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Chip-to-Chip Signaling Trends 
Decade    Speeds Transceiver Features 
1980’s       >10Mb/s Inverter out, inverter in 

 

1990’s       >100Mb/s Termination    
   Source-synchronous clk. 

 

2000’s       >1 Gb/s Pt-to-pt serial streams   
   Pre-emphasis equalization  

 

Present       >10 Gb/s Adaptive Equalization,  
   Advanced low power clk. 
   Alternate channel materials 
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Increasing Bandwidth Demand 

ITRS Projections* Intel Teraflop Research Chip 

• 80 processor cores 
• On-die mesh 

interconnect network 
w/ >2Tb/s aggregate 
bandwidth 

• 100 million transistors 
• 275mm2 

• Single ⇒ Multi ⇒ Many-Core µProcessors 
 

• Tera-scale many-core processors will aggressively 
drive aggregate inter- and intra-chip bandwidth 

[Vangal JSSC 2008] [ITRS 2009] 



High-Speed Electrical Link System 
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Electrical Backplane Channel 

Line card trace
(dispersion)

Backplane via
(major reflections)

Backplane trace
(dispersion)

Backplane connector
(crosstalk)

Package via
(reflections)

On-chip termination
(reflections)

Chip package
(crosstalk)

Line card via
(reflections)

• Frequency dependent loss 
̶ Dispersion & reflections 

 

• Co-channel interference 
̶ Far-end (FEXT) & near-end (NEXT) crosstalk 
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Loss Mechanisms 

• Dispersion 
 
 
 
 

̶ Skin effect, αR 
 
 
 
 
 

̶ Dielectric loss , αD 

( )
( )

( )xDRe
V

xV αα +−=
0

R0 Z0 Z0

R0

V(0) xV(x)

21

sd Depth, Skin 







=

fµπ
ρ

δ

f
ZDZD

L
Z

R

sd

AC
R

0

7

00 2
1061.2

22 ππδ
ρ

α
−×

===

f
c

Dr
D

δεπ
α

tan
=

Dispersion Loss 

B. Dally et al, “Digital Systems Engineering,"  



9 

Reflections 
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• Commonly caused by board 
via stubs and on-chip 
termination mismatches 

with via stubs 
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Crosstalk 

• Occurs mostly in 
package and board-
to-board connectors 
 

• FEXT is attenuated 
by channel response 
and has band-pass 
characteristic 
 

• NEXT directly couples 
into victim and has 
high-pass 
characteristic 
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Channel Performance Impact 
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Link with Equalization 

13 

Se
ria

liz
er

DTX[N:0]

TX Clk 
Generation 

(PLL)

TX FIR 
Equalization

RX Clk 
Recovery 

(CDR/Fwd Clk)

Σ

RX CTLE + DFE 
Equalization

D
es

er
ia

liz
er

DRX[N:0]

Channel

f



14 

Channel Performance Impact 
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Channel Performance Impact 



Channel Equalization 
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• Equalization goal is to flatten the frequency response out to the 
Nyquist Frequency and remove time-domain ISI 



Link with Equalization 
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TX FIR Equalization 

• TX FIR filter pre-distorts transmitted pulse in 
order to invert channel distortion at the cost of 
attenuated transmit signal (de-emphasis) 
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6Gb/s TX FIR Equalization Example 

• Pros 
• Simple to implement 
• Can cancel ISI in pre-

cursor and beyond filter 
span 

• Doesn’t amplify noise 
• Can achieve 5-6bit 

resolution 
 

• Cons 
• Attenuates low 

frequency content due 
to peak-power limitation 

• Need a “back-channel” 
to tune filter taps 
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TX FIR Equalization – Time Domain 
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TX FIR Equalization – Freq. Domain 
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• Equalizer has 14.4dB of frequency peaking 
• Attenuates DC at -14.4dB and passes Nyquist frequency at 0dB 

Note: Ts=Tb=100ps 



TX FIR Circuit Architectures 

• Direct FIR vs Segmented DAC 
• Direct FIR 

• Parallel output drivers for output taps 
• Each parallel driver must be sized to 

handle its potential maximum current 
• Lower power & complexity 
• Higher output capacitance  

• Segmented DAC 
• Minimum sized output transistors to 

handle peak output current 
• Lowest output capacitance 
• Most power & complexity 

• Need mapping table (RAM) 
• Very flexible in equalization 
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Segmented DAC 

Direct FIR 

[Zerbe] 

[Zerbe] 



Direct FIR Equalization 
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Segmented DAC Example 
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[Casper ISSCC 2006] Row = 4-bit data pattern 
Column = 6-bit weighting 

4 filtered bits 
(parallel) at 6-bit 

resolution 

Sized only to 
deliver maximum 

total current 



Link with Equalization 
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RX FIR Equalization 
• Delay analog input signal and 

multiply by equalization 
coefficients 

• Pros 
• With sufficient dynamic range, can 

amplify high frequency content 
(rather than attenuate low 
frequencies) 

• Can cancel ISI in pre-cursor and 
beyond filter span 

• Filter tap coefficients can be 
adaptively tuned without any 
back-channel 

• Cons 
• Amplifies noise/crosstalk 
• Implementation of analog delays 
• Tap precision 

 
26 

[Hall] 



RX Equalization Noise Enhancement 

• Linear RX equalizers don’t discriminate between 
signal, noise, and cross-talk 
• While signal-to-distortion (ISI) ratio is improved, SNR 

remains unchanged 

27 

[Hall] 



Analog RX FIR Equalization Example 

28 
D. Hernandez-Garduno and J. Silva-Martinez, “A CMOS 1Gb/s 5-Tap Transversal Equalizer based on 3rd-Order Delay Cells," 
ISSCC, 2007. 

