside in MH's home network, making it hard to duplicate HA to various locations to increase <u>survivability</u> and manageability.



Several NASA projects considering IP in space and Mobile IP

- Global Precipitations Measurement (GPM)
- Communication and Navigation Demonstration on Shuttle (CANDOS)
- Operating Missions as Nodes on the Internet (OMNI)
- NASA worked with Cisco to develop a Mobile router
- Mobile IP is promising for major role in various space related NASA projects
 - Advanced Aeronautics Transportation Technology (AATT)
 - Weather Information Communication (WINCOMM)
 - Small Aircraft Transportation Systems (SATS)



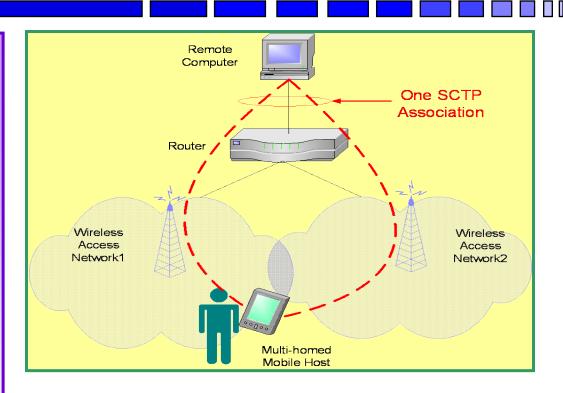
Develop an <u>efficient</u>, <u>secure</u> and <u>seamless handoff scheme</u> which would be applicable to both the <u>satellite and wireless/cellular environment</u>.

- No need to install <u>new hardware or software component in Internet</u> infrastructure.
- Low handoff <u>latency</u> and packet <u>loss</u> rate.
- Efficient <u>data path</u>
 - Avoid triangular routing.

- Cooperate with <u>existing network security mechanisms</u>.
- Increased <u>survivability</u>, scalability and manageability.
- Suitable for <u>satellite IP handoffs</u>.

SIGMA: Seamless IP-diversity based Generalized Mobility Architecture

- Decouple location management from handoff
- Carry out location management and handoff in <u>parallel</u> to data transmission
- Allow the layer whose performance is to be optimized to take responsibility of the handoff
- Implementation:
 - Multihoming for simultaneous communication with multiple access points.
 - Stream Control Transmission Protocol (RFC 2960).



SIGMA: Basic Concepts

 Mobile IP assumes the upper layer protocol uses only one IP address to identify a logical connection. Some buffering or re-routing should be done at the router for seamless handover.

- SCTP support multiple IP addresses at transport layer naturally via multi-homing.
- When a mobile host moves between cells, it can setup a new path to communicate with the remote computer while still maintaining the old path.

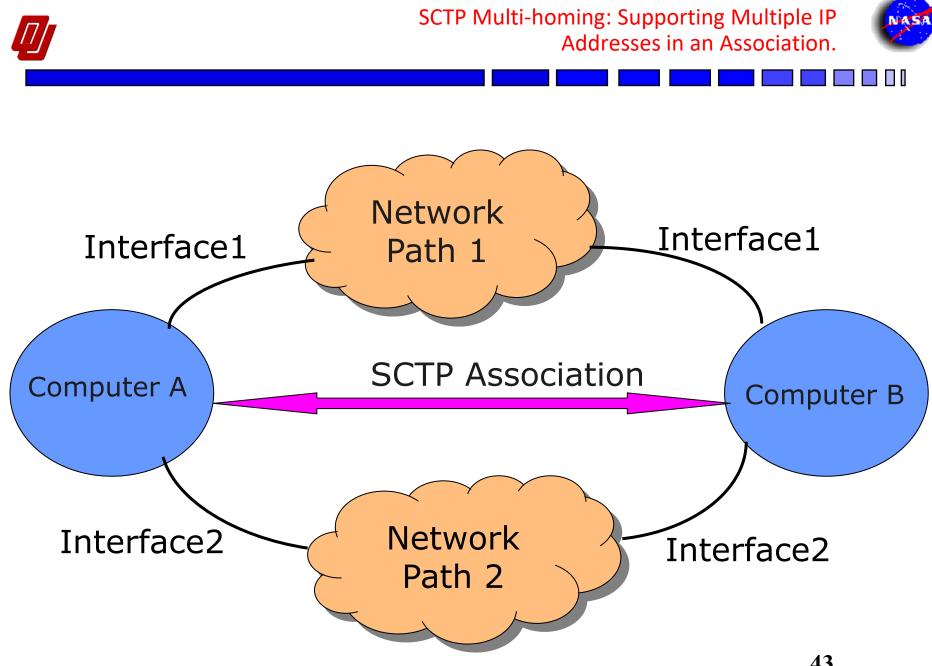
Advantages of SIGMA:

