Computer Network Intrusion Detection Via Neural Networks Methods

> Vu Dao phongvu_98@yahoo.com July 18, 2002

Outline

- Goals
- Background on Intrusion Detection Systems (IDS)
- Types of IDS
- Why Applying Neural Networks Techniques?
- User Profiling in the UNIX OS Environment
- Study of the Proposed Methods
 - Implementation of the Proposed IDS
 - Results
 - Trade-Offs of the Proposed Methods
- Summary
- Future Work

Goals

- Design and implement new intrusion detection systems that deal with changes in user profile (i.e. user behavior)
- Compare the proposed methods with other statistical methods to the intrusion detection problem, explain the trade-offs and the potential advantages of the proposed methods

Background on Intrusion Detection Systems

1999 DARPA Study [1]

- Types of Evaluation
 - U2R User Illegally Became Root (eject, fdformat, ps, ...)
 - DoS Denial of Service (selfping, smurf, tcpreset, ...)
 - R2L Remote User Illegally Accessed a Local Host (guest, ftpwrite, xsnoop, ...)
- Results of Detecting Intruders
 - 80% Success for Old Attacks
 - 25% Success for New and Novel Attacks

DARPA: Defense Advanced Research Project Agency

 R. Lippmann, et. al., The 1999 DARPA off-line intrusion detection evaluation, Computer Networks, 2000

Types of IDS

- Audit-Trail IDS
- Network Monitoring IDS
- Others

Audit-Trail Methods

- Audit-Trail Methods
 - Classical Artificial Intelligence (AI)
 - Statistical or Anomaly
 - Rule-Based, Signature or Misuse
 - Soft-Computing Artificial Intelligence
 - Back Propagation (BP)
 - Radial Basis Function (RBF)
 - Genetic Algorithm (GA)

Research Concentration

- Previous Works Concentrate on System or Network
 - System Traffic or System Log
 - Goal is to Detect Intrusion on System or Network
- This Research Concentrates on User Account
 - Account Traffic or Account Log
 - Goal is to Detect Intrusion on a Specified Account

Why Applying Neural Network?

- Statistical Method
 - Used in Detecting New Attacks
 - Inaccurate
 - 75% Success Rate [2] for currently best research system
- Neural Network Has Self Learning Capability
 - Supervised Learning for Input-Output Mapping
 - Adapt Synaptic Weights to Changes in the Surrounding Environment

[2] Pete Lindstrom, IDS at the Crossroads, Information Security, June 2002

User Profiling in the UNIX OS Environment (1/2)

- Events Used in User Profiling[3]
 - Activities of the System as a Whole
 - Activities of Users
 - Activities of Particular Terminals
 - Transactions Involving Particularly Sensitive Files or Programs
 - Transactions Involving Particular Sensitive System Files or Programs

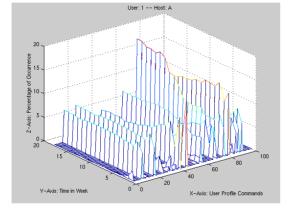
[3] Dorothy Denning, "An Intrusion Detection Model," IEEE Transactions on Software Engineering, 1987

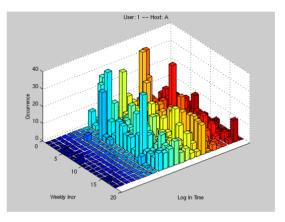
User Profiling in the UNIX OS Environment (2/2)

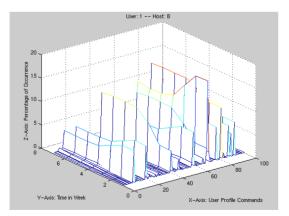
- Attributes of Users in Profiling
 - Command Sets, Time of Login, Host, CPU Time
- Issues in User Profiling [4]
 - Short-Term
 - Constant Profile
 - Long Term
 - Profile Drift
- Case Study

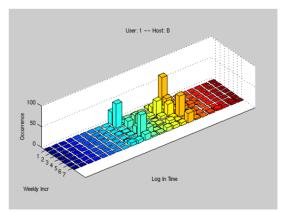
[4] Vu Dao, et. al. "Profiling Users in the UNIX OS Environment", International Computer Science Conventions Conference, Dec. 2000

User Profiling -- Case Study (1/2)

