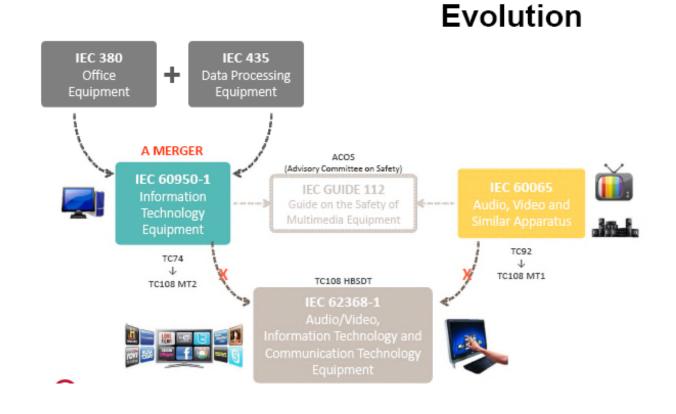


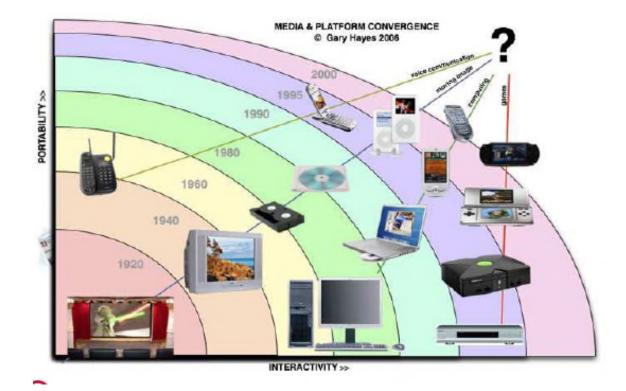
Overview of IEC 62368-1

Charles M. Bayhi, P.E. CPSM Corporation

Some of the material in this presentation is adapted, or taken from, UL Presentation, "Overview of IEC 62368-1", UL Brea Office, 5/5/17.



What is it?


- Combines the current separate AV standard and IT standard to single AVIT standard
- Applies Hazard Based Safety Engineering
- Updates the requirements to be more relevant to current device safety concerns

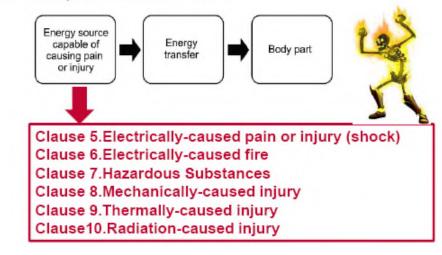
What is it?

Hazard-based Safety Engineering

Hazard-based Safety Engineering (HBSE) is a safety science discipline formalized over the last 20 years. Key tool: 3 Block Models

An energy source that causes pain or injury does so through the transfer of some form of energy to or from a body part.

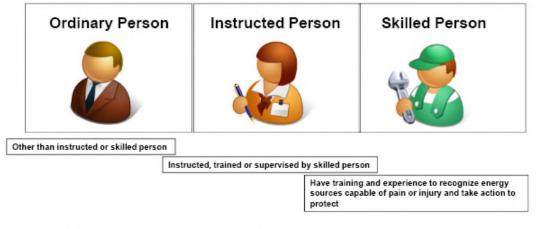
Safeguards & the Model for Safety (0.5)



Safeguard is a device or scheme or system that is interposed between an energy source capable of causing pain or injury and a body part.

Hazard Based Safety Engineering Energy Sources

 An energy source that causes pain or injury does so through the transfer of some form of energy to or from a body part. This concept is represented by a three-block model.


Hazard Based Safety Engineering Energy source classifications (0.3, Table 1)

Class 1 but ma		Effect on the Body			Effect on Combustible Materials		
		ot painful, ly be detectable		Ignition not likely			
		but	Painful, t not an injury		Ignition possible, but limited growth and spread of fire		
Class 3			Injury		Ignition likely, rapid growth and spread of fire		
Energy Source		ectrical urce	Power Source		lechanical ource	Thermal Source	Radiation Source
Class 1	lass 1 ES1 PS1		PS1	N	IS1	TS1	RS1
Class 2	ES2 PS2		N	IS2	TS2	RS2	
Class 3 ES3		PS3	N	IS3	TS3	RS3	

Hazard Based Safety Engineering-Persons (0.2)

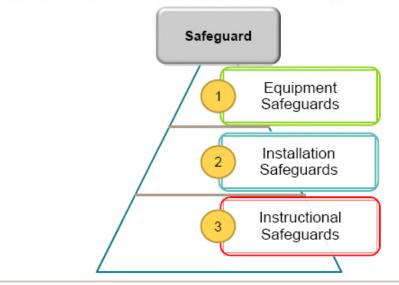
The standard prescribes **safeguards** for the protection of three types of persons:

The standard assumes that a person will not intentionally create conditions or situations that could cause pain or injury.

