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The definition of �Moore�s Law� has come to 

refer to almost anything related to the 

semiconductor industry that when plotted on 

semi-log paper approximates a straight line.

� Gordon Moore, 1995

Moore�s Law / Productivity 
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Transistor Performance Trend
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Transistor Scaling Key Challenges

� Isolation: Minimum Pitch and SOI

� Gate Dielectric: Leakage vs Speed

� Gate Electrode: polySi vs Metal (Mid-gap 
vs Dual Work Function)

� Ultra-Shallow Junctions (USJ) 
� Low resistance contacts
� Low resistance abrupt S/D extensions
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Technology Generation 130 nm 90 nm 65 nm 45 nm 32 nm 22 nm
Year Production 2001 2004 2007 2010 2013 2016
MPU Gate Length (nm)MPU Gate Length (nm) 6565 3737 2525 1818 1313 99
DRAM (production) 512M 1G 4G 8G 32G 64G
DRAM chip (cm2) 1.27 0.93 1.83 1.81 2.39 2.38 
DRAM cost  (µ ¢/bit) 7.7 2.7 0.96 0.34 0.12 0.042
Wafer Diameter (mm)Wafer Diameter (mm) 300300 300300 300300 300300 450450 450450
Logic M gates 97 193 386 773 1546 3092 
Logic M gates/cm2 69 138 276 552 1104 2209
Logic chip (cm2) 1.4 1.4 1.4 1.4 1.4 1.4
Frequency (GHz) 1.7 3.9 6.7 11.5 19.3 28.7
µP cost (µµµµ ¢/T) 97 34 12 4.3 1.5 0.54
Power/ Chip (W) 130 160 190 218 251 288
Power Supply MPU (V) 1.2 1.0 0.7 0.6 0.5 0.4
Levels of Metal 7 8 9 9-10 9-10 10
EOT (nm)EOT (nm) 1.31.3--1.61.6 0.90.9--1.41.4 0.60.6--1.11.1 0.50.5--0.80.8 0.40.4--0.60.6 0.40.4--0.50.5
XXjj at Channel (nm)at Channel (nm) 2727--4545 1515--2525 1010--1717 77--1212 55--99 44--66

2001 ITRS Scaling Projections 
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Device Scaling Issues: Beyond 65nm
� Gate Stack

� Tunneling => high Ioff
� Inversion Layer => EOT limit
� PolySi Depletion => Ion reduced
� Mobility degradation => Ion reduced
� CD control
� Reliability

� Source/Drain
� Series Resistance => Ion reduced
� Dopant Profile Control

� TED suppression
� USJ abrupt S/D extensions
� Contacts to S/D

� Tunneling
� Drain to body & source to drain  

P-WELL

STI STI
SOURCE DRAIN

GATE

Si-Substrate

Halo I2

Threshold Voltage:
� VDD � VT decreases
� Subthreshold Slope � kT/q
� CD Control
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Isolation Roadmap 

LOCOS ! Shallow Trench Isolation � STI ! STI / SOI! SOI only?

� STI induced to resolve 
LOCOS Bird�s Beak

� Future device scaling 
and alternate structures 
such as Double Gate 
Logic devices and new 
member elements may 
lead to SOI only 
isolation.  

IBM 16MB DRAMIBM 4MB DRAM

LOCOS
STI
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Gate Length Scaling: ITRS 
ITRS Roadmap Acceleration Continues�Gate Length
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Limits of CMOS Scaling
Planar
CMOS

TIME  

Device EvolutionDevice Evolution

Device
Structure

Size

Non-Planar 
CMOS

New Switch
Structure

0 - 7 years. 7 - 12 years 12 + Years.

