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Itanium’s Progress
• 90nm implementation optimized for server 

workloads
– Two dual-threaded high performance 64b EPIC 

cores on a single chip
– (very) Large on-chip caches totaling 26.5MB

• The same latencies as previous Itaniums 
(paper 26.8)

• 1.72 Billion transistors, 596mm2

• Legacy system bus at higher frequency (666MT/s)
• High frequency operation representing at least a 

20% increase over the 130nm implementation of 
the same core micro-architecture

• Power efficiency improvements that deliver a  >2 
fold compute capability increase at 23% less
power consumption
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Core Design Changes
• Temporal Multi-threading

– Very low cost throughput 
performance boost

• New level of cache – 6 cycle 1MB L2I
– Addresses largest CPI component 

for transaction processing 
(Instruction misses)

– Frees 256KB L2D to be dedicated 
for data

• ECC add in L2T tags, and parity 
added to L1I TLB

• Parity in FP and Integer register files
• Second Shift/merge unit for encryption 

performance
• Power reduction with support for 

dynamic frequency and voltage
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15 cycle penaltyOverlap memory latency stall of 
Thread 1 with execution of Thread 2
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Multi-Threading Implementation
• 15% register file growth 

with TMT using mux
scheme
– See Paper 20.5

• Key architectural state 
threaded, rest is 
flushed on a switch
– 2X latch area for 1.3% 

of total latches
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Register file impact
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Core Power 
Reduction

• To improve power 
efficiency, we focused 
the team on reducing 
power consumption for 
typical applications
– Developed a vector 

based tool to accurately 
measure switching and 
leakage power

– Achieved a 28% overall 
reduction from the 
ported core even with 
the new features. 

Power vs. Unit 
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Multiple Voltage and 
Frequency Domains

• To ensure minimal latency impact, a 
high gain resolver is needed to cross 
clock domains
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Multiple Voltage and 
Frequency Domains

• To ensure reliable crossing 
of voltage domains, with 
up to 400mV offsets, a 
robust level shifter is used
– Vcache �� Vcore
– Vcore ��Vfixed
– Vfixed ��Vtt

• A tool was developed to 
identify all domain 
crossings and check for 
the presence of level 
shifters
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Power Efficiency Improvements
• A primary design goal of Montecito was the 

improvement of power efficiency
– Performance / Watt
– Lower acquisition and operating costs, reduced form 

factor, better compute density
• One must measure what is being optimized

– Temperature measurements do not suffice – an 
environmentally dependent proxy for power

� An ammeter is required
• To avoid wasted watts, have the chip 

instantaneously optimize operating point for 
variations in {voltage, temperature, workload, 
silicon processing}
�Requires self selection of voltage with dynamic 

frequency in conjunction with temperature and current 
measurement



• For further details, see paper 16.7

• Key enablers:
– High accuracy ammeter
– Dynamic voltage control
– Fast frequency synthesis as a function of Vcc
– Accurate thermal measurement

Power Management Loop
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Power Consumption Contour
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Power Consumption Profile
Optimization point is for 
typical integer
applications which 
have .6X the switching 
power of the worst case
� Amdahl’s law

Manufacturing test is 
accomplished by 
observing the self 
measured power, and 
the self-generated 
frequency for typical 
code at the power limit



Per-Part Self-Optimization

Power upper
bound
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The clock system
generates 
frequency as a 
function of 
measured voltage 
(papers 16.1 &16.2)
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Feature

3%Manage junction temperature 
to the minimum possible

5%Adapt Vcc to optimal value for 
each part

11%Optimize circuits for low 
switching and low leakage

7%
Adapt frequency to Vcc to 

operate at  frequency(Vavg) 
vs. frequency(Vmin)

12%Manage to application power 
vs. max power

5%Cache power optimization (low 
V, asynch. etc.)
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This improvement is for a typical application.  
High power floating point code may see up to a 10% 
reduction in frequency



Shmoo

Power Consumption is for all 4 voltage domains at 
~40C Tj

57W
63W

71W 77W

95W 104W
110W



Summary
• Design builds on Itanium’s performance 

strengths:
– Improves leadership cache hierarchy
– Improves instruction throughput further with dual-

core, multi-threading and new execution units

• Bolsters reliability
– Parity in register files, improved ECC
– Seamless adaptation to power or thermal overages

• Achieves leadership performance / Watt
– Breakthrough power measurement and 

management technology provides flexibility and 
efficiency