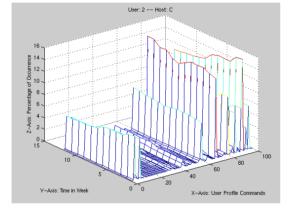


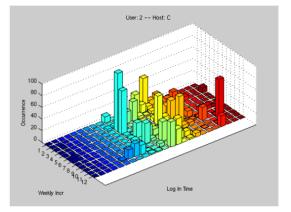


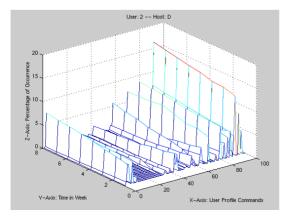


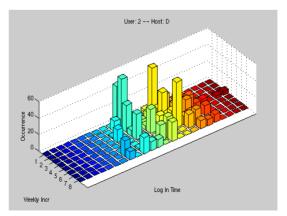


User Profiling -- Case Study (2/2)









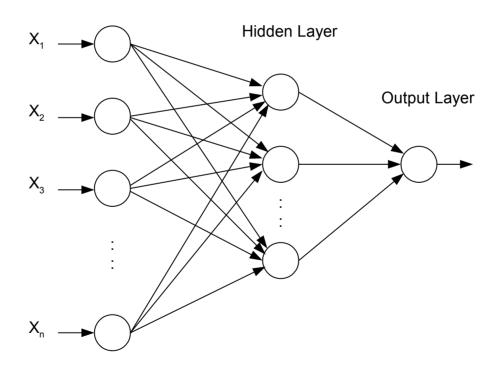
Study of the Proposed Methods

Neural Network Methods

- Back Propagation
 - Gradient Descent (GD)
 - Gradient Descent with Momentum
 - Variable Learning Rate GD with Momentum
 - Conjugate Gradient
 - Quasi Newton

