

Front End Manufacturing Technology

C. Rinn Cleavelin Si Technology Development Texas Instruments, Inc. Dallas, Texas

Topics

- Transistor Performance Trends
- Transistor Scaling Challenges
- New Device Architectures
 - Advanced CMOS
 - Non-Classical CMOS
 - Memories
- New Front End Materials & Modules
- Lithographic Trends
- Summary

Moore's Law / Productivity

The definition of "Moore's Law" has come to refer to almost anything related to the semiconductor industry that when plotted on semi-log paper approximates a straight line.

– Gordon Moore, 1995

Transistor Performance Trend

Sources: SEMATECH, 2001 ITRS ORTC

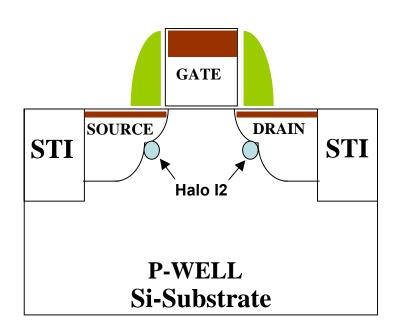
Topics

- Transistor Performance Trends
- Transistor Scaling Challenges
- New Device Architectures
 - Advanced CMOS
 - Non-Classical CMOS
 - Memories
- New Front End Materials & Modules
- Lithographic Trends
- Summary

Transistor Scaling Key Challenges

- Isolation: Minimum Pitch and SOI
- Gate Dielectric: Leakage vs Speed
- Gate Electrode: polySi vs Metal (Mid-gap vs Dual Work Function)
- Ultra-Shallow Junctions (USJ)
 - Low resistance contacts
 - Low resistance abrupt S/D extensions

iedm

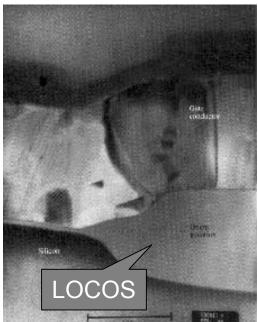

2001 ITRS Scaling Projections

iedm 🗇

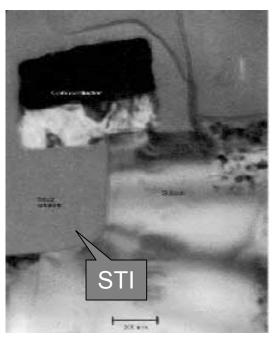
Technology Generation	<u>130 nm</u>	<u>90 nm</u>	<u>65 nm</u>	<u>45 nm</u>	<u>32 nm</u>	<u>22 nm</u>
Year Production	2001	2004	2007	2010	2013	2016
<i>MPU Gate Length (nm)</i>	<mark>65</mark>	37	25	18	13	<mark>9</mark>
DRAM (production)	512M	1G	4G	8G	32G	64G
DRAM chip (cm ²)	1.27	0.93	1.83	1.81	2.39	2.38
DRAM cost (µ ¢/bit)	7.7	2.7	0.96	0.34	0.12	0.042
<i>Wafer Diameter (mm)</i>	300	<u>300</u>	<u>300</u>	300	450	450
Logic M gates	97	193	386	773	1546	3092
Logic M gates/cm ²	69	138	276	552	1104	2209
Logic chip (cm ²)	1.4	1.4	1.4	1.4	1.4	1.4
Frequency (GHz)	1.7	3.9	6.7	11.5	19.3	28.7
μP cost (μ ¢/T)	97	34	12	4.3	1.5	0.54
Power/ Chip (W)	130	160	190	218	251	288
Power Supply MPU (V)	1.2	1.0	0.7	0.6	0.5	0.4
Levels of Metal	7	8	9	9-10	9-10	10
EOT (nm)	1.3-1.6	0.9-1.4	0.6-1.1	0.5-0.8	0.4-0.6	0.4-0.5
X _j at Channel (nm)	27-45	15-25	10-17	7-12	5-9	4-6

iedm�

Device Scaling Issues: Beyond 65nm

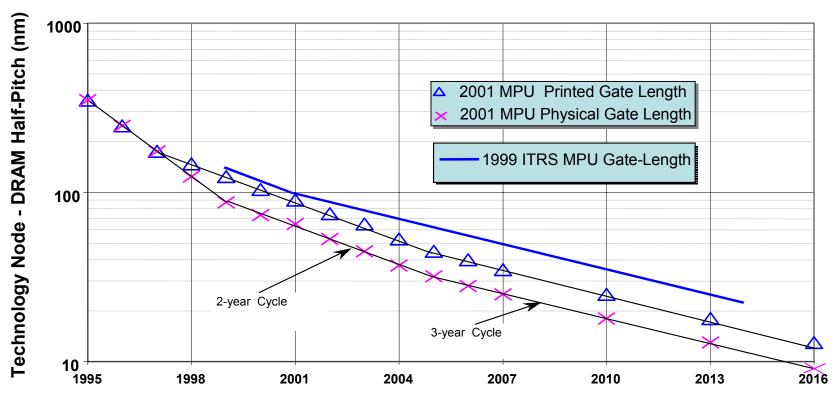

Threshold Voltage:

- $V_{DD} V_T$ decreases
- Subthreshold Slope kT/q
- CD Control


- Gate Stack
 - Tunneling => high I_{off}
 - Inversion Layer => EOT limit
 - PolySi Depletion => I_{on} reduced
 - Mobility degradation => I_{on} reduced
 - CD control
 - Reliability
- Source/Drain
 - Series Resistance => I_{on} reduced
 - Dopant Profile Control
 - TED suppression
 - USJ abrupt S/D extensions
 - Contacts to S/D
 - Tunneling
 - Drain to body & source to drain

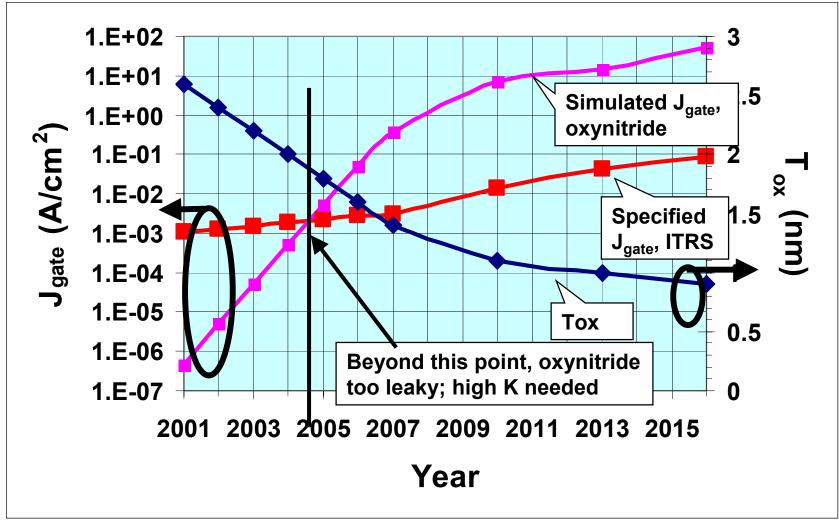
iedm 🗇

Isolation Roadmap


IBM 16MB DRAM

- STI induced to resolve LOCOS Bird's Beak
- Future device scaling and alternate structures such as Double Gate Logic devices and new member elements may lead to SOI only isolation.

$$LOCOS \rightarrow$$
 Shallow Trench Isolation – STI \rightarrow STI / SOI \rightarrow SOI only?