Sub 50nm ?
c- Si
body

source

drain
PSG 

gate gate 
PSG 

HfO2

100 nm
Agere �02



14

New Device Architectures
� SOI

� Partially Depleted (PD)
� Fully Depleted (FD): Ultra-Thin Body

� Double Gate Structures
� FinFET
� Tri, Pi Gate
� DG-SOI

� Memory Innovations
� FeRAM, MRAM, Ovonics, etc
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SOI Device Structures

Buried
Oxide

Si-Substrate

STI STI
SOURCE DRAIN

GATE

CSOI CSOI

Bulk CMOS Partially Depleted CMOSPartially Depleted CMOS

P-WELL

" Short Channel Effect controlled by channel doping/halo as in Bulk
" Reduced junction capacitances => faster speed, lower leakage
" Device design translation straight forward between Bulk and PD SOI
" Complete isolation between devices
" Rad-hard

P-WELL

STI STI
SOURCE DRAIN

GATE

Si-Substrate

CBULK CBULK

Halo I2
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Buried oxide

Drain
(VD)

Partially versus Fully Depleted

Substrate = Back gate (VE)

Source
(VS)

Drain
(VD)

Gate (VG)

xs xd

tSi

tBOxbody region (Vbody)
Substrate =Back gate (VE)

Source
(VS)

Gate (VG)

tSi

tBOx

Partially depleted device
" Bulk bottom junction capacitances 

replaced by thick oxide capacitance 
" Gate side lateral junction 

capacitance comparable to Bulk 
case. Can be smaller for PD in case 
of silicon film thinning

Fully depleted device
" Bulk bottom junction capacitances 

replaced by thick oxide capacitance 
" Full depletion of silicon film suppress 

lateral junction capacitance
"Speed improvement compared to 
PD

"Smaller power consumption
Courtesy of Olivier Faynot, LETI
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Buried oxide

Drain
(VD)

Partially versus Fully Depleted

Substrate = Back gate (VE)

Source
(VS)

Drain
(VD)

Gate (VG)

xs xd

tsi

tBOxbody region (Vbody)
Substrate =Back gate (VE)

Source
(VS)

Gate (VG)

tsi

tBOx

Partially depleted device
" 4 or 5 nodes
" Front and back gate decoupled

" internal floating body node
" Floating-Body effects
" VT=f (Vbody) independent of VE

Fully depleted device
" 4 nodes
" tsi<40nm (for deep sub-µm MOS)
" No neutral floating region

" independent of 'body' voltage
" subthreshold swing=60mV/decade

" Front-Back interface coupling
" VT= f (VE)

Courtesy of Olivier Faynot, LETI
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SOI: Power Reduction
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Merits of Device Scaling <50nm Options

- Fabrication very difficult
- Parasitic elements?

- Best case for SCE control
- Relaxed constraint on Tsi

Double 
Gate

- Parasitic capacitances 
increase- Reduced SCE

- Relaxed constraint on Tsi

Partial 
Ground 
Plane 

- Parasitic capacitances 
increase

- Subthreshold swing increase

- Reduced SCE
- Relaxed constraint on Tsi

Ground 
Plane 

- Scalability: Ultra-thin film
- Small parasitic 
capacitances

- Simpler FD architecture

Standard 
FD device

WeaknessesStrengths
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� SOI is ~1.5 � 3x over bulk wafer pricing
� Etch Pit Density, typically ~600-1000/cm2

� PD and to lesser extent FD have floating 
body effects which must be comprehended

� FD requires Silicon body thickness control 
less than ~0.2 - 0.4x of Lg or for example 
18nm Lg, tsi~36 - 72A for 45nm node

SOI Fabrication/Process Issues
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New Device Architectures
� SOI

� Partially Depleted (PD)
� Fully Depleted (FD): Ultra-Thin Body

� Double Gate Structures
� FinFET
� Tri, Pi Gate
� DG-SOI

� Memory Innovations
� FeRAM, MRAM, Ovonics, etc
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Double Gate Structures: FinFET
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Double Gate Structures: FinFET Gate 
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Double Gate Structures: Tri-Gate 



