Version 2.1.1.0 CRISP Logo CRISP Homepage Help for CRISP Email Us

Abstract

Grant Number: 5R43EB000453-02
PI Name: SIVANESAN, PONNIAH
PI Email: ponniah.sivanesan@calibrant.com
PI Title: RESEARCH SCIENTIST
Project Title: Polymer Nanofluidic Field-Effect Pumping

Abstract: DESCRIPTION (provided by applicant): This proposal describes a research plan for the development of a new technology for nanochannel pumping using a technique pioneered by our research team called Field-Effect Flow Control (FEFC). This technique is based on a modification of standard electronsmotic flow (EOF), with modulation of the flow velocity provided by a secondary gate voltage independent from the lengthwise EOF electric field. The technology allows for direct and independent control of flow within large numbers of interconnected nanochannels, and is expected to impact a broad range of bioanalytical instrumentation. The proposed nanofluidic FEFC pumping technology is a novel approach which will provide nanochannel flow control with specific advantages over other techniques, namely (i) independent operation of multiple pumping elements, (ii) compatibility with standard polymer nanofluidic technologies, (iii) elimination of pump leakage for 100% pump efficiency, (iv) very large scale integration of nanochannel pumping elements for complex nanofluidic systems, and (v) simple fabrication and low cost. The overall goal of this Phase I project is to demonstrate the feasibility of polymer FEFC nanopumping technology, and evaluate its relative merits compared to alternate methods of nanochannel flow control. Practical tools for the analysis of single molecules and other novel bioanalytical instrumentation are anticipated to result from advances in flow control for nanofluidic systems. One example of the potential for this technology is in the sequencing of single strands of DNA by pumping individual molecules through a nanoscale channel, with integrated electrodes interrogating the conductivity of each base (1). Other applications of great interest include nanofluidic devices to mimic biological processes, and to carry out single-molecule chemical reactions.

Thesaurus Terms:
biomedical equipment development, fluid flow, nanotechnology, polymer
electric field
bioengineering /biomedical engineering

Institution: CALIBRANT BIOSYSTEMS, INC.
7507 STANDISH PL
ROCKVILLE, MD 20855
Fiscal Year: 2003
Department:
Project Start: 01-AUG-2002
Project End: 31-JUL-2004
ICD: NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING
IRG: ZRG1


CRISP Homepage Help for CRISP Email Us