• 5-tap equalizer with tap spacing of Tb/2 

1Gb/s experimental results 

3rd-order delay cell 



Digital RX FIR Equalization 

• Digitize the input signal with high-speed low/medium 
resolution ADC and perform equalization in digital domain 
• Digital delays, multipliers, adders 
• Limited to ADC resolution 

• Power can be high due to very fast ADC 

29 

[Hanumolu] 



Digital RX FIR Equalization Example 
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[Harwood ISSCC 2007] • 12.5GS/s 4.5-bit Flash ADC in 65nm CMOS 
• 2-tap FFE & 5-tap DFE 
• XCVR power (inc. TX) = 330mW, Analog = 245mW, Digital = 85mW 



Link with Equalization 
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RX CTLE Equalization 
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Din- Din+

Vo-Vo+

• Pros 
• Provides gain and 

equalization with low 
power and area 
overhead 

• Can cancel both pre-
cursor and long-tail ISI 
 

• Cons 
• Generally limited to 1st 

order compensation 
• Amplifies noise/crosstalk 
• PVT sensitivity 
• Can be hard to tune 



Passive CTLE 

• Passive structures offer excellent linearity, 
but no gain at Nyquist frequency 
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Active CTLE 

• Input amplifier with RC 
degeneration can provide 
frequency peaking with gain 
at Nyquist frequency 

• Potentially limited by gain-
bandwidth of amplifier 

• Amplifier must be designed 
for input linear range 
• Often TX eq. provides some 

low frequency attenuation 

• Sensitive to PVT variations 
and can be hard to tune 

• Generally limited to 1st-order 
compensation 34 
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Active CTLE Tuning 

• Tune degeneration resistor and capacitor to adjust zero 
frequency and 1st pole which sets peaking and DC gain 
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1st pole to a lower frequency 
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• Increasing RS  moves zero to 
lower frequency and increases 
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• Minimal impact on 1st pole 



Link with Equalization 
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RX Decision Feedback Equalization (DFE) 

• DFE is a non-linear 
equalizer 
 

• Slicer makes a symbol 
decision, i.e. 
quantizes input 
 

• ISI is then directly 
subtracted from the 
incoming signal via a 
feedback FIR filter 
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RX Decision Feedback Equalization (DFE) 

• Pros 
• Can boost high frequency 

content without noise and 
crosstalk amplification 

• Filter tap coefficients can be 
adaptively tuned without any 
back-channel 

 
• Cons 

• Cannot cancel pre-cursor ISI 
• Chance for error propagation 

• Low in practical links (BER=10-12) 

• Critical feedback timing path 
• Timing of ISI subtraction 

complicates CDR phase 
detection 

38 
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DFE Example 
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• If only DFE equalization, DFE tap 
coefficients should equal the 
unequalized channel pulse response 
values [a1 a2 … an] 
 

• With other equalization, DFE tap 
coefficients should equal the pre-DFE 
pulse response values 

a1 

a2 

[w1 w2]=[a1 a2] 



Direct Feedback DFE Example (TI) 

• 6.25Gb/s 4-tap DFE 
• ½ rate architecture 
• Adaptive tap algorithm 
• Closes timing on 1st 

tap in ½ UI for 
convergence of both 
adaptive equalization 
tap values and CDR 
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Direct Feedback DFE Critical Path 

• Must resolve data and feedback in 1 bit period 
• TI design actually does this in ½UI for CDR 
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DFE Loop Unrolling 

• Instead of feeding back and 
subtracting ISI in 1UI 
 

• Unroll loop and pre-compute 2 
possibilities (1-tap DFE) with 
adjustable slicer threshold 
 

• With increasing tap number, 
comparator number grows as 2#taps 
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DFE Resistive-Load Summer 

• Summer performance is critical for DFE operation 
 

• Summer must settle within a certain level of accuracy 
(>95%) for ISI cancellation 
 

• Trade-off between summer output swing and settling time 
 

• Can result in large bias currents for input and taps 
43 

RCIR == τ   ,SwingSummer 

[Park] 



DFE Integrating Summer 

• Integrating current onto load capacitances eliminates RC settling time 
 

• Since ∆T/C > R, bias current can be reduced for a given output swing 
• Typically a 3x bias current reduction 

44 

[Park ISSCC 2007] 



Digital RX FIR & DFE Equalization Example 

45 

[Harwood ISSCC 2007] • 12.5GS/s 4.5-bit Flash ADC in 65nm CMOS 
• 2-tap FFE & 5-tap DFE 
• XCVR power (inc. TX) = 330mW, Analog = 245mW, Digital = 85mW 