25

Double Gate Structures: Tri-Gate
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DG Fabrication/Process Issues
� Moat etch

� Defines vertical gates
� Etch and gate dielectric interaction on vertical gate 

structures
� Gate dielectric (including high-K integration)

� Integrity, mobility, manufacturability
� Gate materials and etch

� Depletion issues, hence Metal gate
� Junction and Contact

� Ion Implant, PLAD, SEG
� Ground plane design

� Implant through thin BOx
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Options Below 50nm

High +++10-20nmHigh1015-1016GP, PGP & Metal 
gate

Very High 
+++

++15-30nmHigh1015-1016DG & Metal gate

Very High 
+++

++5-15nmHigh1015-1016FD & Metal gate

High ++++10-20nmMedium1017-1018DG & N+ /P+ Poly

High ++10-20nmLow1018-1019GP, PGP, DG & 
N+ Poly

Very High ++++5-15nmLow1018-1019FD & N+ Poly

High ++50-150nmLow1018-1019PD

Ref. o-/Low1018-1019BULK

PerfParasitic 
cap

Silicon filmMobilityDoping
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New Device Architectures
� SOI

� Partially Depleted (PD)
� Fully Depleted (FD): Ultra-Thin Body

� Double Gate Structures
� FinFET
� Tri, Pi Gate
� DG-SOI

� Memory Innovations
� FeRAM, MRAM, Ovonics, etc
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Many choices in development
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Memory Technologies Comparison

Log Number of Erase/Write Cycles
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ROM
EPROM

Not in-system
Changeable
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Volatile
Memory
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SRAM
DRAM
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FeRAM
What Is FeRAM?

� Operation 
� Selected crystalline materials 

have spontaneous polarization
� Data is stored by applying a 

voltage to align the internal 
dipoles �Up� or �Down�

� Attributes
� Non-Volatile
� �Fast� Random Read Access
� Fast Write with very low power 

consumption
� Destructive read, limited read and 

write cycles

E

P

Ec

Pr

Esat

Source: Physics Today 7/98
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� Operation
� Cell is 1 MJT + 1 Transistor
� Electric current switches the 

magnetic polarity
� Change in magnetic polarity 

sensed as resistance change
� Attributes

� Non-Volatile, High Density
� Non Destructive Read
� Low Voltage & Low Power
� Write = Read Speed, < 50 nsec
� Unlimited R/W Endurance
� Material compatibility with 

CMOS a key challenge

Bit-Sense 
Line

M1 Word Lines

M4 Word Lines

Magnetic Storage Bits

M2 MetalM3 Metal

Top View

Side ViewSide View
Interlayer
Dielectrics

M1 Word Lines

M4 Word Lines

1 1 1 10 0

Sense Current
Directions

MRAM

S. Lai - Intel
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New Front End Materials & Modules

� Substrates:
� Strained Si
� SOI; Ultra Thin Body (UTB) Si
� 450mm

� Gate Dielectrics: Oxide to High-k
� Gate Electrodes: doped polySi to metal gate
� Ultra-Shallow Junctions:

� Raised S/D
� Non-equilibrium annealing

� Gate Etch / CD Control and Clean
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Substrates
Progression of CMOS substrate technologies:
▼Bulk Silicon
▼Bulk Silicon with Backside Gettering
▼Epitaxial Silicon (P/P+)
▼Partially Depleted (PD-SOI)
▼Strained Silicon (SiGe Relaxed Hetero-structure)
▼Partially Depleted Strained Silicon
▼Fully Depleted (FD-SOI)
▼Fully Depleted Strained Silicon 
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Strained-Si MOSFET Structures
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Courtesy of  J. Hoyt - MIT

p+

Graded Layer
0.05

=x

Drain

p+

n- Si1-yGey
y=

y

n+ Si Substrate

n+poly

n Strained Si

Source
SiO

p- Si1-yGey Graded Layer
y=0.05

y=x

p+ Si Substrate

n+poly

p Strained Si

Source Drain
SiO2

Gate

n+ n+

high mo
channels

p- Relaxed Si1-xGex

2

Gate
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Strained Si1-xGexp+

+ Increased effective mobility, increased Ion

- Difficult integration issues:  manufacturability
- Compatibility with ultra-thin body SOI
- Cost (~50% cost adder @300mm)
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Strained Silicon CMOS
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Gate Ox. 60 Å