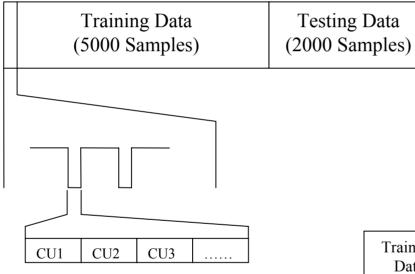
Feed Forward Neural Networks

Input Layer



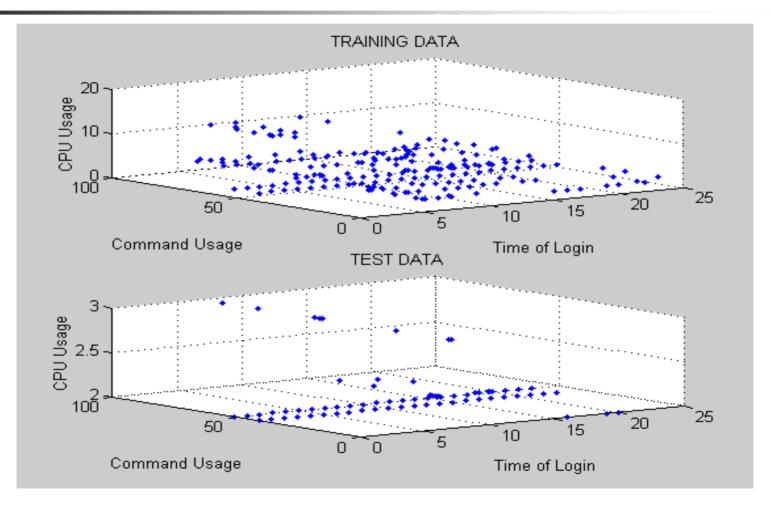
Feed Forward Neural Networks

Generated Data File

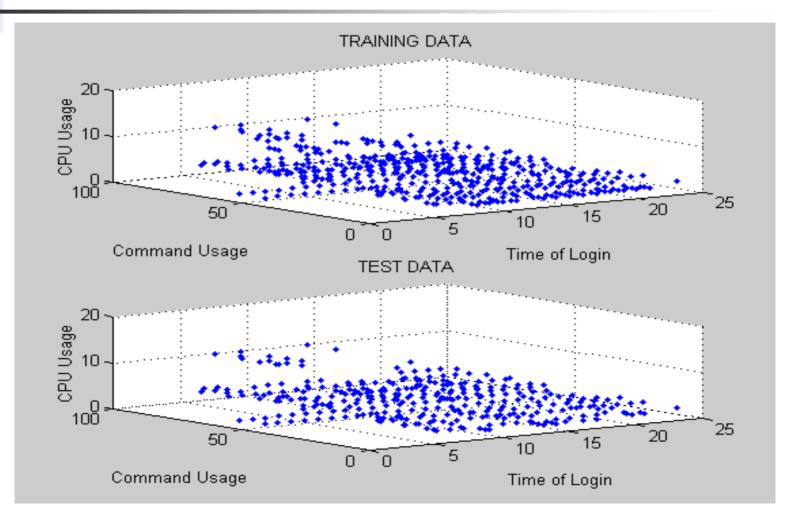


	File 1 CU = 5	File 2 CU = 6	File 3 CU = 7
Training Data	25000	30000	35000
Testing Data	10000	12000	14000
Total	35000	42000	49000