DFE with Feedback FIR Filter 
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[Liu ISSCC 2009] 

• DFE with 2-tap FIR filter in feedback will 
only cancel ISI of the first two post-cursors  



“Smooth” Channel 
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[Liu ISSCC 2009] 

• A DFE with FIR feedback requires many taps to cancel ISI 
 

• Smooth channel long-tail ISI can be approximated as 
exponentially decaying 
• Examples include on-chip wires and silicon carrier wires 

τ
t

eH
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DFE with IIR Feedback 

48 

[Liu ISSCC 2009] 

• Large 1st post-cursor H1 is canceled with normal FIR 
feedback tap 

• Smooth long tail ISI from 2nd post-cursor and beyond is 
canceled with low-pass IIR feedback filter 

• Note: channel needs to be smooth (not many reflections) in 
order for this approach to work well 



DFE with IIR Feedback RX Architecture 
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[Liu ISSCC 2009] 



• Integrating summer with regeneration PMOS devices to 
realize partial slicer operation 

Merged Summer & Partial Slicer 

50 

[Liu ISSCC 2009] 



• Low-pass response (time constant) implemented by RD and CD 

• Amplitude controlled by RD and ID 

• 2 UI delay implemented through mux to begin cancellation at 2nd 
post-cursor 

Merged Mux & IIR Filter 
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[Liu ISSCC 2009] 
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Setting Equalizer Values 

• Simplest approach to setting equalizer values (tap weights, 
poles, zeros) is to fix them for a specific system 
• Choose optimal values based on lab measurements 
• Sensitive to manufacturing and environment variations 

 

• An adaptive tuning approach allows the optimization of the 
equalizers for varying channels, environmental conditions, 
and data rates 
 

• Important issues with adaptive equalization 
• Extracting equalization correction (error) signals 
• Adaptation algorithm and hardware overhead 
• Communicating the correction information to the equalizer circuit 

53 



TX FIR Adaptation Error Extraction 

• While we are adapting the TX 
FIR, we need to measure the 
response at the receiver input 
 

• Equalizer adaptation (error) 
information is often obtained 
by comparing the receiver 
input versus the desired 
symbol levels, dLev 

 
• This necessitates additional 

samplers at the receiver with 
programmable threshold levels 

54 
[Stojanovic JSSC 2005] 



TX FIR Adaptation Algorithm 

• The sign-sign LMS algorithm is often 
used to adapt equalization taps due 
to implementation simplicity 
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TX FIR Common-Mode Back-Channel 

• In order to communicate FIR tap update information 
back to the TX, a back-channel is necessary 

• One option is to use low data rate (~10Mb/s) common-
mode signaling from the RX to TX on the same 
differential channel 

56 [Stojanovic JSSC 2005] 



TX FIR Data Encoder Back-Channel 

• Another option is to use a high-speed TX channel on the 
RX side that communicates data back to the TX under 
adaptation 

• Flexibility in data encoding (8B10B/Q) allows low data 
rate tap adaptation information to be transmitted back 
without data rate overhead 

57 [Stonick JSSC 2003] 



CTLE Tuning with PSD Measurement 

• One approach to CTLE tuning is to compare low-frequency 
and high-frequency spectrum content of random data 

• For ideal random data, there is a predictable ratio between 
the low-frequency power and high-frequency power 

• The error between these power components can be used in 
a servo loop to tune the CTLE 
 

58 [Lee JSSC 2006] 
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CTLE Tuning  
w/ Output Amplitude Measurement 

• CTLE tuning can also be done by comparing low-frequency and high-
frequency average amplitude 

• Approximating the equalized data as a sine wave, a predictable ratio 
exists between the low frequency average and high-frequency average 

• Equalizer settings are adjusted until the high frequency peak-to-peak 
swing matches the low-frequency peak-to-peak swing 
 

59 [Uchiki ISSCC 2008] 



DFE Tuning 

• 2x oversampling the equalized signal at the edges can be 
used to extract information to adapt a DFE and drive a 
CDR loop 
 

• Sign-sign LMS algorithm used to adapt DFE tap values 
 
 

60 [Payne JSSC 2005] 
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High-Speed Optical Link System 

62 

Optical Channel • Optical interconnects remove many 
channel limitations  
• Reduced complexity and power 

consumption 
• Potential for high information density with 

wavelength-division multiplexing (WDM) 



Wavelength-Division Multiplexing 
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• WDM allows for multiple high-bandwidth (10+Gb/s) 
signals to be packed onto one optical channel 

[Young JSSC 2010] 



Conclusion & Future Trends 

• Data rates are scaling faster than electrical channel 
bandwidths, necessitating higher complexity, adaptive, and 
more efficient equalization circuits 
 

• Nanometer CMOS scaling also provides the potential for 
more advanced systems to deal with ISI 
• ADC front-ends with complex digital equalization 
• Error-correction coding 

 
• On the horizon are optical interconnect systems which 

provide the potential for distance-independent bandwidth 
which scales with the number of wavelengths/channel 
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