Hazard-based Safety Engineering

Hazard-based Safety Engineering (HBSE) is a safety science discipline formalized over the last 20 years. Key tool: 3 Block Models

- HBSE typically consists of
 - (a) identifying energy sources in the product,
 - (b) classifying the energy (e.g., Class 1) due to potential for causing injury or damage (harm),
 - (c) identifying needed safeguards for protection from energy sources with the potential for causing injury or damage, and
 - (a) qualifying the safeguards as effective.


Hazard-based Safety Engineering-Safeguards

Safeguard-physical part or system or instructions specifically provided to reduce the likelihood of pain or injury or for fire

- Basic Safeguard-safeguard that provides protection to a circuit under
 - Normal operating conditions AND
 - · Abnormal operating conditions
- Supplemental Safeguard-safeguard applied in addition to the basic safeguard that is or becomes operational in the event of failure of the basic safeguard
- Reinforced Safeguard- single safeguard that is operational under
 - Normal operating conditions
 - Abnormal operating conditions AND
 - Single fault conditions

Hazard-based Safety Engineering Priority of Safeguards (Safeguard Hierarchy)

Equipment safeguards are preferred as they do not require any knowledge or actions by persons coming into contact with the equipment.

Clause 4 – General Requirements: Safeguards

	Basic Supplementary Safeguard Safeguard		Reinforced Safeguard	
Safeguard	Effective under normal operating conditions	Effective in the event of failure of the basic safeguard	Effective under normal operating conditions and in the event of a single fault	
	Basic insulation	Supplementary insulation	Reinforced insulation	
Equipment Safeguard A physical part of the equipment	Normal temperature below auto-ignition temperature	Fire endosure		
Installation Safeguard A physical part of a man-made installation	Wire size	Overcurrent protective device	Socket outlet	
Personal Safeguard (in the absence of equipment safeguard) A physical device worn on the body	Glove	insulating floor mat	Electrically-insulated glove for handling live conductors	
Instructional Safeguard (in the absence of equipment safeguard) A voluntary or instructed behavior intended to reduce the likelihood of transfer of energy to a body part	Instructional safeguard to disconnect telecom. cable before opening the cover	After the opening a door, instruction safeguard against hot parts	Instruction for hot parts in an office photocopier, or a continuous roll paper cutter on a commercial printer	

Hazard-based Safety Engineering **Application Process Flow** IDENTIFY ENERGY SOURCE HAZARDOUS IS SOURCE HAZARDOUS? TRANSFER ENERGY BODY PART чīс MECHANISM SOURCE YES J IDENTIFY MEANS BY WHICH ENERGY CAN BE TRANSFERRED TO A BODY PART Ŷ DESIGN SAFEGUARD WHICH WILL PREVENT ENERGY TRANSFER TO A BODY MEASURE SAFEGUARD EFFECTIVENESS ÷ NO IS SAFEGUARD EFFECTIVE? HAZARDOUS ENERGY SAFEGUARD ----Þ BODY PART YES SOURCE DONE

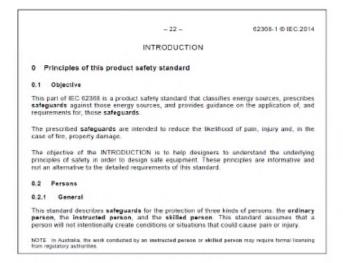
Structure of IEC 62368-1

CLAUSES

- 0 Principles
- 1 Scope
- 2 Normative references
- 3 Terms, definitions and abbreviations
- 4 General requirements
- 5 Electrically-caused injury
- 6 Electrically-caused fire
- 7 Injury caused by hazardous substances
- 8 Mechanically-caused injury
- 9 Thermal burn injury
- 10 Radiation

ANNEXES (partial list)

