Wireless Sensor and Control Networks

Reliable Low Power, Ad Hoc Wireless Networks

February 16, 2006

The Vision

"Just as the personal computer was a symbol of the '80s, and the symbol of the '90s is the World Wide Web, the next nonlinear shift, is going to be the advent of cheap sensors."

-Paul Saffo

Institute for the Future

The Engineering Challenge

- The scale and operational requirements lead engineers down new paths in design
- Faster is not better
- Low power rules
- Make wireless simple
- Kept the technology simple and small conserve bits and gates
 - Compact code and data storage is more important then time-to-market
 - Complex modulation and transmission schemes cost too much time and power

Agenda

Dust Overview

- Markets
- Technologies the landscape
- Standards/Groups
- Q&A

Dust Overview

- Background
 - VC funded
 - Products in the field
- What Dust Networks does:
- Founded 2002, Berkeley roots

- Frequency hopping - radio

- Located in Hayward
- Develops and sells wireless network modules and software for sensor and control networks
- Key technologies:
 - TDMA access
 - Mesh network topology
- What we emphasize:
 - Reliability radio data delivery is as good as wired, works in harsh RF environments
 - Deterministic bounded latency, dedicated resources
 - Low power deterministic, long battery life
 - Easy to install & operate ad hoc network, no RF planning

Agenda

Dust Overview

Markets

- Background
- Requirements
- Why not existing technologies?
- Technologies the landscape
- Standards/Groups
- Q&A

Market Segmentation

Consumer Applications

Enterprise Sensor & Control Networking

Energy Management

Energy Monitoring

- Energy is the #1 cost of supermarkets after shelf stock
- Analyze and reduce power consumption
- The Challenge:

How can energy consumption points be monitored without running costly and intrusive wires ?

Data brought back to expert analysts who make recommendations to save 10-25% of total energy costs

Industrial Monitoring & Control

Cost-effectively extend monitoring to more points

- Refineries
- Oil & gas fields
- Continuous process control
- Discrete manufacturing

Extra sensing & control points:

- Increases process efficiency
- Increases reliability (built-in redundancy)
- Often replaces manual labor "sneaker net"

Perimeter Security

Enforce 24/7 perimeter security around fixed installations including key assets – reduced need for guards

- 30-40% less expensive than vibration wires
- Easily augmented with new sensors (on or off the fence)
- Cameras for visual confirmation
- Easy to deploy
- More precise location of intruder

Key Enterprise Requirements

- Reliable: > 99.9%
- Scalable: up to 10s of thousands of points per facility
- Flexible and Tunable
 - Applications vary in service needs
 - Growth
- Easy to Install
 - No to site surveys, RF planning and network planning
 - YES to coexistence
- Low Power (<40 uW average for 1 minute/message)</p>
- Security similar issues as with other wireless networks

Reliability

Key to reliability: Full diversity to avoid interferers

- Frequency, path, and time
- Frequency hopping, to

RF Impairment

Noise Measurements Made At An ISA Expo showroom floor

1/10/2005 12:29:	11 p.m.					·	Text Entry
5737 - 5 75573	M2 ##.##dBm @173.090 909 MHz				Spe	abc	
Trace Mode Max	0.00 dBm						def
Ref LvI Offset	-13		_				ghi
U.U 0B	- 20						jkl
#Input Atten 0.0 dB	- 26			Pre	ss ESC to iclear	Recall Trace	mno
#RBW 300 kHz	-39 <2					∏->	p q r
	-52						stu
#VBW	_65						v w x
1 10112	-00						y z
Detection Peak	manna	hope man and the particular	hundrenden	when which were	sahn samuel	where we wanted and a second	
Trace Count	-91						Back Space
	-104						
Internal	-117						
Sweep Time 216 ms							
	Start Freq 900.000 MHz				Stop Freq 930.000 MHz		
Freq	Amplitude		Span		BW		Marker

The very quiet noise floor at 900 MHz (early in the morning before the show opens).

At 12:30PM, the 900 MHz band has reached saturation, or rather that the "background" floor has risen by over 60 dB (x1000000).

Scaling

A 250 node network

Wireless Sensor Network Market Growth

Time \rightarrow

New Technologies Are Needed

- Existing technologies don't meet all the requirements
- 802.11 and WiMAX
 - Scale in dense deployments, power, RF environment, installation and management
- Wireless Blue Tooth
 - Limited Networking
- Cell Phones
 - Scale in dense deployments, power, RF environment, and management
- Even 802.15.4 & ZigBee
 - Scale in dense deployments, power, RF environment

Agenda

- Dust Overview
- Markets
- Technologies the landscape
 - Mesh and Star
 - Frequency hopping and single channel
 - TDMA and CSMA-CA
- Standards/Groups
- Q&A

Star Network Wireless

- Difficult to install RF site survey required
- Not reliable many single points of failure
- High Power many long links

Mesh Network Wireless

• Low power – multi-hopping reduces consumption

Key Elements of Mesh Technology

- 1. Strong radio links:
 - Direct Sequence Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum (FHSS)
- 2. Robust installation processes:
 - Automatic configuration & joining
- 3. Reliable networking:
 - Built-in redundancy & self healing

Spatial effect of multipath

Radio Link

Reliability: Frequency Hopping & Mesh

keys to reliability:

- Full path diversity (mesh)
- Frequency hopping, to avoid time varying interferers

Network Reliability

Results: > 99.99% reliability in typical deployment

Networking Protocols- TDMA & CSMA-CA

CSMA-CA: Carrier Sense Multiple Access-Collision Avoidance

- Always-on nodes give lower latency
- Quick discovery simplifies installation

TDMA: Time Division Multiple Access

- Coordinated network for predictable performance
- Efficiently use the entire allocated frequency spectrum
- Reliable use of frequency hopping
- All nodes can be battery operated

CSMA Networks

Non-deterministic collisions

CSMA-CA Scaling

CSMA-CA does not scale well with large number of nodes

"Performance Analysis of Slotted IEEE 802.15.4 Media Access Layer", Pollin, Sofie et al

TDMA Networks

Time and Frequency Matrix at 2.4 GHz

Technology Trends

Continued exponential reduction in size, power, & cost

- More opportunities for wire-replacement
- More wireless-enabled applications
- Tighter integration
 - "Mesh on a chip"
- Lower power
 - Reductions from better hardware & better software
- More flexibility
 - Dynamic bandwidth allocation & duty cycling based on application need

Agenda

- Dust Overview
- Markets
- Technologies the landscape
- Standards/Groups
- Q&A

Standards

Wireless HART (Highway Addressable Remote Transducer

- In the technology selection phase
- Selected frequency hopping and studying mesh and TDMA
- Instrumentation, Systems, and Automation Society (ISA) SP100
 - In the requirements development and organization phase
- 802.15.4
 - Published standard
 - Working groups looking at mesh and tighter transmission timing
- ZigBee
 - Based on 802.15.4 phy and MAC
 - Working groups looking at mesh and low power routers and devices
- WINA (Wireless Industrial Networking Alliance)
 - A marketing and wireless sensor/control network promotion consortium

Questions?

Rick Enns VP Standards & Technology 510-400-2988 renns@dustnetworks.com

