N E T W O R K S

Intrusion Prevention Through Innovation[™]

Network Intrusion Detection and Prevention March 15, 2003

Ramesh Gupta Vice President of Engineering

ramesh@intruvert.com | 3200-A North First Street 408-434-8302 | San Jose, CA 95134

Key Security Components

For Large Enterprises and Government Customers

- Authentication
- Authorization
- Access Control
- Directory Services
- Host and Application Security
- Network Security
- Security Management

Key Network Security Components

Secure Network Transport

VPNs

- Network Access Control
 - Firewalls
- Network Intrusion Detection Systems
 - Intrusion Detection Systems
 - Intrusion Detection and Prevention Systems

What is IDS

- Monitor network traffic to detect malicious activity
- Malicious activity can include:
 - Reconnaissance activity
 - System exploitation
 - Denial-of-service and
 - Policy violations
- Apply countermeasures when malicious activity is detected
 - Passive response actions
 - Generate Alerts and packet logs
 - Alert notification through e-mail and pagers
 - Active response actions
 - Terminate malicious flow with a TCP reset
 - Send ICMP Host Unreachable messages for UDP attacks
 - Reconfigure a firewall to block malicious traffic
 - Block malicious traffic

Economic Impact of Malicious Code Attacks

Why do we need IDS?

- ► Firewalls, while necessary, are not sufficient
- Firewalls are an access control device and do not inspect the traffic they permit
 - Vulnerable to Web attacks if HTTP is permitted
- IDS is required to monitor the actual traffic
- Very efficient for monitoring inside the network perimeter as well
- Complementary to Firewalls and VPNs and necessary for Defense-in-Depth strategy

Why is IDS a growth market?

- Growing cyber-terrorism threat especially post 9-11-01
- Cost of events like Code Red/Nimda (estimated at \$3.2B by Computer Economics)
- Skills required to attack systems are readily available
- Growing recognition that IDS is necessary
- IDS can be deployed where firewalls can't
- Component of "best security practices"

IDS Market Forecasts

IDS Market Direct Equipment Purchase \$900 \$900 \$600 \$300 \$-2002 2003 2004

Security Market CAGRs

How are Intrusions Detected?

2 Unknown/new Attacks

- Requires frequent updates
- Subscription service

Anomaly Detection

- Not as precise as signature detection, requires human intervention
- E.g. Code Red reported as buffer overflow

DoS/DDoS Detection

3

DoS

Attacks

IntruVert

- Significant threat to eBusiness
- Must be detected accurately
- Can be misinterpreted as network outage or host malfunction

Benefits of combining three techniques

- Create complete solution to detect ALL malicious activities
- ✓ Significant processing & accuracy efficiencies
- Single management infrastructure
- ✓ Lowest possible TCO

Typical IDS System Architecture

IntruVert

Typical IDS Deployment modes

IntruVert

Perimeter Deployment

Enterprise Data Center / Core IDS Deployment

Key Network IDS Challenges

Business Challenges

- Comprehensive Protection
- Total Cost of Ownership (TCO)

Technology Challenges

- Detection
 - Comprehensive Protection
- Data Management and Analysis
 - TCO
- Prevention
 - TCO
 - Comprehensive Protection

Detection

Requirements

- Broad Detection Coverage
 - Known, unknown and DoS attacks
- Scalability to support growing number of Protocols and Signatures
- High Accuracy of Detection
 - Comprehensive Protocol Analysis
 - Multiple triggers in Multiple Fields
- Flexible deployment options to capture/process all relevant traffic
 - SPAN, TAP, In-line, Active-Passive, Active-Active, Asymmetrically routed Networks
- Multi-Gigabit Performance with real-world traffic

Detection Challenges

Stealthy attacks

- Increasingly complex Evasion techniques
 - Quoting in protocols such as HTTP, FTP, Telnet
 - Layer 7 data fragmentation such as RPC record fragmentation
 - Ambiguous encoding mechanisms such as SNMP ASN.1 BER

Protocol Tunneling

- P2P Traffic tunneled over well known services such as HTTP
- Instant Messaging traffic tunneled over well known services
- Backdoors
 - Unencrypted backdoors
 - Protocol Tunneling
 - Command shell on a high port
 - Encrypted backdoors
 - Using SSH
 - Using SSL
 - Using proprietary encryption

Detection Challenges (contd.)

