

State of Art Techniques in Digital to Analog Converter Design

Dr. Rahmi Hezar Senior Member of Technical Staff Kilby Labs, Texas Instruments

What to Expect from a DAC

Short answer: Everything ③

Reality: Depends on the application with different weighting

- > Audio Applications:
 - a. Linearity is the king: Improves dynamic range, reduces distortion, reduces requirements on the amplifier, just better listening experience.
 - b. Power Consumption is somewhat critical: On phones and tablets DAC is not the main source of power consumption
 - c. Out of band noise: Some what Important needs large capacitors to remove
- RF Applications:
 - Absolute linearity is relaxed compared to audio but high clock speeds make it challenging.
 - Power now is the king: RF circuits drain the battery very quickly and heat the chip, create reliability problems.
 - Out of band noise is more critical compared to audio, requires expensive, very large, high-Q band-pass filters to meet tight RF masks requirements.
- Other: DACs are the bottleneck in ADC design. A Sigma Delta ADC is as good as its feedback DAC

What to Expect from this Presentation

Short answer: Everything about DACs ©

Reality: Smart Architectures and Signal Processing Methods for DACs

- > Analog design side of DACs is very simple and well developed
 - a. Current steering DACs: Summing current sources via switches
 - b. Voltage DACs: Summing voltages via switching capacitors
- We want them to be
 - a. Infinitely fast
 - b. Absolutely perfect (no change from the original value, no variation)
 - c. Add no distortion, no noise
- ➤ Fact: they are imperfect and never fast enough ☺
- Question: how do we use them so that their weaknesses are not exposed and strength are shown?
- Answer: lies in the rest of this presentation

Smart Architecture Design:

Cascaded Modulator For Oversampled Digitalto-Analog Converters

A Brief Look at the Audio DAC's Past

Switch-Cap & Current Steering

Pros-

 \checkmark Allows for very small area implementation <u>especially in</u> <u>CMOS processes</u>.

- \checkmark Can be clocked at much faster rates
- \checkmark Less prone to aliasing due to CT nature
- \checkmark Scales very well with the process
- \checkmark Overall very low power circuit, total current is about I_{REF}

Texas Instruments

Cons-

- * Sensitive to static element mismatch
- * More sensitive to jitter if OBN is high
- × Sensitive to ISI

Dominant Error Sources in DACs

- DAC Element Mismatch
- DAC Asymmetrical Switching (ISI)
- Clock Jitter & Amplifier Nonlinearity

Impact of DAC Non-linearity

Single-Bit and Multi-bit Trade-off

Single Bit DAC:

- More out of band noise
- Faster clocking to get the in-band low
- Element mismatch does not matter

BUT, worst case scenario for ISI, there is no way to correct for it

Multi Bit DAC:

- Reduce both Out of Band Noise and Inband
- Slower clock rates relax the ISI errors
- Multi-level glitch errors have less impact
- BUT, worst case scenario for mismatch

Good news: There are algorithms to shape element mismatch

Cost of Filtering OBN

Try Analog-FIR Filtering

Does AFIR Really Reduce OBN

$$M: \text{DAC elements}$$

$$N: \text{Number of AFIR Filter taps}$$

$$AFIR DAC has \left(\frac{M}{N}+1\right) q \text{-levels}$$

$$AFIR(f) = \frac{Sin(\pi \cdot f \cdot N / F_s)}{Sin(\pi \cdot f / F_s)}$$

$$Assume 2^{\text{nd}} \text{ order NTF for } \Sigma\Delta M$$

$$Lets formulize the OBN energy for DAC with AFIR Configuration
$$OBN_A = \int_{F_{BW}}^{F_s/2} AFIR^2(f) \cdot \left| 2 \cdot Sin\left(\frac{\pi \cdot f}{F_s \cdot N}\right) \right|^2 \cdot \frac{1}{12F_s} \cdot \left(\frac{N}{M+N}\right)^2 \cdot df$$

$$OBN_A = \frac{1}{3F_s} \cdot \left(\frac{N}{M+N}\right)^2 \cdot \int_{F_{BW}}^{F_s/2} \left| Sin\left(\frac{\pi \cdot f}{F_s \cdot N}\right) \right|^2 df$$$$

Now lets look at the 2 extreme cases: Remember we have only L>>1 DAC segments to use