- Reduced packet loss and handover latency
- Increased throughput
- No special requirement on Router and Access networks.

- SCTP: "Stream Control Transmission Protocol"
- Originally designed to support SS7 signaling messages over IP networks. Currently <u>supports most of the</u> <u>features of TCP</u>
- <u>Standardized</u> by IETF RFC 2960
- <u>Reliable</u> transport protocol on top of IP

Mohammed Atiquzzaman, University of Oklahoma

- Both of them are <u>reliable</u> transport protocols;
- Similar <u>Congestion Control</u> algorithms (slow start, congestion avoidance);
- SCTP has two new features:
 - Multihoming
 - Multistreaming


Upper layer applications

TCP, UDP, SCTP

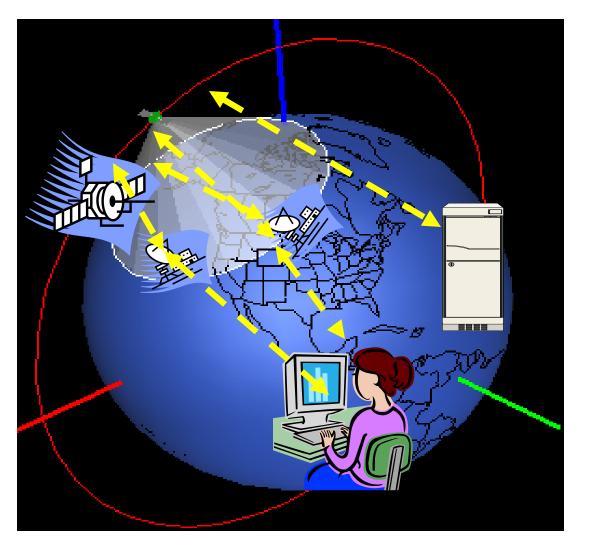
IP

Link Layer

Physical Layer

Signaling

SIGMA: Signaling Procedures

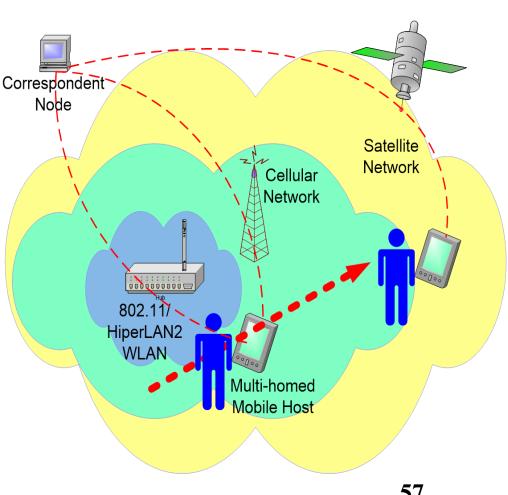

1.Satellite obtains a <u>new IP</u> <u>address</u> in new domain.