Gate Length Scaling: ITRS

ITRS Roadmap Acceleration Continues...Gate Length

Year of Production

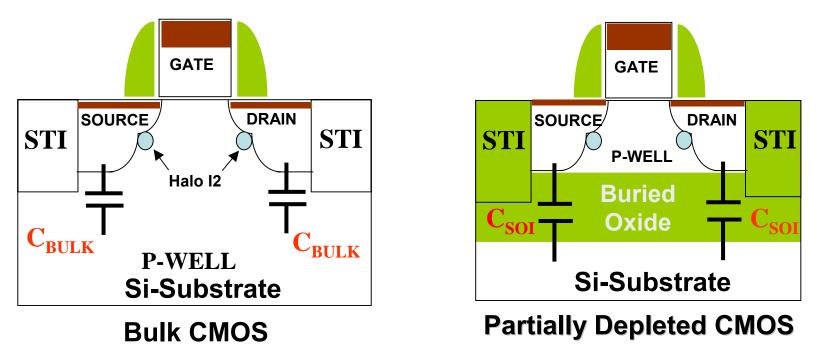
2001 ITRS Projections Versus Simulations of Direct Tunneling Gate Leakage Current Density for Low Standby Power Logic

Topics

- Transistor Performance Trends
- Transistor Scaling Challenges
- New Device Architectures
 - Advanced CMOS
 - Non-Classical CMOS
 - Memories
- New Front End Materials & Modules
- Lithographic Trends
- Summary

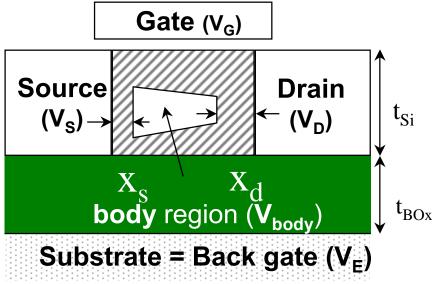
Limits of CMOS Scaling

Planar Non-Planar **New Switch CMOS** CMOS **Structure** Device **Structure** HfO₂ Size Sub 50nm ? source PSG c-Si gate gate body PSG 1.3 nm drain 100 nm SiC 47 Agere '02 Nanotube 5 nm SiC $\overline{}$ Single nanotube 7 - 12 years 12 + Years. 0 - 7 years. TIME

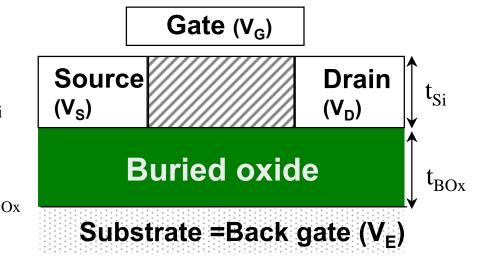

Device Evolution

New Device Architectures

SOI

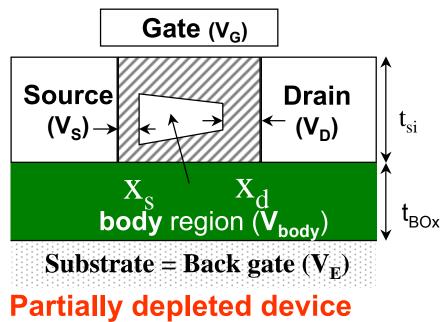

- Partially Depleted (PD)
- Fully Depleted (FD): Ultra-Thin Body
- Double Gate Structures
 - FinFET
 - Tri, Pi Gate
 - DG-SOI
- Memory Innovations
 - FeRAM, MRAM, Ovonics, etc

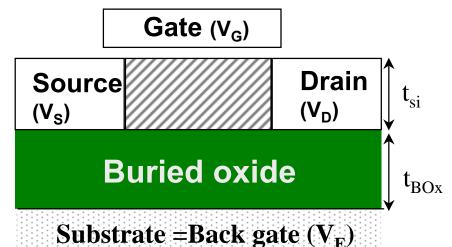
SOI Device Structures


- Short Channel Effect controlled by channel doping/halo as in Bulk
- Reduced junction capacitances => faster speed, lower leakage
- Device design translation straight forward between Bulk and PD SOI
- Complete isolation between devices
- Rad-hard

Partially versus Fully Depleted

Partially depleted device

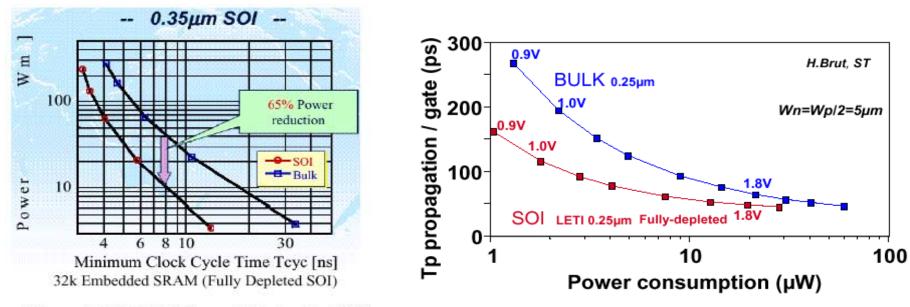

- Bulk bottom junction capacitances replaced by thick oxide capacitance
- Gate side lateral junction capacitance comparable to Bulk case. Can be smaller for PD in case of silicon film thinning


Fully depleted device

- Bulk bottom junction capacitances replaced by thick oxide capacitance
- Full depletion of silicon film suppress lateral junction capacitance
 - Speed improvement compared to PD
 - Smaller power consumption

Partially versus Fully Depleted

- 4 or 5 nodes
- Front and back gate decoupledinternal floating body node
- Floating-Body effects
- $V_T = f(V_{body})$ independent of V_E



Fully depleted device

- 4 nodes
- t_{si}<40nm (for deep sub-µm MOS)
- No neutral floating region
 - independent of 'body' voltage
 - subthreshold swing=60mV/decade
- Front-Back interface coupling
 - V_T= f (V_E)

iedm 🗇

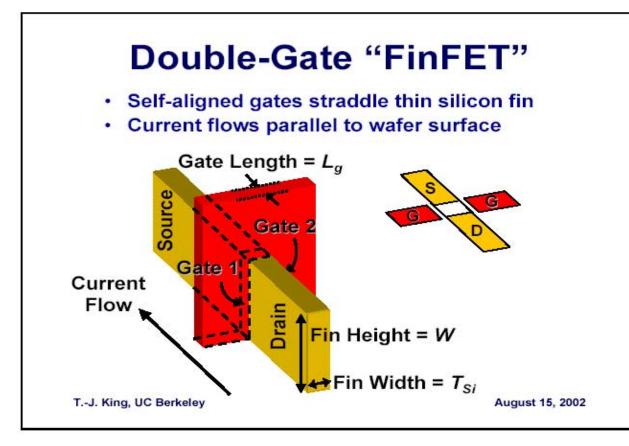
SOI: Power Reduction

Ichigawa & al OKI VLSI Research Center . Sept 2000

Merits of Device Scaling <50nm Options

	Strengths	Weaknesses
Standard FD device	 Small parasitic capacitances Simpler FD architecture 	- Scalability: Ultra-thin film
Ground Plane	 Reduced SCE Relaxed constraint on Tsi 	 Parasitic capacitances increase Subthreshold swing increase
Partial Ground Plane	 Reduced SCE Relaxed constraint on Tsi 	 Parasitic capacitances increase
Double Gate	 Best case for SCE control Relaxed constraint on Tsi 	 Fabrication very difficult Parasitic elements?