1. Spend all the segments on FIR filtering and use only 1-bit DAC

$$M = 1$$

$$N = L$$

$$OBN_{A} = \frac{1}{3F_{s}} \cdot \left(\frac{L}{L+1}\right)^{2} \cdot \int_{F_{BW}}^{F_{s}/2} \left|Sin\left(\frac{\pi \cdot f}{F_{s} \cdot L}\right)\right|^{2} df \approx \frac{1}{3F_{s}} \cdot \left(\frac{1}{L}\right)^{2} \cdot \left(\frac{\pi \cdot f}{F_{s}}\right)^{2} \cdot \left(\frac{F_{s}}{2} - F_{BW}\right)^{2}$$

2. Spend all the segments on the DAC and don't do AFIR

$$M = L$$

$$N = 1$$

$$OBN_{A} = \frac{1}{3F_{s}} \cdot \left(\frac{1}{L+1}\right)^{2} \cdot \int_{F_{BW}}^{F_{s}/2} \left|Sin\left(\frac{\pi \cdot f}{F_{s} \cdot 1}\right)\right|^{2} df \approx \frac{1}{3F_{s}} \cdot \left(\frac{1}{L}\right)^{2} \cdot \left(\frac{\pi \cdot f}{F_{s}}\right)^{2} \cdot \left(\frac{F_{s}}{2} - F_{BW}\right)^{2}$$

Clearly, with 1st order approximation, there is no change in OBN in either cases.

Same OBN !!!

Try Adding More Quantizer Levels

25-Level DAC → Element Matching is more difficult

Segmented DAC in ISSCC 2008

Implemented in 0.18CMOS, 0.4mW digital power and 0.7mW analog power:

✓ **Out of band noise:** Segmentation (non-uniform, 16:1 weighted) results in high no of quantization levels and smooth signal. Effective no of levels is 256 using only 16 cells.

✓ Static mismatch: Shuffling algorithm better than direct first order shaping and cheap in 0.18u CMOS

- ✓ **Dynamic mismatch:** ISI free switching at the I/V converter. This is the bottleneck of this design
 - It requires I/V converter and headphone driver separately

✤ HOLD clock mechanism makes increases sensitivity to phase noise again

✓ 1/f noise: Segment 1/f is reduced by shuffling algorithm. Does not mention reference 1/f

✓ Thermal noise: Shuffling algorithm creates 3-level logic and DAC segments have 3-switches unused segments dump noise to the ground, therefore thermal noise scales with the signal

Cascaded Modulator Architecture Presented in ISSCC 2010

For a 2-level cascade

$$Y(z) = X(z) + \frac{1}{K} \cdot NTF(z) \cdot E_2(z)$$

Resolution is boosted by K.

For N-level cascades

$$Y(z) = X(z) + \frac{1}{K^{N-1}} \cdot NTF(z) \cdot E_N(z)$$

➢Ideal output for a 2-level cascade

$$Y(z) = X(z) + \frac{1}{K} \cdot NTF(z) \cdot E_2(z)$$

➢ If digital Kd and analog Ka do not match

$$Y(z) = X(z) + \left(1 - \frac{K_d}{K_a}\right) \cdot NTF(z) \cdot E_1(z) + \frac{1}{K_a} \cdot NTF(z) \cdot E_2(z)$$

Mismatch between Kd and Ka is shaped inherently

Mismatches between the DACs are shaped similarly

This is not MASH

- Purpose of MASH is to get higher order from simple 2nd and 1st order modulators.
 - Same can be achieved with higher order single loop
 - The purpose of Cascade is to get finer quantization from coarse quantized modulators.
- MASH sub-modulators are summed in digital domain always
 - Cascaded modulators are summed in analog domain.
- MASH is very sensitive to analog/digital mismatch
 - Cascaded architecture has built in shaping

Reducing OBN Cost Effectively

Impact of Cascading on Area

Cascaded architecture with secondary DAC

Resolution is increased significantly with a small DAC

Comparing to Segmented DACs

Texas Instruments

Technology for Innovators

What is Pulse Width Modulation?

Analog

PWM: Convert amplitude quantized signals to time representation by changing the pulse width of a carrier signal.

What is driving this?