Gate Poly-silicon

Strained Si n-MOSFET
on Relaxed Si0.8Ge0.2
Lpoly = 0.13 µm

LTO
Gate Spacer

High mobility
Strained Si Channel
130 Å 

Relaxed Si0.8Ge0.2

X200000

  100 Å   

Photo courtesy of
APRDL, Motorola Inc.

Cross-Section TEM of Strained Si Channel

Rim, Hoyt,
and Gibbons,
IEDM 1998
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Cross-Section TEM of Strained Si Transistor

Courtesy UMC/Amberwave
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Strained Silicon Mobility Enhancement
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� low-field electron and hole mobilities increase with tensile strain in Si
� peak mobility enhancement ratios: ~ 1.8 for 30% Ge substrate

NMOS PMOS

Courtesy Judy L. Hoyt
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SOI: Ultra Thin Body (UTB) Si

Yee-Chia Yeo, et. al. UTBFET for NanoCMOS

UTB SI with Strained Si combines 
advantages of SiGe/Si heterostructure 
with UTB low leakage
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Wafer Area Generation Model
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New Front End Materials & Modules

� Substrates:
� Strained Si
� SOI; Ultra Thin Body (UTB) Si
� 450mm

� Gate Dielectrics: Oxide to High-k
� Gate Electrodes: doped polySi to metal gate
� Ultra-Shallow Junctions:

� Raised S/D
� Non-equilibrium annealing

� Gate Etch / CD Control and Clean
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PolyPoly--Si /Si /

cc--SiSi

HfSiONHfSiON

Gate Dielectric: SiO2 to High-k

Si/SiO2
Interface Control 

Gate Oxide Thickness

Poly Si/SiOPoly Si/SiO22/Si    TEM Cross/Si    TEM Cross--sectionsection

Poly Si/SiOxNy/Si    Poly Si/Poly Si/SiOSiOxxNNyy/Si    /Si    

N profile

Node: >/~250nm 180nm � ~65nm ≤65nm?

Si Oxide
+ Long History
+ Reliable
- Leaky < 25A

Si Oxide
+ Long History
+ Reliable
- Leaky < 25A

Si Oxynitride
+ Low B penetration
+ Reliable
- Not scalable <1nm

Si Oxynitride
+ Low B penetration
+ Reliable
- Not scalable <1nm

HfSiON
+ Mid High-k
+ Scalable <1nm
+ Low B penetration
- Mobility degraded ~15%
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MOCVD HfO2 High-κ κ κ κ Dielectric
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CVC Model
EOT = 0.95 

nm
Vfb = -0.239 V

Nsurf = 2.11E15 

Area = 5.0E-5 cm2
Frequency = 100 and 250 
kHz
Gate Electrode : PVD TiN 

Gate Leakage
4.3 A/cm2 @ 1V
10 A/cm2 @ Vfb+1

HfO2 @ 485C
Interface: N2O at 750C

PVD TiN 450 Å

HfO2 21 Å 
Interfacial layer 12 Å

Silicon substrate

TEM (left) for MOCVD HfO2 with EOT = 0.95 nm and CV curve (right) [80]
Courtesy International SEMATECH

Effective Dielectric Constant ~ 13.5 
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High-k Leakage Current versus EOT 
(trends)
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High-k Manufacturability Issues
� Interface dielectric preparation and control
� High-k dielectric amorphous phase thermal 

limitations
� Material etch characteristics / selectivity
� Boron penetration resistance
� High-k dielectric interactions with gate electrode
� Deposition complexities for multi-component 

dielectric materials
� Conformal depositions for non-planar gate 

structures
� Metrology of heterogeneous multilayer dielectric 

films  
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Gate Dielectric Scaling 