SOI Fabrication/Process Issues

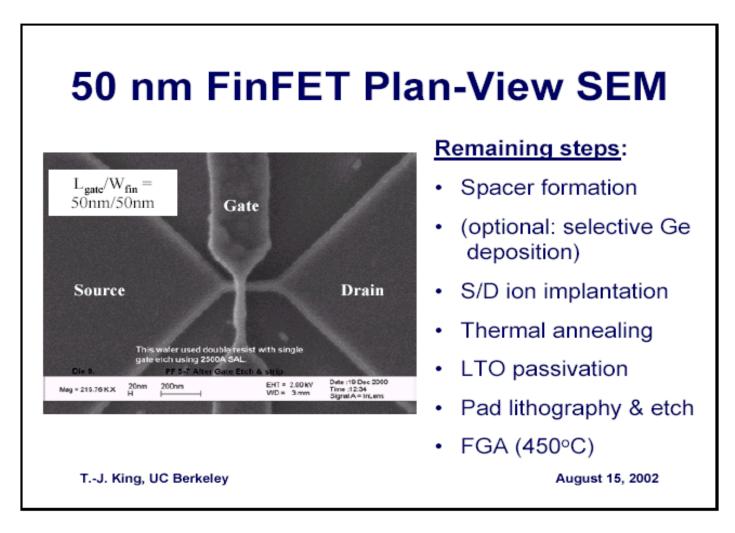

- SOI is ~1.5 3x over bulk wafer pricing
- Etch Pit Density, typically ~600-1000/cm²
- PD and to lesser extent FD have floating body effects which must be comprehended
- FD requires Silicon body thickness control less than ~0.2 - 0.4x of Lg or for example 18nm Lg, t_{si}~36 - 72A for 45nm node

New Device Architectures

SOI

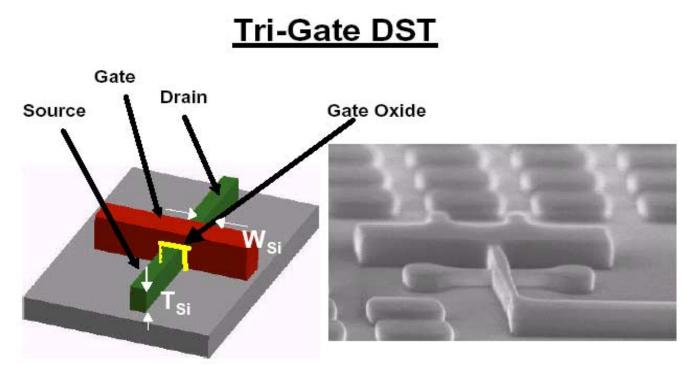
- Partially Depleted (PD)
- Fully Depleted (FD): Ultra-Thin Body
- Double Gate Structures
 - FinFET
 - Tri, Pi Gate
 - DG-SOI
- Memory Innovations
 - FeRAM, MRAM, Ovonics, etc

Double Gate Structures: FinFET



Fin width must be less than 2/3 x L_q

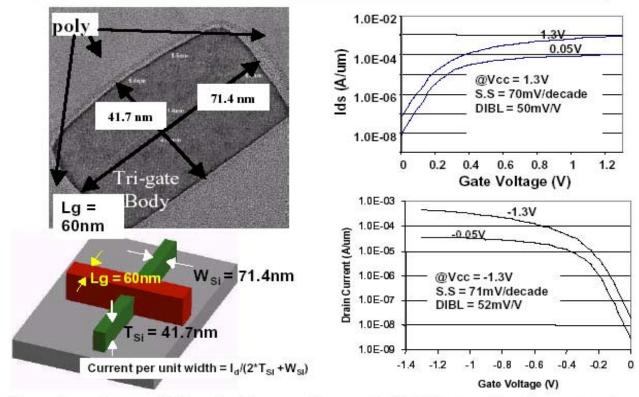
Formation of narrow fin is primary challenge


sub-lithographic process needed

Double Gate Structures: FinFET Gate

iedm 🗇

Double Gate Structures: Tri-Gate



- Taller TSi than single-gate; shorter TSi than double-gate
- Wider WSi than double-gate

SSDM 2002, Nagoya, Japan

Double Gate Structures: Tri-Gate

Tri-gate DST Relaxes Si Body Dimensions

 Tri-gate relaxes Si body dimensions: 2.3X thicker T_{si} than singlegate DST, and ~2X wider W_{si} than double-gate FINFET

iedm�

DG Fabrication/Process Issues

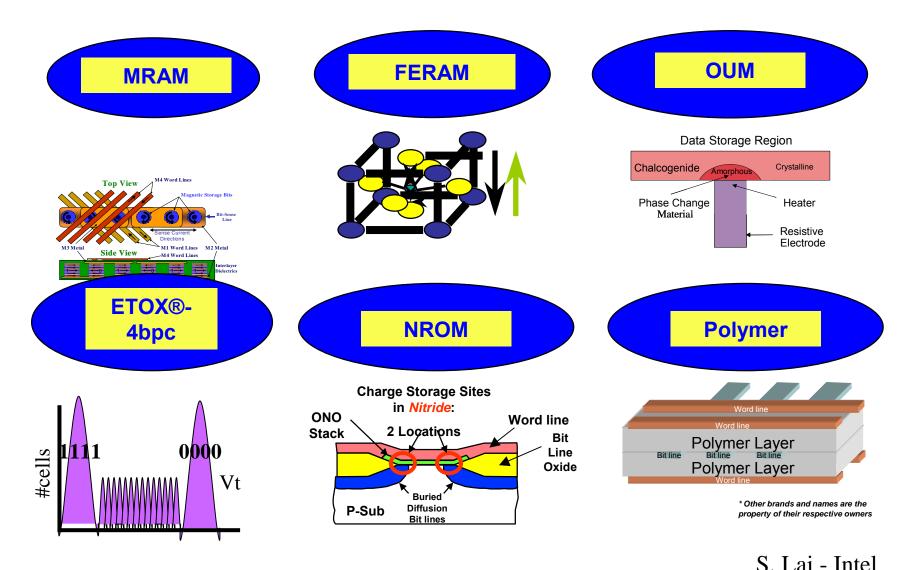
Moat etch

- Defines vertical gates
- Etch and gate dielectric interaction on vertical gate structures
- Gate dielectric (including high-K integration)
 - Integrity, mobility, manufacturability
- Gate materials and etch
 - Depletion issues, hence Metal gate
- Junction and Contact
 - Ion Implant, PLAD, SEG
- Ground plane design
 - Implant through thin BOx