- I. DACs and ADCs are now all integrated with the massive digital cores in CMOS
- II. Shrinking CMOS technology is leaving no head room to implement reliable multi level amplitude quantization
- III. However, CMOS speeds are always going up
- IV. So Time Quantization is getting cheaper and Amp Quantization is getting expensive

Adapt or die 🛞

Using PWM and AFIR in DAC

PWM: M-level data @ Fs \rightarrow 2-level data @ 2*M*Fs

- 1-bit data is inherently insensitive to mismatch
- Reduced sensitivity to asymmetrical switching

Why Not stay at PCM and use DWA?

 Source of the tone: ➢ Noise shaping SDM has idle tones, activity created by "Mismatch shaping loop" amplifies these idle tones. Solution: ➢ Tonal free SDM design with dither 	 Source of the tone: Mismatch shaper has idle tones, this loop combined with ISI introduces FM modulated tones specially at small signal swings. Solution: Dithering in SDM does not help, dithering here reduces the effect if static mismatch shaping.
Tonal free SDM design with dither or chaos.	 if static mismatch shaping. ➤ We can add DC tone and move the tones outside the audio band.

AFIR and PWM Spectrum

> AFIR notch locations align with PWM harmonics

AFIR DAC Circuit

BP

BM

cir Ū

2*M*Fs

Effect of Mismatch on AFIR

Impact of PWM on Area

 Digital PWM costs nothing in gates.
 Resistant to mismatch and ISI
 Clock faster

Technology for Innovators[™]

Texas Instruments₂

Keep Cascading

Technology for Innovators[™]

Texas Instruments

Measurement Results

- Very low distortion at -3dB signal
- 2nd harmonic is down by 120dB
- 3rd harmonic is down by 118dB
- 60 Hz is visible around signal and DC

Measurement Results

No spurs and idle tones visible at low signal swing either

 \geq 60 Hz and its harmonics is still visible around DC

Performance Summary

Process	45nm CMOS
Supplies	1.4V Analog/1.1V Digital
Full-scale differential output	176uA peak to peak
Digital power/DAC	0.1mW
Analog power/DAC	0.4mW
Total DAC area	0.045mm2
OSR	64
Clock Frequency	3.072MHz modulator clock
	202.752MHz DAC clock
Dynamic Range (A-weighted)	110dB
THD+N	-100dB

Summary

- Cascaded Modulator Architecture reduced out of band noise efficiently
 - Reduced sensitivity to analog error sources
 - Reduced RC area cost for post filtering
 - Analog amplifier design requirements are relaxed too.
 - Smaller dV/dt transitions allow a slower amplifier with low area and power.

Where does it stand?

			110 -	TARGET ZONE							
art	Power (mW)	DR (dB)		Cascadir	ng						
DI SSM2602	7	96									
DI SSM2602	21	102	105 -		•					STNVD	
T-NXP STw5210	29	94					100 C			SINAP	
T-NXP STw5210	44	103			TI 2254		voitson				
/olfson WM8980	22	102	100 -		11-3234	T -I	Phoenix				
irrus CS42L5	13	95	e 100		A R R R R R R R R R R R R R R R R R R R	•	Cirrus				
irrus CS42L5	23	98	Ð		Þ.		• uc				<u> </u>
axim MAX9851	26	87.5	B			National		Bla	ack \rightarrow	True gr	ound
ational LM4934	19	95	95 -	_	•			Bl	$le \rightarrow $	/CM driv	ver
TLV320AIC3254	7.7	89		¶	irrus			Re	$d \rightarrow F$	vternal	rans
TLV320AIC3254	13.5	100					TI-3106 🗢		u / L	Atomary	caps
TLV320AIC3106	26.54	92	90.								
TWL6040	19	100					Maxim				
I TWL6040	28.8	104		TI-3254			•				
ath2 Now	7	102.3									
ath2-R&D	5.2	107	85 -								
ath3	8	100		D 5 10) 15	20	25 3	ю з	5	40 4	15 5
		Stereo Power Consumption (mW)									

> I don't see a clear indication that ADI is using the 3-level DAC (108dB DR) published in ISSCC08

ST-NXP is very focused on wireless requirements such as working with 32kHz RTC clock (in fact only one claiming this), true ground swing, implemented in a CMOS process, and ~100dB DR

Unfortunately process information for most of these are not available.