Well known Services on non-standard ports

- Examples
 - FTP on port 1234
 - HTTP on a high port such as 4600
 - SSH on a high port such as 8200

Accuracy of Detection

- Buffer Overflow attacks
 - Mutation using tools like ADMutate
 - Too many false positives with the following detection approaches
 - Simple Signature matching
 - Counting of NOPs
 - Counting of Binary characters
- DoS detection using simple thresholds
 - Networks are highly dynamic and simple thresholds lead to too many false positives
- Signature detection
 - Too many false positives with packet grepping IDSs

Detection Challenges (contd.)

Broad detection coverage

- All categories of Intrusions
 - Exploits
 - Known and Unknown or First-Strike Intrusions
 - Reconnaissance attempts
 - Denial of Service attacks
 - Policy Violations
- Increasing number of protocols that are being targeted
- Increasing number of Intrusions
 - The performance of most IDS systems degrades as the number of attacks increase due to the increasing number of attack patterns that the IDS has to analyze
- Requires timely signature and protocol updates to keep pace with the vulnerabilities being discovered

Data Management and Analysis

Requirements

- Management of large number of Alerts
 - Intuitive and easy to use Alert Analysis tools
 - Attack Verification to focus on only relevant alerts
 - Alert Correlation to reduce many alerts to a few relevant Incidents
 - Work flow to manage Incidents
- Management of large number of sensors
- Forensic Analysis
 - Packet logs and powerful reports
- Remote Management

Analysis Challenges

- Increasing number of hosts and amount of traffic
 - Increasingly diverse OSs, applications and services
- Increasing number of attacks and thereby the number of alerts
- Cumbersome Alert Analysis tools
- Incident tracking and management
- Insufficient or incomprehensible forensic data
- Little visibility as to whether an intrusion succeeded or failed without significant time spent investigating each of the events reported by an IDS
 - Is the intrusion relevant to the host and application
 - If relevant, is the host vulnerable to the intrusion
- If an Intrusion Prevention System (In-line IDS) is deployed, need clear indication as to whether the intrusion was blocked or not blocked

Intrusion Prevention

- Growing trend towards deployment of Intrusion Prevention as opposed to just Intrusion Detection
 - Growing interest from customers in this capability
 - Most customers wish to deploy the IDS in the Intrusion Detection Mode (sniffing mode) initially and then migrate to the Intrusion Prevention mode (in-line mode)
- This trend has been confirmed by Industry Analysts such as Gartner

Benefits of Intrusion Prevention

- Prevent the attack from reaching the target host and prevent the resulting compromise/loss of sensitive data
- Avoid the costly post-attack incident analysis and clean-up
- Turn on in-line blocking for a newly discovered attack giving the security staff enough time to patch the vulnerable hosts
 - Minimize down time for mission critical hosts and applications
- Prevent IDS evasion and OS fingerprinting through Protocol Scrubbing (Protocol Normalization)

Intrusion Prevention Challenges

In-line Operation or Sniffing-mode Operation ??

- Passive monitoring IDS can "<u>attempt</u>" to block a TCP based attack using TCP resets
 - If the attack reaches the end host before the TCP reset from the IDS reaches the end host, this form of Prevention will not work
- Reliability of the sensor
- Availability of the sensor (Up time)
 - Requires timely signature <u>and</u> protocol updates that <u>do not require</u> rebooting or restarting of the sensor
- Performance of the sensor
- Latency introduced by the sensor
- Ability to instruct the IDS as to which attacks should be blocked and which attacks should not be blocked
- Accuracy of detection
 - Blocking benign traffic will result in customer dissatisfaction and affects network availability