iedm 🗇

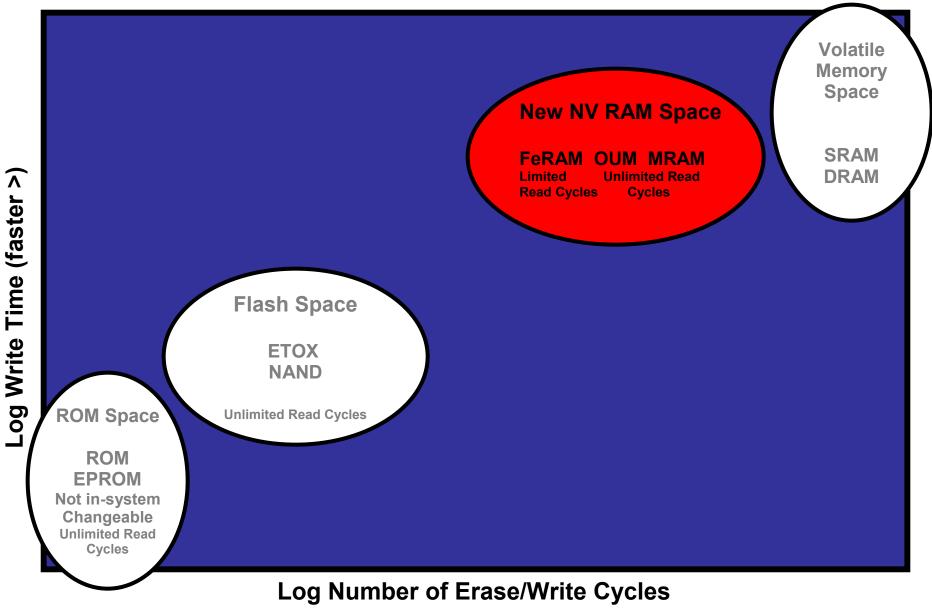
Options Below 50nm

	Doping	Mobility	Silicon film	Parasitic cap	Perf
BULK	10 ¹⁸ -10 ¹⁹	Low	/	-	Ref. o
PD	10 ¹⁸ -10 ¹⁹	Low	50-150nm	+	High +
FD & N⁺ Poly	10 ¹⁸ -10 ¹⁹	Low	5-15nm	++	Very High ++
GP, PGP, DG & N⁺ Poly	10 ¹⁸ -10 ¹⁹	Low	10-20nm	+	High +
DG & N ⁺ /P ⁺ Poly	10 ¹⁷ -10 ¹⁸	Medium	10-20nm	++	High ++
FD & Metal gate	10 ¹⁵ -10 ¹⁶	High	5-15nm	++	Very High +++
GP, PGP & Metal gate	10 ¹⁵ -10 ¹⁶	High	10-20nm	+	High ++
DG & Metal gate	10 ¹⁵ -10 ¹⁶	High	15-30nm	++	Very High +++


New Device Architectures

SOI

- Partially Depleted (PD)
- Fully Depleted (FD): Ultra-Thin Body
- Double Gate Structures
 - FinFET
 - Tri, Pi Gate
 - DG-SOI
- Memory Innovations
 - FeRAM, MRAM, Ovonics, etc


Memory Technologies

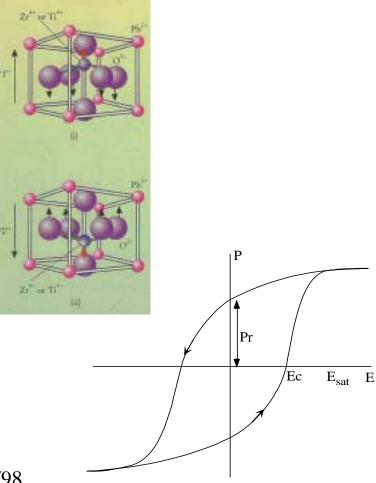
iedm 🚸

Many choices in development

Memory Technologies Comparison

S. Lai - Intel 30

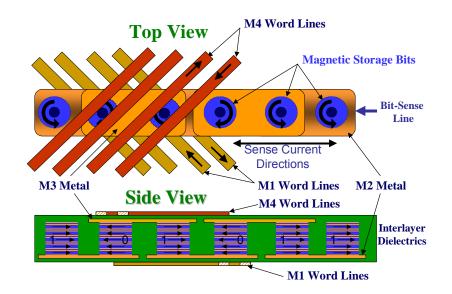
FeRAM

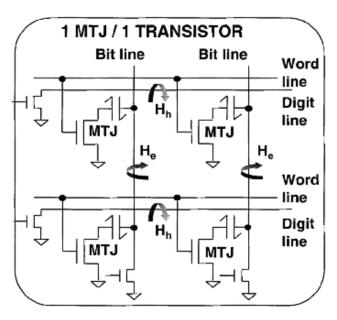

What Is FeRAM?

Operation

- Selected crystalline materials have spontaneous polarization
- Data is stored by applying a voltage to align the internal dipoles "Up" or "Down"

Attributes


- Non-Volatile
- "Fast" Random Read Access
- Fast Write with very low power consumption
- Destructive read, limited read and write cycles



Source: Physics Today 7/98

MRAM

- Operation
 - Cell is 1 MJT + 1 Transistor
 - Electric current switches the magnetic polarity
 - Change in magnetic polarity sensed as resistance change
- Attributes
 - Non-Volatile, High Density
 - Non Destructive Read
 - Low Voltage & Low Power
 - Write = Read Speed, < 50 nsec</p>
 - Unlimited R/W Endurance
 - Material compatibility with CMOS a key challenge

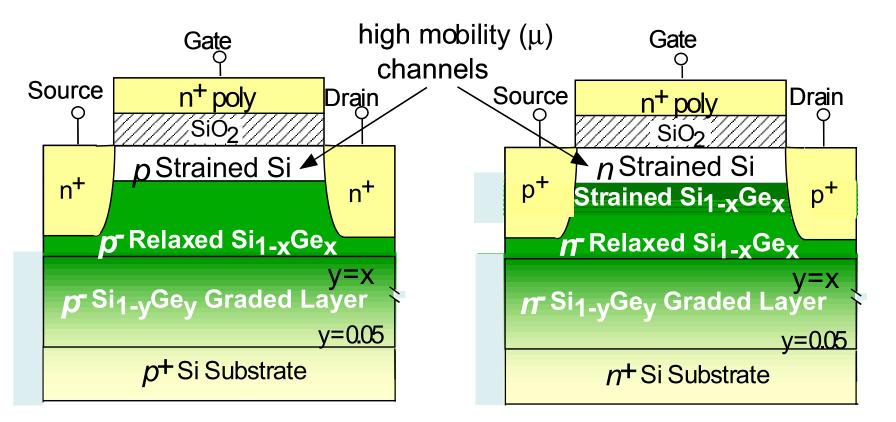
S. Lai - Intel

Topics

- Transistor Performance Trends
- Transistor Scaling Challenges
- New Device Architectures
 - Advanced CMOS
 - Non-Classical CMOS
 - Memories
- New Front End Materials & Modules
- Lithographic Trends
- Summary

New Front End Materials & Modules

Substrates:

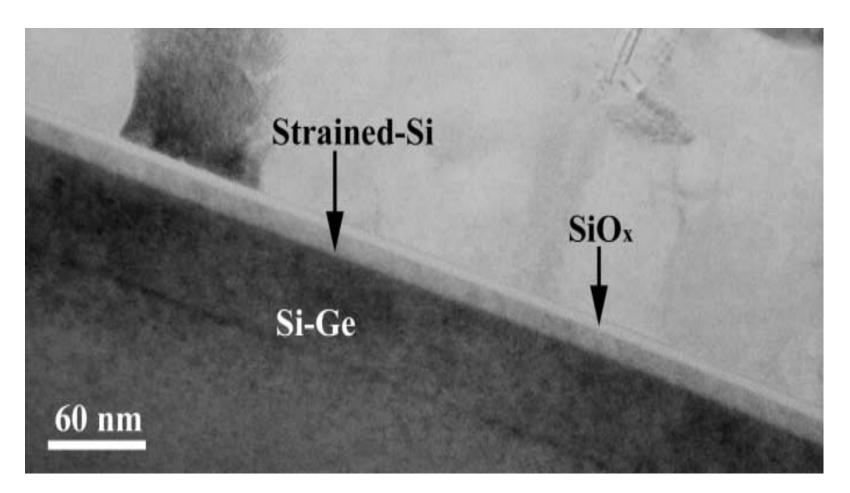

- Strained Si
- SOI; Ultra Thin Body (UTB) Si
- 450mm
- Gate Dielectrics: Oxide to High-k
- Gate Electrodes: doped polySi to metal gate
- Ultra-Shallow Junctions:
 - Raised S/D
 - Non-equilibrium annealing
- Gate Etch / CD Control and Clean

