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McKinley

ltanium’s Progress

90nm implementation optimized for server Single Core, 180nm
3MB L3
Workloads _ 1 GHz, 130W, 1.5V
— Two dual-threaded high performance 64b EPIC .
cores on a single chip Madison

— (very) Large on-chip caches totaling 26.5MB |
» The same latencies as previous Itaniums ,\

(paper 268) Single Co.re, 130nm
1.72 Billion transistors, 596mm? 9MB L3

Legacy system bus at higher frequency (666MT/5)|'6 GHz, 130W, 1.35V

High frequency operation representing at least a
20% increase over the 130nm implementation of
the same core micro-architecture

Power efficiency improvements that deliver a >2

fold compute capability increase at 23% less Dual Core, 90nm
power consumption 12§Mg£

100W, 1.0-1.2V



Business Critical Features
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Core Design Changes

Temporal Multi-threading

— Very low cost throughput
performance boost

New level of cache — 6 cycle 1MB L2I

— Addresses largest CPI component
for transaction processing
(Instruction misses)

— Frees 256KB L2D to be dedicated
for data

ECC add in L2T tags, and parity
added to L1| TLB

Parity in FP and Integer register files

Second Shift/merge unit for encryption
performance

Power reduction with support for
dynamic frequency and voltage
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Temporal Multi-Threading

Switch

Overlap memory latency stall of
with execution of Thread 2
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Multi- Threading Implementation

 15% register file growth Register file Impact

with TMT using mux

— See Paper 20.5 8 write

scheme ‘ [>oi] I 12 read
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Core Power

Reduction

* To improve power
efficiency, we focused
the team on reducing
power consumption for
typical applications

— Developed a vector
based tool to accurately
measure switching and
leakage power

— Achieved a 28% overall
reduction from the
ported core even with
the new features.
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Muttiple Voltage and [N
Frequency Domains e

« To ensure minimal latency impact, a §
high gain resolver is needed to crossj
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Multiple Voltage and
Frequency Domains

« To ensure reliable crossing

of voltage domains, with
up to 400mV offsets, a
robust level shifter is used
— Vcache €<—-> Vcore

— Vcore <> \Vfixed

— Vfixed €-> Vit

« A tool was developed to
identify all domain
crossings and check for
the presence of level
shifters
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Power Efficiency Improvements

* A primary design goal of Montecito was the
improvement of power efficiency
— Performance / Watt
— Lower acquisition and operating costs, reduced form
factor, better compute density
* One must measure what is being optimized

— Temperature measurements do not suffice — an
environmentally dependent proxy for power

= An ammeter is required

« To avoid wasted watts, have the chip
instantaneously optimize operating point for
variations in {voltage, temperature, workload,
silicon processing}

=>» Requires self selection of voltage with dynamic

frequency in conjunction with temperature and current
measurement



Power Management Loop

 For further details, see paper 16.7
I 100s of us

+ Key enablers:  100sofps
— High accuracy ammeter
— Dynamic voltage control
— Fast frequency synthesis as a function of Vcc
— Accurate thermal measurement



Power Consumption Contour

Power Power Consumption Profile
(Watts)
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Optimization point is for
typical integer
applications which

have .6X the switching
power of the worst case
= Amdahl’s law

Manufacturing test is
accomplished by
observing the self
measured power, and
the self-generated
frequency for typical
code at the power limit




Per-Part Self-Optimization

Power Distribution at Fixed V/F

50

18

90 100 110 120 130 140

Power Range with Foxton

50

0.9 1 1.1 1.2

\ | | Resulting Vdd
90 100 110 120 130 140 Distribution




The clock system 1 Variable ol Gaer — :
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Frequency

V, asynch. etc.)

Feature Gain @
100W __
Manage to application power 199
VS. max power °
Adapt Vcc to optimal value for 59
each part °
Manage junction temperature 30
to the minimum possible °
Adapt frequency to Vcc to
operate at frequency(V,,,) 7%
vs. frequency(V . )
Optimize circuits for low 11
switching and low leakage °
Cache power optimization (low 59
o

Simple Port of Madison
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For Power, since P ~ F3:
P=P
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/(1+.12+.05+.03+.07+.11+.05)3 = P

/2.92

orig

This improvement is for a typical application.
High power floating point code may see up to a 10%
reduction in frequency
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Power Consumption is for all 4 voltage domains at
~40C Tj



Summary

* Design builds on Itanium’s performance
strengths:
— Improves leadership cache hierarchy
— Improves instruction throughput further with dual-
core, multi-threading and new execution units
» Bolsters reliability
— Parity in register files, improved ECC
— Seamless adaptation to power or thermal overages

» Achieves leadership performance / Watt

— Breakthrough power measurement and
management technology provides flexibility and
efficiency