2. Satellite <u>notify</u> remote computer about the new IP address.

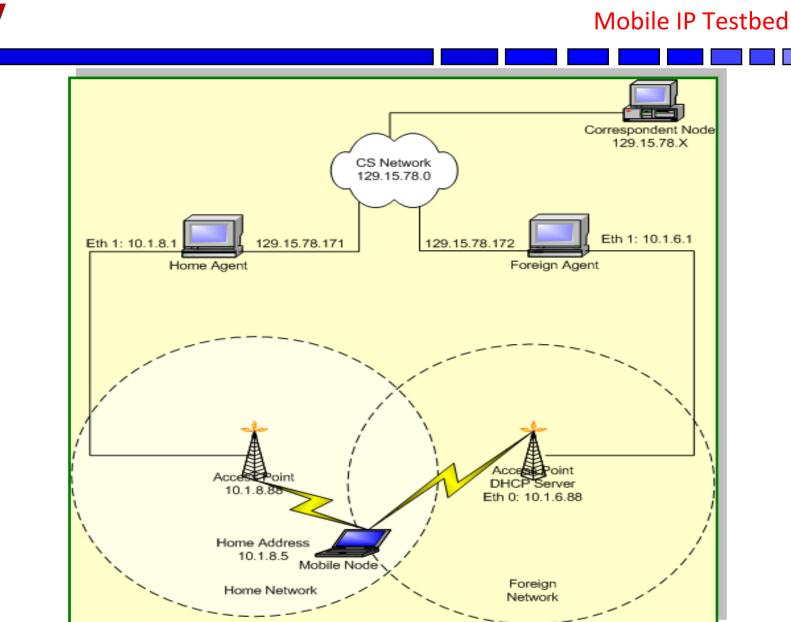
Satellite let remote
computer <u>set primary</u>
address to new IP address.

4. Update Location Manager.

5. Delete or <u>deactivate old IP</u> address.

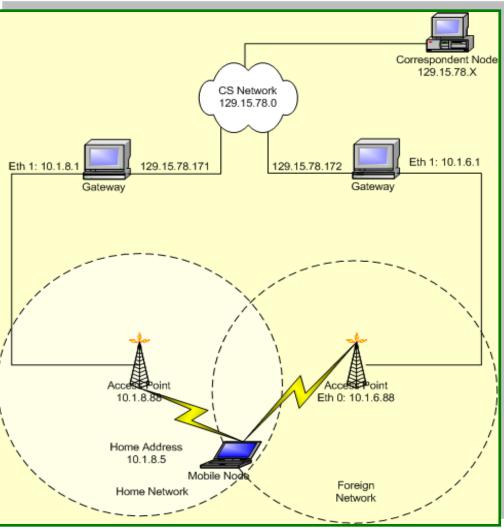


Vertical Handoff


- Different access network technologies are integrating with each other to give mobile user a transparent view of Internet.
- Handover is no longer only 0 limited to between two subnets in WLAN or between two cells in cellular network (horizontal handover).
- Mobile users are expecting 0 seamless handover between different access networks (vertical handover).
- The mobility based on SCTP 0 multi-homing is a feasible approach to meet the requirement of vertical handover.

Experimental Testbed

NASA

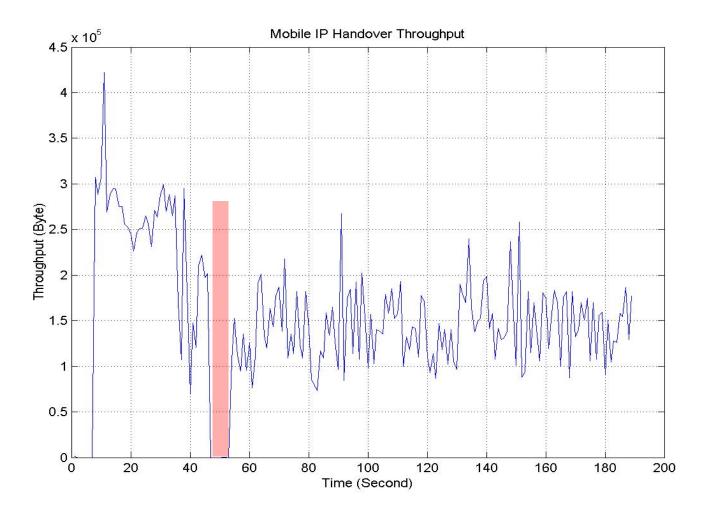


SIGMA Testbed

Operation of SIGMA Testbed Link Layer is monitored to detect new AP signal strength. When a new AP is detected a new IP address is added to the association. When the new AP signal becomes stronger than the old AP signal, the Mobile Node notifies the Correspondent Node to make the new address the primary.