Substrates

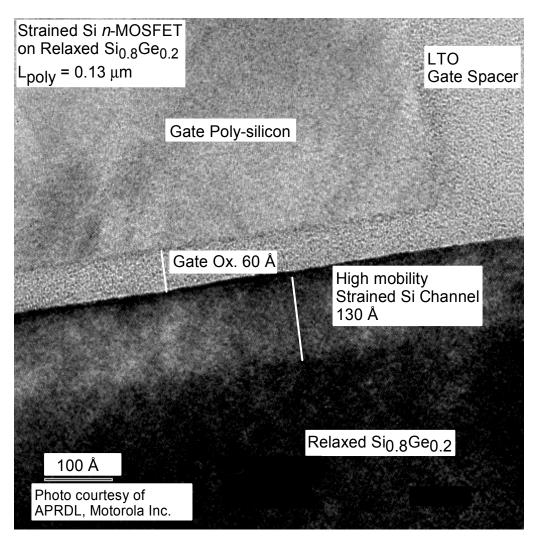
Progression of CMOS substrate technologies:

- ▼ Bulk Silicon
- ▼ Bulk Silicon with Backside Gettering
- ▼ Epitaxial Silicon (P/P⁺)
- ▼ Partially Depleted (PD-SOI)
- ▼ Strained Silicon (SiGe Relaxed Hetero-structure)
- Partially Depleted Strained Silicon
- ▼ Fully Depleted (FD-SOI)
- ▼ Fully Depleted Strained Silicon

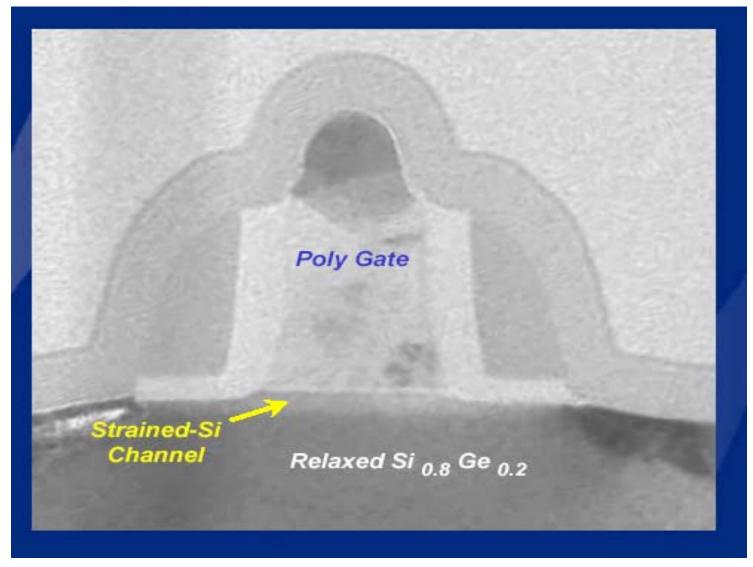
Strained-Si MOSFET Structures



- + Increased effective mobility, increased I_{on}
- Difficult integration issues: manufacturability
- Compatibility with ultra-thin body SOI
- Cost (~50% cost adder @300mm)

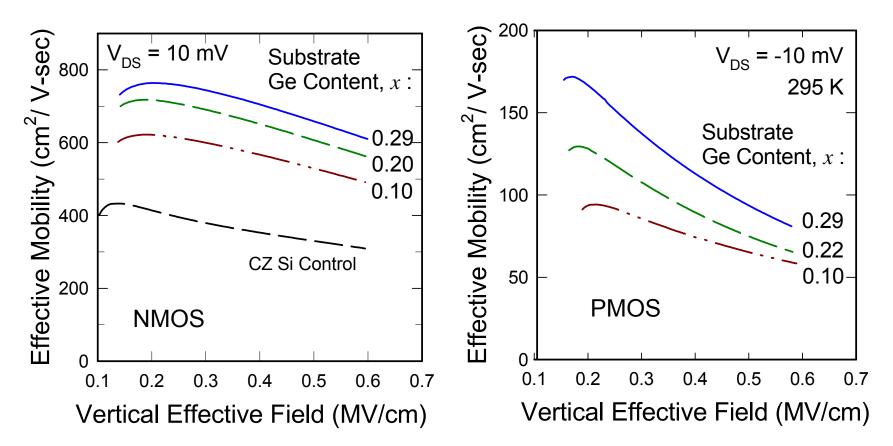

Courtesy of J. Hoyt - MIT

Strained Silicon CMOS


Cross-Section TEM of Strained Si Channel

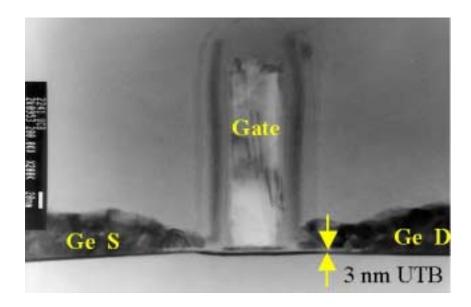
Rim, Hoyt, and Gibbons, IEDM 1998

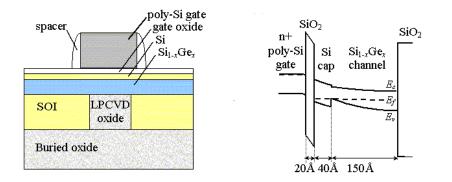
iedm 🚸

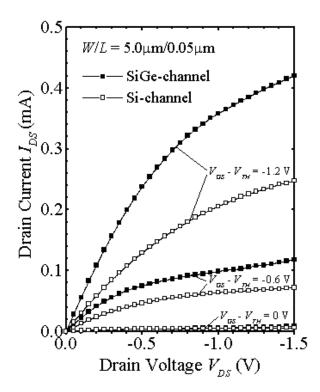

Cross-Section TEM of Strained Si Transistor

Courtesy UMC/Amberwave

iedm (*

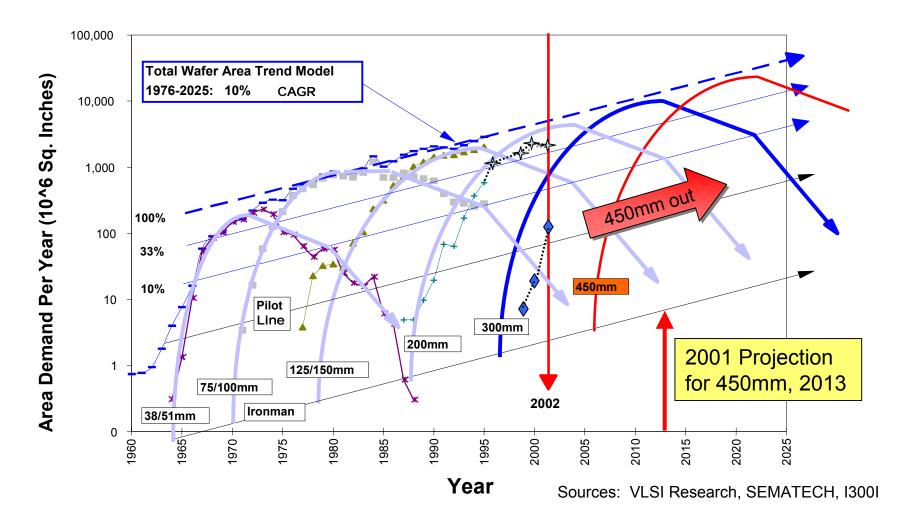

Strained Silicon Mobility Enhancement




- low-field electron and hole mobilities increase with tensile strain in Si
- peak mobility enhancement ratios: ~ 1.8 for 30% Ge substrate