Lattice fringes for gate dielectric

14 Å 17 Å 20 Å 29 ÅC-V

HRTEM 14.2 ± 1.7 Å 17.1 ± 2.0 Å 18.6 ± 1.7 Å 26.2 ± 2.2 ÅVe
rt

ic
al

 S
ca

lin
g

�Interface Control is critical to achieve <10A effective Gate 
Dielectric - To achieve 7A effective thickness:

Interface Dielectric   <1A
High-k dielectric <1A
Poly Depletion <1A  => Metal Gate
Channel Quantum Effect ~4A
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New Front End Materials & Modules

� Substrates:
� Strained Si
� SOI; Ultra Thin Body (UTB) Si
� 450mm

� Gate Dielectrics: Oxide to High-k
� Gate Electrodes: doped polySi to metal gate
� Ultra-Shallow Junctions:

� Raised S/D
� Non-equilibrium annealing

� Gate Etch / CD Control and Clean
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Gate Electrode: Why metal gate?
� polySi depletion

� EOT reduces => Eox lower 
=> inversion charge lower

� For EOT scaling => polySi
doping must increase

� PMOSFETs: B penetration with 
thin gate dielectrics
� Nitrided gates used to reduce B 

penetration
� Compatibility of polySi with 

high-k dielectrics
� Gate resistance of very thin 

gates even with silicide 

Polysilicon 
Gate

Gate Oxide

Substrate

Depletion Layer

Tox

Inversion Layer

Wd,Poly

XC,QM

XC,Poly
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Gate Electrode Options

- Identification of Dual 
Metal system 

- Integration difficult, esp. 
Dual Metal 

- No poly depletion
- VT can be lower than 

0.4V
- Intrinsic devices:
(high µ expected)

Metal 
gate

- VT can not be lower  
than 0.4V

- No poly depletion  
- Intrinsic devices:
(high µ expected)

Mid-gap 
gate

- Required doping level 
higher than PD/Bulk- Simpler Process

N+ Poly 
gate

Con'sPro's
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New Front End Materials & Modules

� Substrates:
� Strained Si
� SOI; Ultra Thin Body (UTB) Si
� 450mm

� Gate Dielectrics: Oxide to High-k
� Gate Electrodes: doped polySi to metal gate
� Ultra-Shallow Junctions:

� Raised S/D
� Non-equilibrium annealing

� Gate Etch / CD Control and Clean
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Ultra-Shallow Junctions - USJ
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USJ � Advanced Spike RTA
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Raised Source/Drain

Raised Source/DrainRaised Source/Drain

� Advantages
� Improves drive current
� Improves SCE
� Essential for FD-SOI with 

ultra-thin-body
� Needs

� Low Temp Selective EPI 
process <650 C

� Facet control at sidewall 
edge

� High doping (Ge, B, P)
� Low defects
� Good uniformity
� Low CoO
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New Front End Materials & Modules

� Substrates:
� Strained Si
� SOI; Ultra Thin Body (UTB) Si
� 450mm

� Gate Dielectrics: Oxide to High-k
� Gate Electrodes: doped polySi to metal gate
� Ultra-Shallow Junctions:

� Raised S/D
� Non-equilibrium annealing

� Gate Etch / CD Control and Clean
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Parameters involved in Line-edge roughness add in quadrature:
σσσσ LER

2 = σσσσSHOTNOISE
2 + σσσσDIFFUSION 

2 + σσσσ AERIAL IMAGE
2 + σσσσ DEVELOPMENT 

2 + σσσσ ETCH 
2 + σσσσ MASK

2

Gate Stack Etch

Issues:
LER of resist 
• resist molecular scales (~ 5 nm)
• image contrast and flare
• mask roughness
• development effects 