- Annex A (Examples of equipment in scope)
- Annex B (Normal operating condition, abnormal operating condition, and singlefault condition tests)
- Annex F (Equipment markings, instructions and instructional safeguards)
- Annex G (Components)
- Annex M (Batteries and fuel cells)
- Annex Q (Interconnection with building wiring)
- Annex T (Mechanical strength tests)
- Annex V (Determination of accessible parts)
- Annex DVA Canadian and U.S. Regulatory Requirements
- Annex DVB Health Care Facilities
- Annexes DVE, DVF, DVG Components
- Annex DVK Canadian and U.S. Markings and Instructions

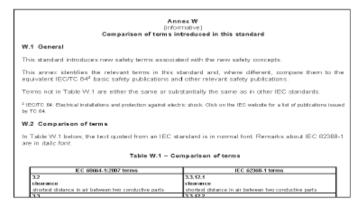


 $\widehat{}$

Clause 0 - Principles

- Excellent primer (backgrounder) on the principles and HBSE approach the Standard takes towards safety.
- Should be studied as part of the initial learning of the Standard.

Clause 1 – Scope (and Annex A, Examples)


- Scope similar to IEC 60065 & IEC 60950-1
- Examples of products covered under scope provided in Annex A, essentially same examples as in IEC 60065 & 60950-1
- IEC TC108 intentionally did not widen the Scope or Examples in Annex A (of Eds 1 & 2) as to not confuse what types of products that are intended to be covered by the Standard.
- Annex A will be updated in Ed. No. 3.

Clause 3 – Terms, Definitions and Abbreviations

- Valuable reference Annex W (Informative) Comparison of terms introduced in this standard.
 - Compares terms used in 62368-1 with, terms used in *IEC 60950-1* (ITE), IEC 60065 (AV), IEC 60664-1 (Insulation Coordination), IEC 61140 (Protection against electric shock), IEC 60728-11 (CATV), and IEC 62151 (Telecom).

Clause 3 – Terms, Definitions & Abbreviations: Differences

IEC 60950-1	IEC 62368-1			
User (Operator)	Ordinary Person			
(Operator w/ limited training, e.g., allowed access to RAL)	Instructed Person			
Service Person	Skilled Person			
SELV (voltage based) LCC (current based)	ES1 (considers both voltage & current)			
TNV e.g., TNV-1	External Circuit, with transient considerations e.g., ES1 with Table 16, ID Nos. 4, 6,7 etc.			
Marking Instruction	Instructional Safeguard			

Clause 4 – General Requirements

- Many same elements as 60950-1's 1.3 (General Requirements, 1.4 (General Conditions – Tests) and 1.5 (Components)
- Includes general requirements, or points to Annexes, used throughout the Standard, such as,
 - o Use of components (4.1.2)
 - o Constructions not specifically covered (4.1.5)
 - o Temperature measurements (4.1.10)
 - o Markings & instructions (4.1.15)
 - Energy source classifications (4.2), protection against energy sources (4.3) and Safeguards (4.4).

Annex G (Components)

- All the component requirements have been grouped into Annex G rather than dispersed throughout Standard like 60950-1.
- Level of requirements is similar to 60950-1 (or 60065), including requirements for switches (G.1), relays (G.2), protective devices (G.3), connectors (G.4), wound components (G.5), wire insulation (G.6), mains supply cords (G.7), varistors (G.8), IC current limiters (G.9), resistors (G.10), capacitors & RC units (G.11), optocouplers (G.12), printed boards (G.13), pressurized liquid filled components (G.15), and IC with capacitor discharge function (ICX) (G.16), etc.

Annex M (Batteries and fuel cells)

- Similar to 4.3.8 of 60950-1, except
- Batteries and cells need to comply with the appropriate IEC standards for cells and batteries, including IEC 62133 for rechargeable battery packs.
- More detail contained in annex to address battery packs (system requirements).
- Mention of Fuel Cells taken out of Edition No. 2

Key Takeaways - general

- Main difference between IEC 60065/60950-1 and IEC 62368-1 is in *approach* (HBSE).
- 2. Many of the prescriptive options in 60950-1 (and/or 60065) remain and are still permitted in 62368-1.
 - The main advantages are added flexibility due to more performance-based options.