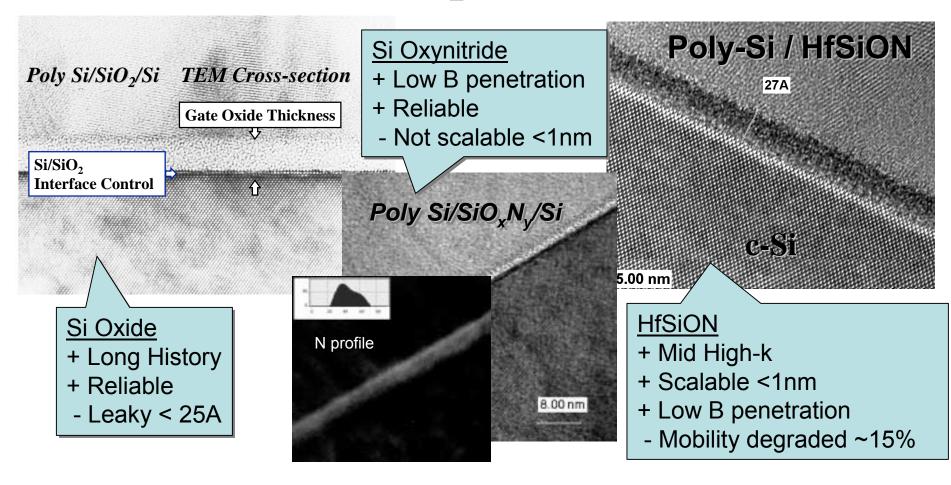
Courtesy Judy L. Hoyt

SOI: Ultra Thin Body (UTB) Si



UTB SI with Strained Si combines advantages of SiGe/Si heterostructure with UTB low leakage

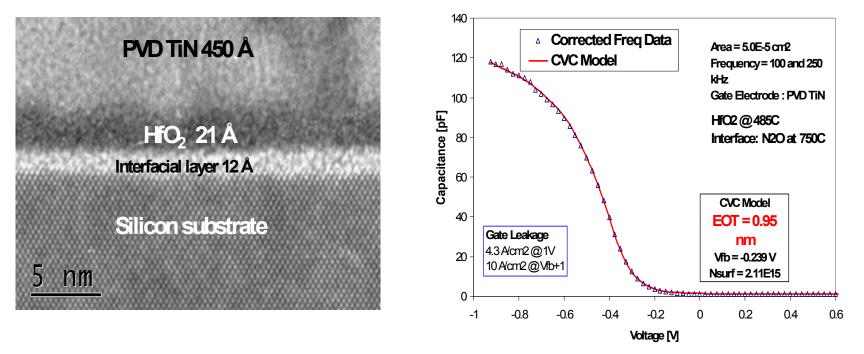
Yee-Chia Yeo, et. al. UTBFET for NanoCMOS


Wafer Area Generation Model

New Front End Materials & Modules

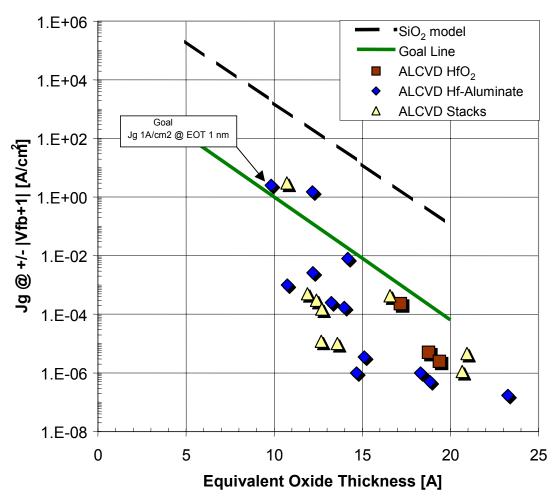
- Substrates:
 - Strained Si
 - SOI; Ultra Thin Body (UTB) Si
 - 450mm
- Gate Dielectrics: Oxide to High-k
- Gate Electrodes: doped polySi to metal gate
- Ultra-Shallow Junctions:
 - Raised S/D
 - Non-equilibrium annealing
- Gate Etch / CD Control and Clean

Gate Dielectric: SiO₂ to High-k


Node: >/~250nm

180nm – ~65nm

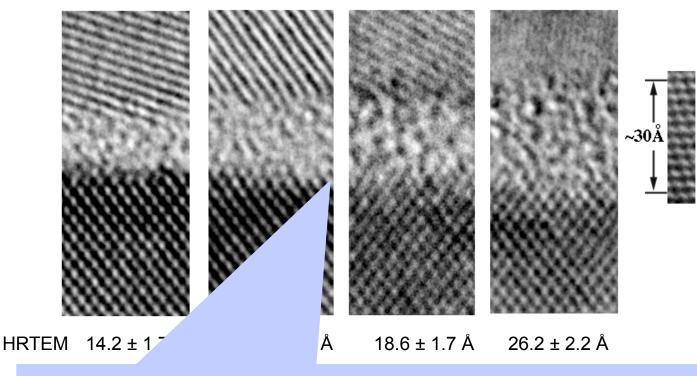
<mark>≤65nm</mark>?


MOCVD HfO₂ High-κ Dielectric

Effective Dielectric Constant ~ 13.5

TEM (left) for MOCVD HfO₂ with EOT = 0.95 nm and CV curve (right) [80] Courtesy International SEMATECH

High-k Leakage Current versus EOT iedm ♦ (trends)

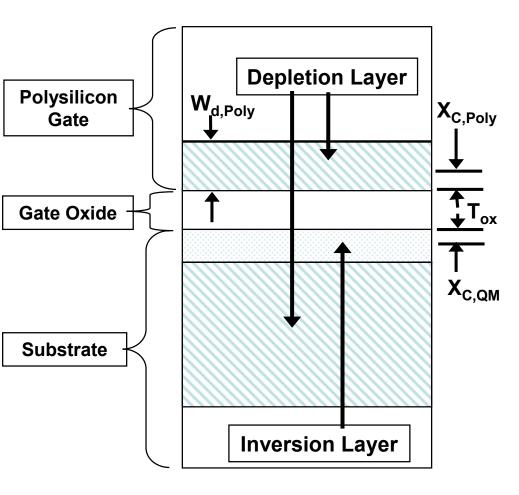


High-k Manufacturability Issues

- Interface dielectric preparation and control
- High-k dielectric amorphous phase thermal limitations
- Material etch characteristics / selectivity
- Boron penetration resistance
- High-k dielectric interactions with gate electrode
- Deposition complexities for multi-component dielectric materials
- Conformal depositions for non-planar gate structures
- Metrology of heterogeneous multilayer dielectric films

iedm

Gate Dielectric Scaling


"Interface Control is critical to achieve <10A effective Gate Dielectric - To achieve 7A effective thickness:

Interface Dielectric<1A</th>High-k dielectric<1A</td>Poly Depletion<1A => Metal GateChannel Quantum Effect~4A