> TI-TWL6040 (Phoenix) numbers are from the spec document and not silicon data

> There is sort of a barrier line indicated in green on the graph above for performance and power trade-off when looking at existing designs.

> Our proposed architecture today can deliver best in the market performance and will be in a class of its own.

Smart Signal Processing How to Linearize a DAC?

It is all in how you use it

ISI-errors and modeling

- Errors depend on the previous symbol
- Can be modelled ISI_n=f(s_n,s_{n-1})
- f() can be linear for symmetrical switching
 - Shaped by the mismatch shaper (correlated)

• Non-linear part:

- Can be assigned to rising edge only
- Un-correlated error

The popular DWA a perfect tone generator

- Simple & popular scheme
 - Barrel shifter
- A.k.a "<u>segment</u> rotation"
- Variable rotation speed:
 - Proportional to the signal x_n
 - "VCO" operation
 - <u>Frequency</u> <u>M</u>odulated idle tones

Texas Instruments.

Generic mis-match shaper

Max. Rate pattern: Midscale

Pattern for ±1/5 Full Scale

DWA: Max. Theoretical rate

FM idle tones : low level THD issue

DWA+ISI Simulation examples

-100

-120

-140

-160

-180

-80

100

-120

-140

-160

-180 L

0.8

Frequency (Hz)

Amplitude (dB)

Amplitude (dB)

Technology for Innovators[™]

x 10⁴

 $\cap 4$

0.6

0.8

Frequency (Hz)

Π2

1.4

1.6

1.8

x 10

1.2

DWA+ISI: a bad cocktail..

• Large signal:

- V-shape transition rate / mean ISI error vs. signal x_n
- $Abs(x_n)$ type non-linearity Even-order harmonics
- Constant THD ratio vs. level

• Small-signal:

- Signal x_n jitters across the midscale point due to the Noise shaper activity
- De-correlation of the ISI-error: no high-pass shaping
- FM tone frequency proportional to x_n : (100% mod -> f_{clk})
- THD due to FM tones both even and odd order

• nm-scale design:

 Increased clock does not help: ISI goes up and error is concentrated in tones (not spread spectrum)

Prior-art solutions to ISI

- "DC Dither" to shift tones out of band
 - Popular but just moves the problem
- Return-to-zero (RTZ)
 - Increased current, sensitive to timing accuracy/jitter
- Sample and hold de-glitching
 - Used to de-glitch R2R DACs in early CD players
- Mismatch shaping with reduced transition rate[4]
 - Reduce ISI at the cost of mismatch shaping
- Pulse Width Modulation (ISSCC'2010)
 - Great but requires high frequency clock
- Re-spins and layout tweaking of the analog...

ISI-Shaper target

The novel ISI shaping algorithm

Single segment spectra

•1st/1st order ISI-shaper, R_{tran}=0.25

TEXAS INSTRUMENTS

45nm Audio DAC implementation

Output at -6dB using DWA

Output at -6dB using ISI Shaper

Output at -60dB using DWA

Output at -60 dB using ISI Shaper

45nm DAC: Amplitude sweep

45nm DAC summary

Process	45nm CMOS					
Supplies	1.45V Analog 1.1V Digital					
Full-scale differential current output	0.176mApp					
Full-scale differential voltage output	0.5Vrms					
Digital power consumption	0.14 mW					
Analog power consumption	0.735 mW					
Total area	0.16mm2					
OSR	64					
Clock Frequency	3.072MHz					
Voltage Output Dynamic Range (A-weighted)	108dB					
Current Output Total Harmonic Power @-3dB	-120.0dB					
Voltage Output Total Harmonic Power @ -3dB	-104.6dB					
Voltage Output Total Harmonic Power @ -12dB	-120.6dB					
Voltage Output Total Harmonic Power @ -60dB	-124.5dB					

Conclusions

 DWA+ISI gives high amplitude THD and low level tones/noise problems

- Concentrates ISI energy in in-band tones

• ISI is hard to fight using analog techniques

- Goes against the desire for fast cycle design of SoCs
- Goes against the desire to clock fast in nm scale CMOS

• The novel ISI shaper:

- Excellent audio performance even in 45nm
- helps fast cycle SoC design
- Digitally assisted analog solution to fight ISI
- Provides robustness to analog imperfection