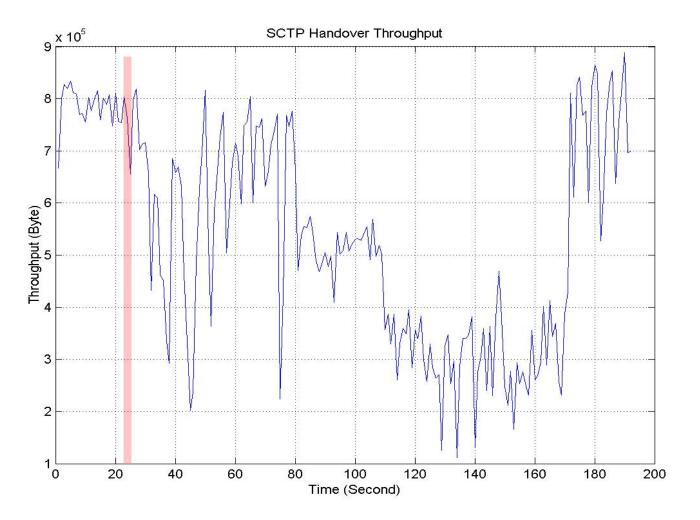
- lksctp reference implementation.
- Linux OS Kernel 2.6.2.
- Network adapters
 - Avaya PCMCIA wireless network card and a NETGEAR USB wireless network card.

60



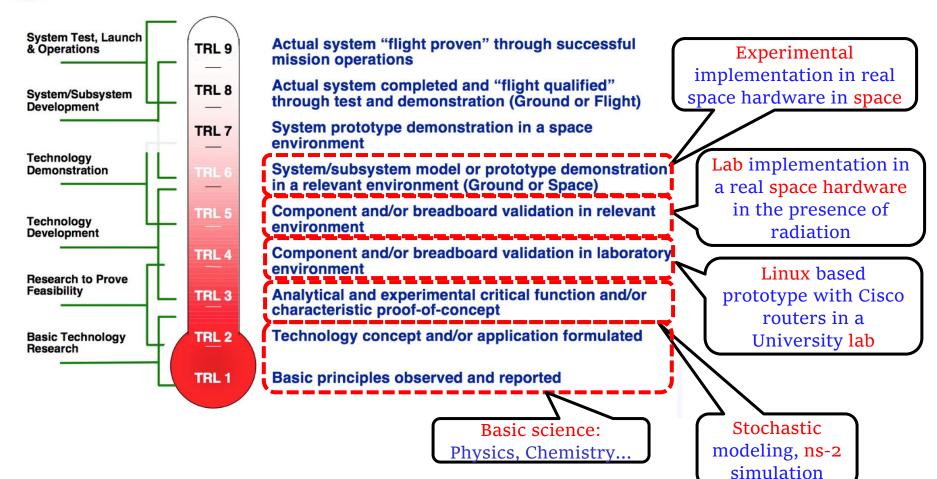
Results

Mobile IP: Results


NASA

SIGMA: Results

NASA



Technology Maturation - TRL

NASA/DOD Technology Readiness Level

SIGMA: Satellite Implementation

- Surrey Satellite Technologies Ltd.
- Disaster Monitoring constellation

- Satellite is a critical component for GLOBAL COVERAGE
- Many mobility issues arise due to <u>movement</u> of "satellites".
 - Efficient mobility management schemes for satellites is an important topic for future research.
- Pay attention to TARGET SYSTEM before developing protocols for mission critical systems.

- National Aeronautics and Space Administration (NASA) and Cisco for funding of this project
- The following people are participating/participated in the design, development and testing of SIGMA and SINEMO
 - Shaojian Fu (Opnet)
 - Yong-Jin Lee (Korea National University of Education)
 - Justin Jones (Riskmetrics)
 - Suren Sivagurunathan (Yousendit)
 - Abu Sayeem Reaz (Univ. of California, Davis)
 - Abu Shahriar (Univ. of Oklahoma)
 - Md. Shohrab Hossain (BUET, Bangladesh)
 - William Ivancic (NASA)
 - Wesley Eddy (NASA)
 - David Stewart (NASA)
 - Lloyd Wood (Cisco)

Further information: atiq@ou.edu

www.cs.ou.edu/~atiq

Thank you

Contact info

Mohammed Atiquzzaman <u>atiq@ou.edu</u> (405) 325 8077 www.cs.ou.edu/~atiq

