Detector Development for Nuclear Medical Imaging of Breast Cancer

William W. Moses Lawrence Berkeley National Laboratory January 12, 2000

Outline:

- Breast Cancer / Mammography
- Positron Emission Tomography
- Detector Development at LBNL

Lutetium Orthosilicate (LSO) Scintillator

Contraction of the		DCO	
		BGU	L30
	Formula	Bi ₄ Ge ₄ O ₁₂	Lu₂SiO₅:Ce
	Atten. Len.	1.1 cm	1.2 cm
	Photo Fract.	43%	34%
A COLUMN	Photon/MeV	8,200	25,000
	Decay Time	300 ns	40 ns
	Emission λ	480 nm	415 nm
and the second	Radioactive?	No	Yes
-			(300 dps/cc)
Recently	y Developed	I Scintill	ator

Quantity	Conventional Module	This Module	Effect
Timing Resolution	~4 ns fwhm	0.75 ns fwhm	Improved Randon Rejection
Energy Resolution	20% fwhm	25% fwhm	Degraded Scatter Rejection
Crystal Size	4.0 x 4.4 mm	3.0 x 3.0 mm	Improved Position Resolution
Correct ID Fraction	53% (Center 1) 66% (Center 5)	65% (Center 1) 91% (Center 5)	Improved Position Resolution
D.O.I. Resolution	none	7–13 mm fwhm	Reduced Radial Elongation

Conclusions

Nuclear Medicine Can Image Breast Cancer:

Excellent Accuracy for ≥1 cm Tumors

Specialized Cameras Under Development:

Higher Resolution & Efficiency, Lower Cost Image Breast and Axillary Nodes At LBNL and Other Institutions

Development at LBNL:

Major Components Developed (Photodiode, Custom IC) Prototype Detector Module Shows Excellent Performance Lots of Work Yet To Do (Postdoc? – wwmoses@lbl.gov)