Publication History/Status

Edition No. 1

- > IEC 62368-1, Ed. 1: January 2010
- > EU: Ed. 1 not adopted.
- > CAN/US: CSA/UL 62368-1, Ed 1: February 2012

Edition No. 2

- IEC 62368-1, Ed. 2: February 2014
- EU: EN 62368-1, Ed 2: August 2014
- CAN/US: CSA/UL 62368-1, Ed 2: December 2014

Standards Development	Technical Bodies	CLC/TC 108X	EN 62368-1:2014
Implementation	Dates		
date of Ratificatio	n (DOR) (1)	2014-06-20	
date of Availability	y (DAV) (2)	2014-08-01	
date of Announce	ment (DOA) (3)	2014-12-20	
date of Publicatio	n (DOP) (4)	2015-06-20	
date of Withdrawa	al (DOW) (5)	2020-12-20	

Announced Formal Transition Dates

EU Date of Withdrawal (DOW) - Legacy Standards (60065/60950-1): June 20, 2019

- > Official Journal (OJ) of the EU (latest): July 8, 2016
- DOW = Date superseded standards (60065 & 60950-1) cease to give 'presumption of conformity' with the essential requirements of the relevant Union legislation

Cenelec	EN 62368-1:2014 Audio/video, information and communication technology equipment - Part 1: Safety requirements (IEC 62368- 1:2014, modified) IEC 62368-1:2014 (Modified)	08/07/2016	EN 60065:2014# + A1:2015# + A:2014 EN 60950- 1:2006# + A11:2009# + A12:2011# + A1:2010# + A2:2013	20/06/2019
			<u>Note 2.1</u>	
	EN 62368-1:2014/AC:2015	08/07/2016		

Announced Formal Transition Dates

- US (UL) Effective Date New Products: June 20, 2019
 - Soft Transition: No formal Industry File Review of existing certifications.

CAN-CSA C22.2 No 62368-1/ANSI-UL 62368-1, Edition No. 2

- Canadian/U.S. Bi-national Standard
 - Published: December 2014
 - SCC & ANSI Approved in Canada & U.S.

Current Status and Schedule of Adoption

- EU adoption of 2nd edition based on published DOW of legacy standards-June 20 2019
- UL will harmonize with EU date to move to 2nd edition starting June 20 2019
- CELENEC voted to extend DOW from June 20,2019 to December 20 2020 (18 month ext.)
- CENELEC and European Regulators currently in discussions to establish this date as new published date in Official Journal (OJ)
- CENELEC also agreed to remove the legacy component provision in 4.1.1 from 2nd Edition (effective December 20,2020)

Current Status and Schedule of Adoption

- 62368-1 3rd edition moving from Committee Draft for comment to Committee Draft for Vote
- Vote and Comments to be discussed at next IEC TC108 meeting in Toronto Canada in Oct 2017
- Target Publication Date: Q4 2018 or Q1 2019

Current Transition Schedule

Likely EU/NA Transition: Legacy AV/ICT Standards → 62368-1 (present)

Year:	2016	2017	2018	2019	2020	2021	2022	2023 +		
IEC	IEC 60065, Ed 8 (2014)									
	IEC 60850-1, Ed 2, Am 2 (2013)									
	IEC 62368-1,Ed2 (2014)									
	IEC 62368-1,Ed3 (pub: Q1/2019?)									
EU	EN 60065, I	Ed 8 (2014)								
	EN 60950-1, Ed 2, Am 2 (2013)									
	EN 62368-1, Ed2 (2014) w/ DOW of 06/19									
	EN 62368-1, Ed3									
CAN/ US	UL 60065, E	Ed 8 (2015)								
	CSA/UL 60	950-1, Ed 2, Ar	m2 (2014)							
	CSA/UL 62368-1, Ed2 (2014) w/ ED of 06/19									
	CRAVL 62368 1, Ed3									

Current Status and Schedule of Adoption

 Global adoption rates by country will vary and may requiring duo certification

Hybrid TRF

Solution: Hybrid TRF

- One 62368-based TRF that also documents requirements/principles in IEC 60065 & IEC 60
- One 62368-based investigation
- TRF documents compliance with 62368-1, and 60065 &/or 60950-1.
- IEC TC108 supports in principle: 108/575/INF.

Hybrid TRF - Status

- Hybrid TRF published in IECEE
 - Available @ IEC Webstore
- Some opposition by NCBs

Transition Strategy

- · Get the standard and familiarize
- Maintain visibility with the standard transition roadmap
- Review your products lifecycle and introduction timelines
- Conduct a file analysis for existing products
- Finalize your roadmap
- Establish a budget and schedule
- Transition early to avoid delays and missed schedules

- Questions?
- Discussions?