Etched gate edge roughness
• transfer of LER from resist 
• does not scale with etch bias
• granularity of film stack adds

Line and sidewall edge roughness
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Atomistic Lateral Scaling of 
Gate Length

Gate Edge CD Control and 
Transistor Performance critical 
to etching and cleaning 
chemistries 

Gate Stack CD Control

293 lattice planes = 91.9nm wide

Dr. T.J. Headley, Sandia IMRL
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FEOL Clean Challenges
� New Materials and Processes

� Cleaning and drying High Aspect Ratio (HAR) structures
� Interface control for deposited high-k dielectrics
� Post high-k gate stack etch cleans compatible with exposed 

materials and CD control
� Interface control for epitaxial Si and Si-Ge

� Scaling and Defect Levels
� Removal of small particles without affecting materials and 

structures
� Control of contaminates (carbon, etc) for non-oxide gate 

dielectrics
� ESH

� Chemical, DI water, energy reduction, and hazardous chemical 
elimination and avoidance
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Topics
� Transistor Performance Trends
� Transistor Scaling Challenges
� New Device Architectures

� Advanced CMOS
� Non-Classical CMOS
� Memories

� New Front End Materials & Modules
� Lithographic Trends
� Summary
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Lithographic Front End Trends
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Lithographic Front End Trends

Start mass 
production 

2001 2003 2005 2007 

Technology 
generation 

130 nm 90 nm 65 nm 45 nm 

Minimum  
half-pitch 

160 nm 115 nm 80 nm 55 nm 

 
k1-factor 

 

λ=248 nm, NA=0.7 

0.45 
λ=193 nm, NA=0.63 

0.52 

λ=193 nm, NA=0.63 

0.38 
λ=193 nm, NA=0.75 

0.45 

λ=193 nm, NA=0.85 

0.35 
λ=157 nm, NA=0.85 

0.43 

λ=157 nm, NA=0.95? 

0.33 
λ=157 nm, NA=1.25? 

0.44 
Respective 

DOF in 
micron 

0.48 
 

0.47 

0.47 
 

0.32 

0.25 
 

0.22 

0.16 
 

0.09 

Layer-layer 
overlay 

45 nm 32 nm 22 nm 15 nm 

 
 Liquid immersion lithography, assuming index = 1.4 and NA = 0.9 in liquid

In Keeping Pace with Moore�s Law
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Summary
� Front End Manufacturing Technology will undergo 

significant changes both in the near-term and long-term 
as new processes, materials, and structures are 
introduced to meet Roadmap scaling requirements. 

� Material and process solutions potentially include high-k 
dielectrics, metal gate electrodes (mid-gap/dual), SOI 
(PD/FD), Strained Si, Spike and/or non-equilibrium 
annealing, Raised S/D, and others yet to be identified.

� Longer-term new non-classical CMOS structures such 
as Dual Gate, FinFET, PI/Tri-gate, may be required in 
combination with new materials to provide the ultimate 
End-of-Roadmap devices. 
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Backup Charts
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∆ Es ~ 670.x
(meV)

Effects of Biaxial Tensile Strain on Si  Energy 
Bands and Mobility

Conduction Band
Splitting between ∆2 and ∆4

- reduced intervalley
scattering

- smaller in-plane effective
transport mass

k

Bulk Si Strained Si

HH

LH

Spin-Orbit

E EValence Band

HH/LH degeneracy lifted at Γ

- reduced interband
scattering

- smaller in-plane transport 
mass due to band deformation

Γ
in-plane out-of-

plane
k

∆2

∆4

[001]

[010]

[100]

∆4

∆2

∆6Ec

Bulk Si Strained Si

ml

mt
mt

mt < ml
µ = q τ

m*
c

Strained Si grown on Relaxed Si1-xGex
biaxial tension

Courtesy of  J. Hoyt - MIT
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