The Implementation of a 2-core, Multi-threaded Itanium® Family Processor

> Samuel Naffziger Blaine Stackhouse Tom Grutkowski Intel Corp. Fort Collins, CO

Outline

- Processor overview
- Core improvements
 - Cache hierarchy
 - Multi threading
 - Power reduction
- Handling 4 voltage and frequency domains
- Power management and reduction
- Conclusion

Itanium's Progress

- 90nm implementation optimized for server workloads
 - Two dual-threaded high performance 64b EPIC cores on a single chip
 - (very) Large on-chip caches totaling 26.5MB
 - The same latencies as previous Itaniums (paper 26.8)
- 1.72 Billion transistors, 596mm²
- Legacy system bus at higher frequency (666MT/s)
- High frequency operation representing at least a 20% increase over the 130nm implementation of the same core micro-architecture
- Power efficiency improvements that deliver a >2 fold compute capability increase at 23% less power consumption

Single Core, 180nm 3MB L3 1 GHz, 130W, 1.5V

Madison

Single Core, 130nm 9MB L3 1.6 GHz, 130W, 1.35V

Montecito

Dual Core, 90nm 24MB L3 1.8+ GHz, 100W, 1.0-1.2V

Core Design Changes

- Temporal Multi-threading
 - Very low cost throughput performance boost
- New level of cache 6 cycle 1MB L2I
 - Addresses largest CPI component for transaction processing (Instruction misses)
 - Frees 256KB L2D to be dedicated for data
- ECC add in L2T tags, and parity added to L1I TLB
- Parity in FP and Integer register files
- Second Shift/merge unit for encryption
 performance
- Power reduction with support for dynamic frequency and voltage

Temporal Multi-Threading

Multi-Threading Implementation

- 15% register file growth with TMT using mux scheme
 - See Paper 20.5
- Key architectural state threaded, rest is flushed on a switch
 - 2X latch area for 1.3% of total latches

Register file impact

Core Power Reduction

- To improve power efficiency, we focused the team on reducing power consumption for *typical applications*
 - Developed a vector based tool to accurately measure switching and leakage power
 - Achieved a 28% overall reduction from the ported core even with the new features.

Multiple Voltage and Frequency Domains

 To ensure minimal latency impact, a high gain resolver is needed to cross clock domains

Failure probability Proportional to $Exp\left(\frac{-T_w}{Tr}\right)$ Where Tw is the time window for resolution, *Tr* is the resolver time constant \approx 5ps

Determinism for debug

 / test provided with a
 fixed frequency mode
 (FFM) enabled with
 dynamic deskew

Multiple Voltage and Frequency Domains

- To ensure reliable crossing of voltage domains, with up to 400mV offsets, a robust level shifter is used
 - − Vcache $\leftarrow \rightarrow$ Vcore
 - Vcore $\leftarrow \rightarrow$ Vfixed
 - Vfixed $\leftarrow \rightarrow$ Vtt
- A tool was developed to identify all domain crossings and check for the presence of level shifters

Power Efficiency Improvements

- A primary design goal of Montecito was the improvement of power efficiency
 - Performance / Watt
 - Lower acquisition and operating costs, reduced form factor, better compute density
- One must measure what is being optimized
 - Temperature measurements do not suffice an environmentally dependent proxy for power
 - ➔ An ammeter is required
- To avoid wasted watts, have the chip instantaneously optimize operating point for variations in {voltage, temperature, workload, silicon processing}
 - Requires self selection of voltage with dynamic frequency in conjunction with temperature and current measurement

Power Management Loop

• For further details, see paper 16.7

- Key enablers: 100s of ps
 - High accuracy ammeter
 - Dynamic voltage control
 - Fast frequency synthesis as a function of Vcc
 - Accurate thermal measurement

Power Consumption Contour

Optimization point is for typical *integer* applications which have .6X the switching power of the worst case → Amdahl's law

Manufacturing test is accomplished by observing the *self measured power*, and the *self-generated frequency* for typical code at the power limit

Per-Part Self-Optimization

For <u>Power</u>, since $P \sim F^3$:

$$P = P_{orig} / (1 + .12 + .05 + .03 + .07 + .11 + .05)^3 = P_{orig} / 2.92$$

This improvement is for a *typical* application. High power floating point code may see up to a 10% reduction in frequency

Shmoo

	VCORE									
FREQ	1	1.05	1.1	1.15	1.2	1.25	1.3	1.35	1.4	
2200	H-FW	H-FW	H-FW	H-FW	MCA-0 MCA-0	HANG	110	W		2200
2100	H-FW	H-FW	H-FW	0-86165392	95W	104W	19222	7222	1222	2100
2000	H-FW	H-FW	MCA-0	H-FW				1112-		2000
1900	H-FW	0-86165392 0-86165400	71W	77W	 .			 ::		1900
1800	MCA-0	63W	-445-1		4444	-	-			1800
1700	57W	1221	7222	72223	1.111	1222	19222	2025	1222	1700
		A					_		-	1 × 1

Power Consumption is for all 4 voltage domains at ~40C Tj

Summary

- Design builds on Itanium's performance strengths:
 - Improves leadership cache hierarchy
 - Improves instruction throughput further with dualcore, multi-threading and new execution units
- Bolsters reliability
 - Parity in register files, improved ECC
 - Seamless adaptation to power or thermal overages
- Achieves leadership performance / Watt
 - Breakthrough power measurement and management technology provides flexibility and efficiency