

Pacific Northwest

Searching for DM with the **SuperCDMS HVeV Detector**

Francisco Ponce

Post-Doc, Pacific Northwestern National Laboratory

IEEE OEB LMAG

2021-04-28

PNNL is operated by Battelle for the U.S. Department of Energy

Outline

Dark Matter

- 1. Astronomical Observation
- 2. WIMPs
- 3. SuperCDMS

Detector R&D DevelopmentDM Search

Beyond the Standard Model

M33 Galactic Rotation Curve

Pacific Northwest

CMB Anisotropy

Gravitational Lensing

http://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB

http://www.astro.ucla.edu/~wright/CMB-DT.html

Insufficient mass in the universe!

Weakly Interacting Massive Particles Pacific Northwest **Four Forces:** Electromagnetic, Weak, Strong, Gravity Electron Recoil HOW DOES DARK MATTER INTERACT? Electron Recoil ELECTROMAGNETISM STRONG FORCE Igammas Nuclear Recoil GRAVITY (neutrons, WIMPs) Nuclear Recoil PERIMETER INSTITUTE https://medium.com/starts-with-a-bang/the-wimp-miracle-hope-(Source Unknown) for-dark-matter-is-dead-9dc3f609dc0a Super-Symmetry Theories: Lightest supersymmetric particle (LSP) Neutralino Create a theory Higgsino Photino Name your own DM particle

https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA16876

$$n_X = \frac{g}{2\pi^3} \int f(\boldsymbol{p}, T) d^3 \boldsymbol{p} \qquad \qquad n_X \propto T^3 \qquad \text{for} \qquad \mathsf{T} >> \mathsf{m}_X$$
$$n_X \approx g \left(\frac{m_X T}{2\pi}\right)^{3/2} e^{-m_X/T} \qquad \text{for} \qquad \mathsf{T} << \mathsf{m}_X$$

SuperCDMS primary goal is 300 MeV to 6 GeV mass range

SNOLAB SuperCDMS

Quasiparticle-assisted Electrothermal-feedback Transition Edge Sensors (QETs)

Pacific Northwest

High Voltage (HV):

- Phonon signal
- Large Bias Voltage

Neganov-Trofimov-Luke Effect

interleaved Z-dependent Ionization and Phonon (iZIP):

- Phonon signal
- Charge signal
- Small Bias Voltage

Projected Sensitivity

Phys. Rev. D 95, 082002, https://doi.org/10.1103/PhysRevD.95.082002

Improved sensitivity to lower masses and cross-sections

Outline

✓ Dark Matter

Detector R&D Developments

- 1. High resolution phonon detectors
- 2. Dilution refrigerator laser upgrade
- 3. SuperCDMS HVeV response
- 4. Detector Modeling

DM Search

Transition Edge Sensor

Pacific

High resolution detectors with tunable bandwidth

SuperCDMS HVeV Detector R&D

 I cm

Pacific Northwest

0.4 cm

Quasiparticle-trap-assisted Electro-thermal-feedback Transition-edge sensor (QET)

Pulsed monochromatic 650 nm (~1.9 eV) laser

Two channel QET with NTL amplification capabilities

HVeV Laser Response

Appl. Phys. Lett. 112, 043501 (2018); https://doi.org/10.1063/1.5010699

Integer e⁻h⁺ Pairs @ 160V Bias

Gain Linearity

First observation of e⁻h⁺ pairs in Si crystal with a phonon sensor

HVeV Detector Calibration

Pacific

Calibration laser shows new features between peaks!

Pacific

Northwest

J. of Low Temp. 199, 598-605(2020), https://doi.org/10.1007/s10909-020-02349-x

Northwest

Pacific

The normalized background spectra (top), one residual at -140 V high intensity (middle) and fitted bulk & surface leakage probabilities (bottom) for all 8 configurations.

Weighted Bulk Leakage: 0.132 ± 0.023% @ +140 V 0.113 ± 0.022% @ -140 V

Weighted Surface Leakage: 0.087 ± 0.001% @ +140 ∨ 0.101 ± 0.007% @ −140 ∨

Impact Ionization and Charge Trapping

Phys. Rev. D 101, 031101(R), https://doi.org/10.1103/PhysRevD.101.031101

m = 1

(Top) Spectrum of laser-induced events (green) after cuts (~ 4 minutes), with analytical fit (black line) that includes charge leakage, impact ionization and charge trapping. (Bottom) Residuals normalized by the bin counting statistics. Bins with zero counts were artificially set to zero.

✓ Dark Matter

✓ Detector R&D Developments

DM Search

- 1. Run 1: Stanford University
- 2. Run 2: Northwestern University
- 3. Analysis and DM Exclusion

Stanford University Run 1

Phys. Rev. Lett. 121, 051301, https://doi.org/PhysRevLett.121.051301

Si Crystal w/

Pacific Northwest

> Dilution refrigerator sample stage (30 mK)

> > KG-3 IR filters

NTL Amplification and monochromatic source

Northwestern University Run 2

Northwest

Pacific

Phys. Rev. D 102, 091101(R), https://doi.org/10.1103/PhysRevD.102.091101

LED illumination from QET side

DM search spectrum are similar in the two runs.

Electron Recoil DM Search

10⁴

Pacific

Eqn. from http://www.doi.org/10.1007/JHEP05(2016)046

Improved heavy mediator ERDM limits to 0.5 MeV

Electron Recoil DM Search

Pacific

Improved heavy mediator ERDM limits to 0.5 MeV

Dark Photon DM Search

Pacific Northwest

Dark photon limit is consistent with other measurements

Conclusion

- Single e⁻h⁺ pair resolution with NTL gain
- Achieved comparable sensitivity to that reported by DAMIC for Dark Photons
- Improved constraints on inelastic ERDM for both heavy and light mediators down to 0.5 MeV
- Developed technique to measuring IICT
- Model is integrated into new DM search

Questions...

https://xkcd.com/2268/

We believe this resolves all remaining questions on this topic. No further research is needed.