New Front End Materials & Modules

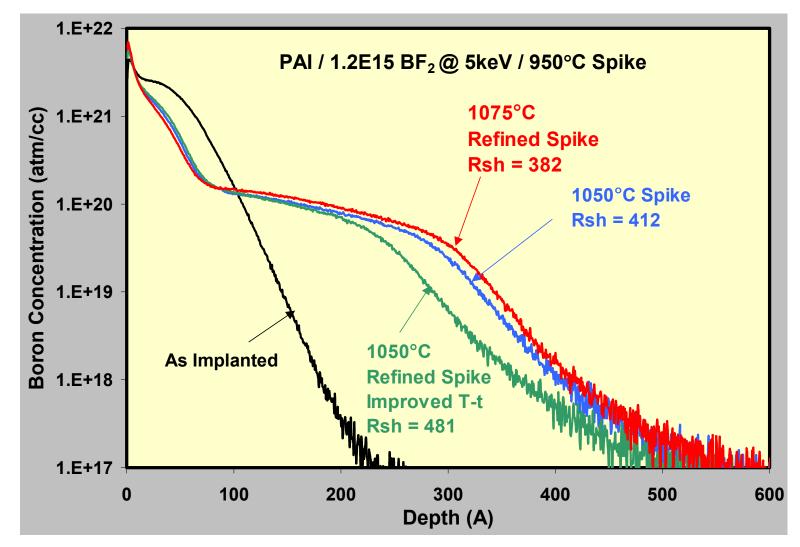
- Substrates:
 - Strained Si
 - SOI; Ultra Thin Body (UTB) Si
 - 450mm
- Gate Dielectrics: Oxide to High-k
- Gate Electrodes: doped polySi to metal gate
- Ultra-Shallow Junctions:
 - Raised S/D
 - Non-equilibrium annealing
- Gate Etch / CD Control and Clean

Gate Electrode: Why metal gate?

- polySi depletion
 - EOT reduces => Eox lower=> inversion charge lower
 - For EOT scaling => polySi doping must increase
- PMOSFETs: B penetration with thin gate dielectrics
 - Nitrided gates used to reduce B penetration
- Compatibility of polySi with high-k dielectrics
- Gate resistance of very thin gates even with silicide

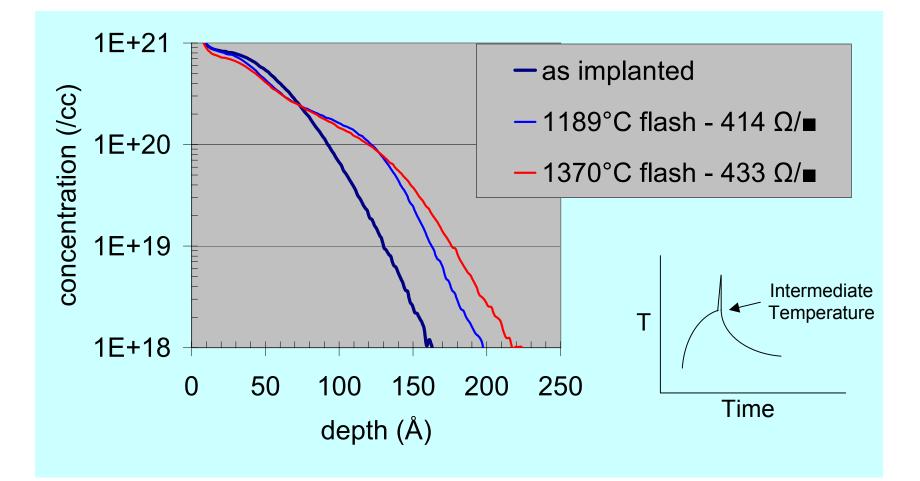

Gate Electrode Options

	Pro's	Con's
N+ Poly gate	- Simpler Process	- Required doping level higher than PD/Bulk
Mid-gap gate	 No poly depletion Intrinsic devices: (high μ expected) 	- V _T can not be lower than 0.4V
Metal gate	 No poly depletion V_T can be lower than 0.4V Intrinsic devices: (high μ expected) 	 Identification of Dual Metal system Integration difficult, esp. Dual Metal

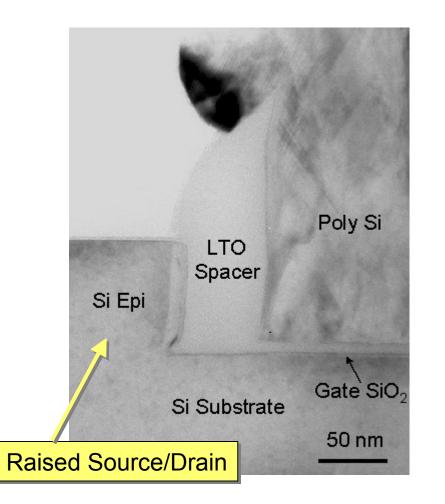

New Front End Materials & Modules

- Substrates:
 - Strained Si
 - SOI; Ultra Thin Body (UTB) Si
 - 450mm
- Gate Dielectrics: Oxide to High-k
- Gate Electrodes: doped polySi to metal gate
- Ultra-Shallow Junctions:
 - Raised S/D
 - Non-equilibrium annealing
- Gate Etch / CD Control and Clean

Ultra-Shallow Junctions - USJ



USJ – Advanced Spike RTA



iedm�

Flash assisted Impulse Anneal, 800°C Intermediate Temperature

Raised Source/Drain

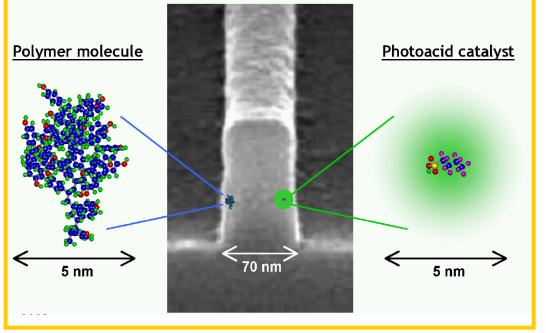
Advantages

- Improves drive current
- Improves SCE
- Essential for FD-SOI with ultra-thin-body

Needs

- Low Temp Selective EPI process <650 C
- Facet control at sidewall edge
- High doping (Ge, B, P)
- Low defects
- Good uniformity
- Low CoO

New Front End Materials & Modules


- Substrates:
 - Strained Si
 - SOI; Ultra Thin Body (UTB) Si
 - 450mm
- Gate Dielectrics: Oxide to High-k
- Gate Electrodes: doped polySi to metal gate
- Ultra-Shallow Junctions:
 - Raised S/D
 - Non-equilibrium annealing
- Gate Etch / CD Control and Clean

Gate Stack Etch

iedm�

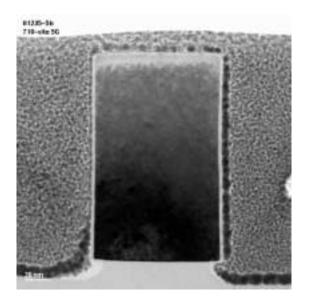
Line and sidewall edge roughness

The dimensions of resist features are now at a scale where the effects of individual molecules are important.