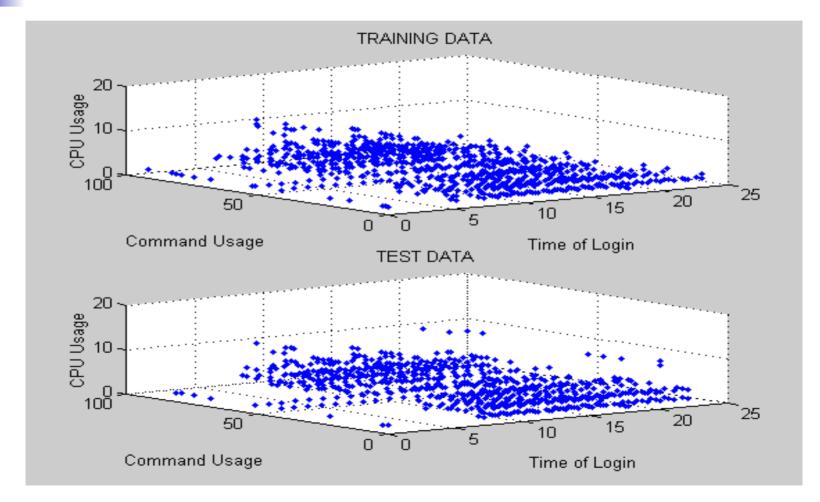
Data set 1, CU = 5



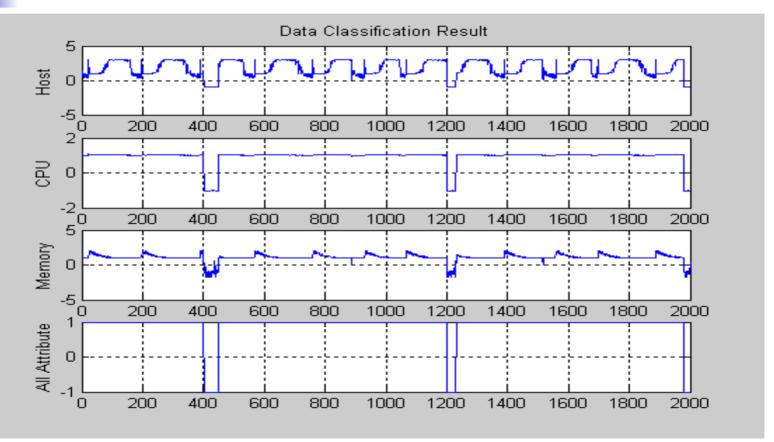
Data set 2, CU = 5



Data set 3, CU = 5

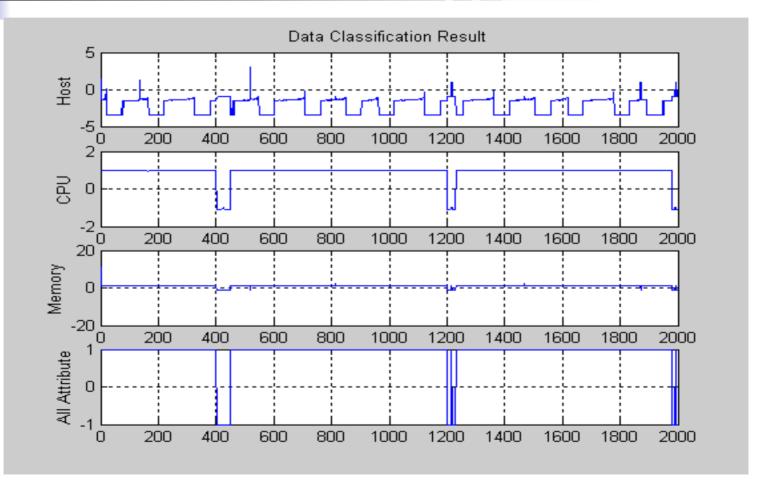


Results (BFGS - 5 Samples) Test Data 1

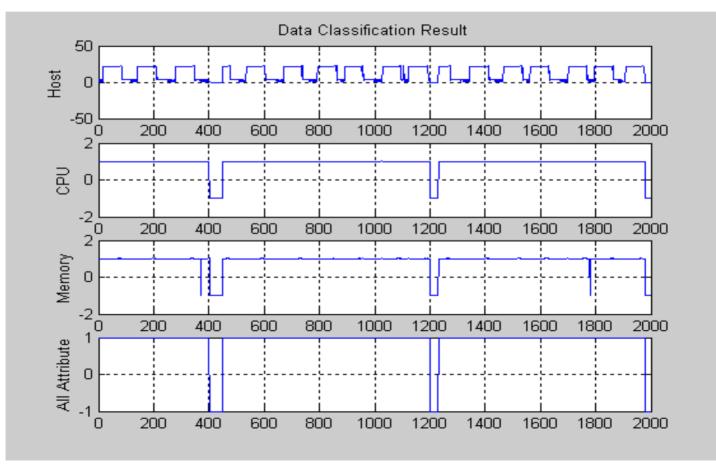


BFGS = Broyden, Fletcher, Goldfarb, Shanno

Results (BFGS - 6 Samples) Test Data 1



Results (BFGS - 7 Samples) Test Data 1



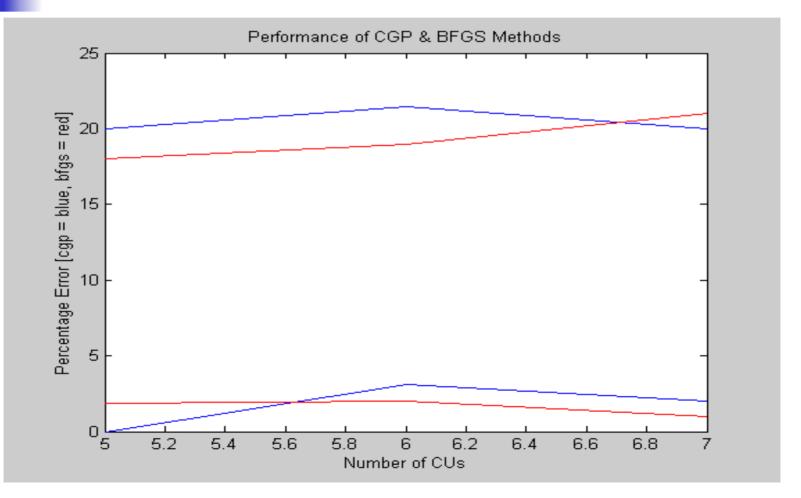
BFGS Result

	CU = 5	CU = 6	CU = 7
Host Error	2.7%	2.5%	1%
	18%	19%	21%
CPU Error	3.6%	1.8%	1%
	16%	19%	21%
Memory Error	3.1%	3.9%	3.3%
	18%	16%	20%
Combined	1.9%	2%	1%
Error	18%	19%	21%

CGP Result

	CU = 5	CU = 6	CU = 7
Host Error	0.4%	1.1%	2.84%
	20%	21.4%	20%
CPU Error	2.0%	2.23%	2.0%
	2.9%	18.6%	17%
Memory Error	0.7%	0.5%	3.1%
	18.5%	20%	19%
Combined	0%	0.31%	2.0%
Error	20%	21.43%	20%

Summary Result



Trade-Offs of the Proposed Methods

- Advantage
 - Adaptive to Profile Drift
 - Software Based Neural Networks
 - Added protection to critical account / system
- Disadvantage
 - Requires More Computing Resources
 - Require Negative Samples to Train Neural Networks
 - Must be configured to each user

Summary

- Profile Computer Users Successfully via Basic Attributes
- Neural Networks Capable of Classifying Users

Future Work

- Implement Other Neural Network Techniques
 - Radial Basis Functions
 - Weights has local affect on neuron
- Use Other User Profile Attributes
- Analyze Results to Improve Performance