However, until the mid-1980s, the necessity for a complex and expensive refrigeration infrastructure remained a "definite downer," standing in the way of extending the promise of superconductivity more broadly, especially to electric power and compact electronic devices. In 1986, materials were discovered which were superconducting at temperatures reachable by cooling in liquid air, a common and widely used industrial agent. These new materials, the so-called "layered copper oxide perovskites," are ceramics, not ductile metals, and a decade of intensive research has been devoted to processing them into practical wire and tapes. This work has now progressed sufficiently to allow construction and testing of prototype power cables, transformers, motors and generators. In parallel to these efforts, enormous advances have been achieved in thin film fabrication of these ceramics into passive superconducting rf filters which promise to greatly accelerate the global deployment of personal cellular communication technology. Moreover, the advent of high temperature superconductivity has resulted in a renaissance of the field of low temperature superconductivity leading to exciting advances in tools to study the frontiers of many fields of science – powerful magnets to increase the power of those microscopes of the universe called hadron colliders, a broad range of medical magnetotomography techniques applied to non-invasive diagnosis of human pathologies – and to enable applications such as maglev transportation and petaflop computation.
In this talk, we'll give the audience a brief "Superconductivity 101" introduction to its history and basic physics, and provide a hitchhiker's guide on the highway to these emerging applications arising with the dawn of the new century.
Paul M. Grant Dr. Grant is responsible for the reconnaissance and assessment of developments in frontier science and technology with potential impact on the global energy enterprise. His task includes the communication of his findings and insight to EPRI's executive management, staff and customers. Dr. Grant's work provides the context for EPRI's Strategic Science and Technology program, a $38 million annual research effort in which he is also an active participant. |
Prior to joining EPRI in 1993, Dr. Grant had an extensive career with the IBM Corporation where he performed basic investigations on the fundamental science of exotic superconductors and conductors and magnetic materials. He participated in the discovery of the family of high temperature superconductors in the mid-1980s. He is also one of the pioneers of the application of computers and computational methods to experimental and theoretical condensed matter physics. In addition, Dr. Grant served in IBM management as well as on several executive staff assignments assessing computer storage, printing and display technologies
He has published more than 100 papers in peer-reviewed journals. He holds four patents and co-authored twelve patent publications. His career with IBM included a two-year sabbatical as a Professor at the Materials Research Institute of the National University of Mexico, during which he received the Cátedra Patrimonial de Excelencia, Nivel II, the highest academic fellowship honor awarded visitors by the Mexican government. He presently serves on the materials science advisory boards of the University of Wisconsin and the University of Houston.
Dr. Grant holds the Ph.D. and A.M. degrees in Applied Physics from Harvard University and a B.S. in Electrical Engineering (summa cum laude) from Clarkson University. He plays a leadership role in the American Physical Society and the Materials Research Society to promote international cooperation in science, advance public understanding of scientific issues, and improve the quality of high school physics education. He is a Fellow of the American Physical Society.
Dr. Grant is frequently sought out by the media for commentary on developments in superconductivity. He has been quoted in leading newspapers such as the New York Times, Wall Street Journal, the Financial Times of London and the major wire services, as well as weekly periodicals, Time Magazine, Newsweek, Business Week, US News & World Report and The Economist serving as examples. He writes regularly for the News and Views section of the respected science journal Nature. In 1994 he was awarded the Nature-sponsored Scientist as Science Writer Prize. He has been interviewed on camera by the major television news networks, and has appeared on several TV specials focused on superconductivity produced by PBS Nova, BBC Horizon, Beyond 2000 and the US Information Agency.
SF Bay Area | Berkeley | LBL map |
Alternative route from 24-13 (Green line on map; shorter, but through residential neighborhood): On Ashby, turn right at Claremont Ave. (at gas station; second traffic light after main entrance to Claremont Hotel). Immediately bear left around the "island", with the restaurant on it. You will find yourself driving through a wrought iron and brick gateway if you have performed this maneuver properly. Proceed to the end of the street to a forced left turn onto Derby at the UC-Clark Kerr campus. Turn right at Warring at the southwest corner of the campus. After two blocks, follow the road as it bears to the left to join Piedmont Ave at the traffic light (stay in the right lane on Piedmont to avoid a forced left turn at Haste). Continue along Piedmont until it becomes Gayley Road and proceed as described in the previous paragraph.