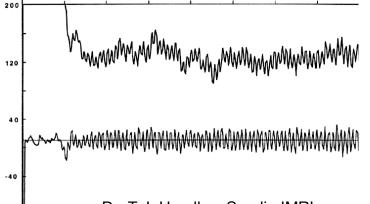
Issues:

LER of resist

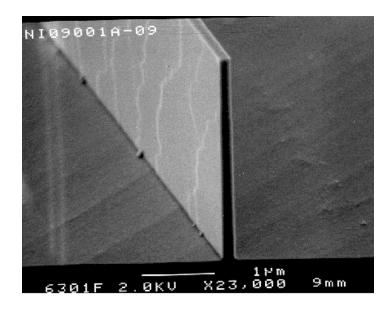
- resist molecular scales (~ 5 nm)
- image contrast and flare
- mask roughness
- development effects


Etched gate edge roughness

- transfer of LER from resist
- does not scale with etch bias
- granularity of film stack adds


Parameters involved in Line-edge roughness add in quadrature:

$$\boldsymbol{\sigma}_{\text{LER}}^{2} = \boldsymbol{\sigma}_{\text{SHOTNOISE}}^{2} + \boldsymbol{\sigma}_{\text{DIFFUSION}}^{2} + \boldsymbol{\sigma}_{\text{AERIAL IMAGE}}^{2} + \boldsymbol{\sigma}_{\text{DEVELOPMENT}}^{2} + \boldsymbol{\sigma}_{\text{ETCH}}^{2} + \boldsymbol{\sigma}_{\text{MASK}}^{2}$$


Gate Stack CD Control

293 lattice planes = 91.9nm wide

Dr. T.J. Headley, Sandia IMRL

Atomistic Lateral Scaling of Gate Length

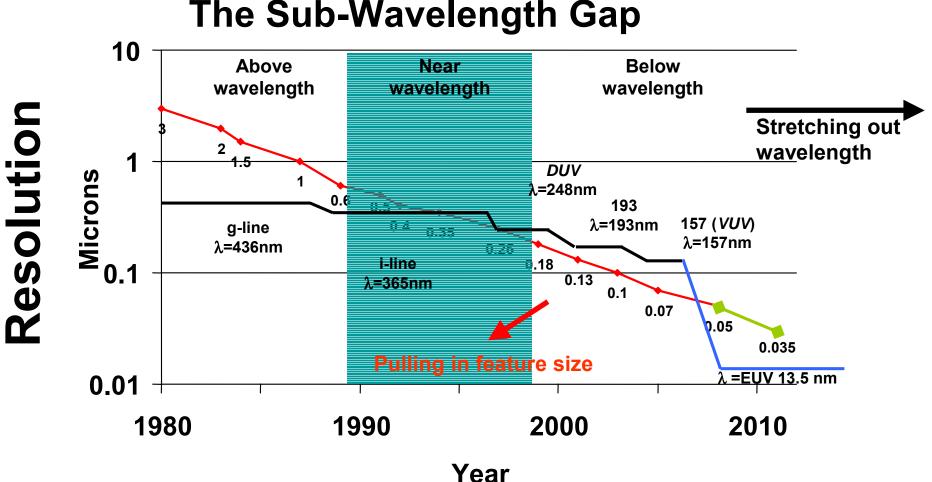
Gate Edge CD Control and Transistor Performance critical to etching and cleaning chemistries

FEOL Clean Challenges

New Materials and Processes

- Cleaning and drying High Aspect Ratio (HAR) structures
- Interface control for deposited high-k dielectrics
- Post high-k gate stack etch cleans compatible with exposed materials and CD control
- Interface control for epitaxial Si and Si-Ge

Scaling and Defect Levels


- Removal of small particles without affecting materials and structures
- Control of contaminates (carbon, etc) for non-oxide gate dielectrics
- ESH
 - Chemical, DI water, energy reduction, and hazardous chemical elimination and avoidance

iedm

Topics

- Transistor Performance Trends
- Transistor Scaling Challenges
- New Device Architectures
 - Advanced CMOS
 - Non-Classical CMOS
 - Memories
- New Front End Materials & Modules
- Lithographic Trends
- Summary

Lithographic Front End Trends

Source: Numerical Technologies

iedm 🚸

Lithographic Front End Trends

In Keeping Pace with Moore's Law

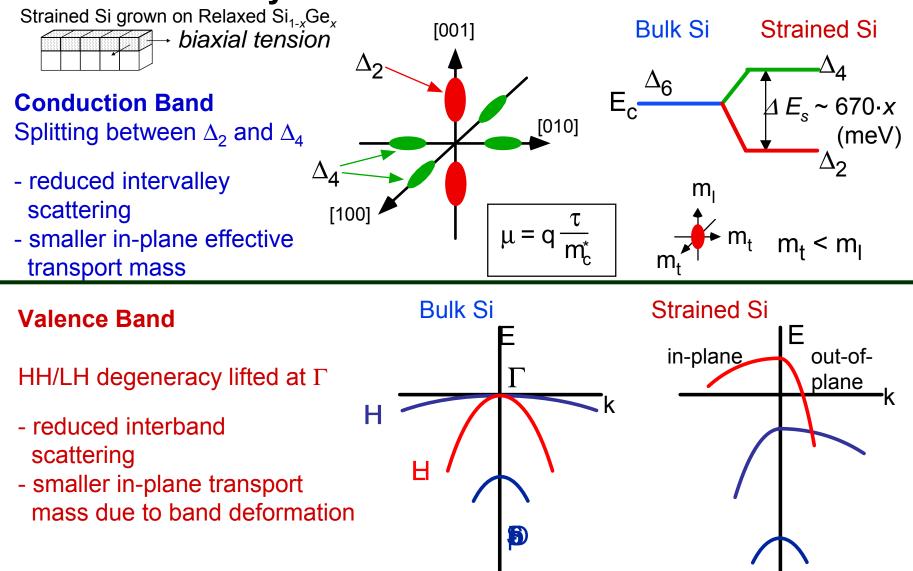
Start mass production	2001	2003	2005	2007
Technology	130 nm	90 nm	65 nm	45 nm
generation				
Minimum	160 nm	115 nm	80 nm	55 nm
half-pitch				
k_1 -factor	λ =248 nm, NA=0.7 0.45	λ =193 nm, NA=0.63	$\lambda = 193 \text{ nm}, \text{NA} = 0.85$	$\lambda = 157 \text{ nm}, \text{NA} = 0.95?$
	$\lambda = 193 \text{ nm}, \text{NA} = 0.63$	λ =193 nm, NA=0.75	$\lambda = 157 \text{ nm}, \text{NA} = 0.85$	$\lambda = 157 \text{ nm}, \text{NA} = 1.25?$
	0.52	0.45	0.43	0.44
Respective	0.48	0.47	0.25	0.16
DOF in				
micron	0.47	0.32	0.22	0.09
Layer-layer	45 nm	32 nm	22 nm /	15 nm
overlay				

Liquid immersion lithography, assuming index = 1.4 and NA = 0.9 in liquid

iedm 🚸

Summary

- Front End Manufacturing Technology will undergo significant changes both in the near-term and long-term as new processes, materials, and structures are introduced to meet Roadmap scaling requirements.
- Material and process solutions potentially include high-k dielectrics, metal gate electrodes (mid-gap/dual), SOI (PD/FD), Strained Si, Spike and/or non-equilibrium annealing, Raised S/D, and others yet to be identified.
- Longer-term new non-classical CMOS structures such as Dual Gate, FinFET, PI/Tri-gate, may be required in combination with new materials to provide the ultimate End-of-Roadmap devices.


iedm�

Acknowledgements

- Allen Bowling, Texas Instruments
- Olivier Faynot, LETI
- Judy Hoyt, MIT
- Majid Mansoori, Texas Instruments
- Shane Palmer, Texas Instruments
- Walt Trybula, International SEMATECH
- Rick Wise, Texas Instruments
- Peter Zeitzoff, International SEMATECH

Backup Charts

Effects of Biaxial Tensile Strain on Si Energy Bands and Mobility

iedm 🚸