References

I al and the second and and (and) and

2. mand. manna, man (m) -

was an a man of a law and

JUST ONCE, I WANT TO SEE A RESEARCH PAPER WITH THE GUTS TO END THIS WAY.

Backup Slides

Questions...

https://loadingartist.com/comic/out-of-sight/

✓ Dark Matter

✓ Detector R&D Developments

✓DM Search

Improved Detector Modeling

- 1. Charge trapping and impact ionization model
- 2. Data Quality
- 3. Background analysis
- 4. Charge trapping and impact ionization analysis

Background Selection

Energy (top) and counts (bottom) of events as a function of the pulse OF arrival time relative to laser TTL

Background can be selected based on timing

Run 2 Analysis

Underfits in the 100 V spectra data are excluded from final weighted averages

Conclusion

- Single e⁻h⁺ pair resolution with NTL gain
- Achieved comparable sensitivity to that reported by DAMIC for Dark Photons
- Improved constraints on inelastic ERDM for both heavy and light mediators down to 0.5 MeV
- Demonstrate time domain OF for semi-continuous mode acquisitions
- Developed technique to measuring IICT
- Observed no dependence on crystal polarity
- Observed dependence on crystal bias voltage
- Model is integrated into new DM search

Semi-Continuous Acquisition

Tagged Laser Events

Pacific Northwest

Time-shifting optimal filter (OF) amplitude as a function of time (blue curve).

Detector Stability

Detector responsivity over 27(18) hours of real-time acquisition with a +(-)140 V bias and four intensities for 8 configurations.

Eight configurations used in study and DR was nominally stable throughout

Calibration & Background

Peak Fitting

Pacific Northwest

Relative Arrival Time

Calibration was performed using the centroids of a Gaussian fit to the 1, 2, & $3 n_{eh}$ peaks.

Energy (top) and counts (bottom) of events as a function of the OF estimated relative arrival time.

Background can be selected based on timing

Data Selection Run 1

Calibration Laser Data

Pacific Northwest

DM Search Data

Periods of high low-frequency background, high surface leakage, and poor system stability were removed as part of the live time cuts. Events with excessive noise in the pre-trigger, start times far from the trigger window or bad time domain chi-square were rejected as part of the reconstruction quality cuts.

Science exposure of 0.49 gram-days

Laser spectrum is used to calculate the reconstruction quality cut efficiency

Optimal interval method is applied to sections of data within 2σ of quantized laser peaks.

Limit search region to expected DM signal regions

DM Search Data Run 1

Pacific

Example of modeling a Dark Photon no IICT is considered

Where $P_m(\lambda)$ is the Poisson distribution, $\lambda = 6$ is the average number of photons per pulse, m is the number of photons, $G(\sigma)$ is the Gaussian distribution, and $\sigma = 0.1 \text{ e}^{-h^+}$ is the detector resolution.

Leakage Background

$$R(x) = R_{Surf}\delta(x - c_1) + \frac{R_{Bulk}}{(c_1 - c_0)}\Theta(x - c_0)\Theta(c_1 - x)$$

The acquisition is triggered on the laser TTL and analysis is carried out with a time-shifting OF

Medium Laser

Impact ionization and charge trapping fit (black curves) for a single acquisition cycle at +140 V crystal bias with medium (red), and low (purple) intensity laser. The curves have been normalized by dividing by the total counts in the spectrum. (Bottom row) Residual counts normalized by the individual bin standard deviations. Bins with zero counts were artificially set to zero.

Multi-Photon Response

Biometrika, **19**, 225–239 & 240–244 (1927);<u>https://doi.org/10.1093/biomet/19.3-4.225</u>, & <u>https://doi.org/10.1093/biomet/19.3-4.240</u>

 $\underline{\mathsf{m}^{\mathsf{th}} \mathsf{e}^{-\mathsf{h}^+} \mathsf{pair} \mathsf{PDF} \mathsf{with} \operatorname{impact} \operatorname{ionization} \mathsf{and} \mathsf{trapping}}_{mh(x) = \int_{-\infty}^{\infty} {}^{1}h(x')^{m-1}h(x-x')dx' \\ = A_1^m \delta(x-m) + mA_1^{m-1}A_-\Theta(x-m+1)\Theta(m-x) + mA_1^{m-1}A_+\Theta(x-m)\Theta(m+1-x) \\ + \sum_{i=0}^{m-2} \sum_{j=0}^{m-i} \sum_{n=1}^{m-i} A_{mijn}(n+m-j-x)^{m-i-j}\Theta(n+m-j-x)\Theta(x-m+j) \\ \end{array}$

$$A_{mijn} = \frac{A_1^i A_-^j A_+^{m-i-j} m!}{i! j! (m-i-j)!} \frac{(-1)^{m-i-n} (m-i)!}{n! (m-i-n)!} \frac{1}{(m-i-1)!}$$

with resistance from a RuOx thermometer used to measure the DR temperature. Detector neutralization performed at 70 hours due to increased levels of surface leakage. An increase in the bulk leakage rate was observed afterwards.

Temperature varied and bulk leakage rate was constant

Limitations on NTL Gain

Pacific Northwest

Minimize surface leakage by using ±140 V

Relative Detector Calibration

Pacific Northwest

Unmatched

Matched

QET A appears to have losses requiring a 13% correction to get surface events to land on lines of equal energy with the laser