Abstract
Grant Number: | 5R44EY013902-03 |
Project Title: | Miniature Non-Invasive IOP Measurement Device |
Abstract: Glaucoma is a leading cause of blindness in the United States and accounts for 15% of blindness worldwide.
The Vision Research Plan for the National Eye Institute establishes identifying the biological mechanisms responsible for glaucoma as a national priority. Recent research indicates that many forms of glaucoma have a genetic component. Development of a non-invasive, accurate, and reliable method to measure IOP in rodents will greatly facilitate the identification of genes involved in IOP regulation and the susceptibility of the retina and the optic nerve to glaucomatous damage. A non-invasive technique for measuring IOP in mice will enable repeated measurements on a single eye and be more useful for investigating the effect of age, drugs, and other factors on IOP over time. Luna Innovations, along with Dr. Simon John at the Jackson Laboratory, Dr. John Morrison at the Casey Eye Institute, and Dr. Jay McLaren at the Mayo Clinic, is developing a system for non-invasive intraocular pressure (IOP) measurement with contact area feedback in
rodents. During the Phase I program, the Luna Innovations team demonstrated the ability of a prototype device to measure IOP and confirm applanated area in testing with rats. The focus of this resubmitted Phase II proposal is to optimize system performance and completely calibrate and validate performance in rodent studies.
Thesaurus Terms:
biomedical equipment development, diagnosis design /evaluation, eye disorder diagnosis, glaucoma test, intraocular pressure, measurement, miniature biomedical equipment, noninvasive diagnosis
glaucoma, optic nerve, portable biomedical equipment, retina
laboratory rat
Institution: | LUNA INNOVATIONS, INC. |
| 1703 SOUTH JEFFERSON STREET, SW |
| ROANOKE, VA 24016 |
Fiscal Year: | 2006 |
Department: | |
Project Start: | 10-MAY-2002 |
Project End: | 28-FEB-2008 |
ICD: | NATIONAL EYE INSTITUTE |
IRG: | ZRG1 |
|